Total for the last 12 months
number of access : ?
number of downloads : ?
ID 115660
Author
Kano, Saki Tokushima University
Yoshimoto, Ayumi Tokushima University
Naito, Chisato Tokushima University
Keywords
xylitol
triglyceride
cholesterol
Streptococcus mutans
denaturing gradient gel electrophoresis (DGGE)
capillary electrophoresis–mass spectrometry (CE–MS)
caries
Content Type
Journal Article
Description
The sugar alcohol xylitol inhibits the growth of some bacterial species including Streptococcus mutans. It is used as a food additive to prevent caries. We previously showed that 1.5–4.0 g/kg body weight/day xylitol as part of a high-fat diet (HFD) improved lipid metabolism in rats. However, the effects of lower daily doses of dietary xylitol on gut microbiota and lipid metabolism are unclear. We examined the effect of 40 and 200 mg/kg body weight/day xylitol intake on gut microbiota and lipid metabolism in mice. Bacterial compositions were characterized by denaturing gradient gel electrophoresis and targeted real-time PCR. Luminal metabolites were determined by capillary electrophoresis electrospray ionization time-of-flight mass spectrometry. Plasma lipid parameters and glucose tolerance were examined. Dietary supplementation with low- or medium-dose xylitol (40 or 194 mg/kg body weight/day, respectively) significantly altered the fecal microbiota composition in mice. Relative to mice not fed xylitol, the addition of medium-dose xylitol to a regular and HFD in experimental mice reduced the abundance of fecal Bacteroidetes phylum and the genus Barnesiella, whereas the abundance of Firmicutes phylum and the genus Prevotella was increased in mice fed an HFD with medium-dose dietary xylitol. Body composition, hepatic and serum lipid parameters, oral glucose tolerance, and luminal metabolites were unaffected by xylitol consumption. In mice, 40 and 194 mg/kg body weight/day xylitol in the diet induced gradual changes in gut microbiota but not in lipid metabolism.
Journal Title
Nutrients
ISSN
20726643
Publisher
MDPI
Volume
9
Issue
7
Start Page
756
Published Date
2017-07-14
Rights
This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
EDB ID
DOI (Published Version)
URL ( Publisher's Version )
FullText File
language
eng
TextVersion
Publisher
departments
Medical Sciences