ID | 117893 |
Title Alternative | To Tackle Bifurcation Problems with Python
|
Author |
Ueta, Tetsushi
Tokushima University
Tokushima University Educator and Researcher Directory
KAKEN Search Researchers
Amoh, Seiya
Tokushima University
|
Keywords | Python
分岐解析
テンソル
Bialternate積
Bifurcation analysis
Tensor
Bialternate product
|
Content Type |
Journal Article
|
Description | 機械学習やデータサイエンスを実践する基盤プログラミング言語としてPythonが注目されている.本解説では非線形問題,特に系にみられる周期解の分岐問題について,Pythonを用いたアプローチの詳細を述べる.分岐計算アルゴリズムを可読性高く実装でき,計算機やOSに依存せず,対話処理による試行錯誤が可能となる.幾つかの特徴的なコードを示しながら,分岐問題に対するPythonの優位点を述べる.また,Neimark-Sacker分岐におけるbialternate積を用いた解法のコンパクトな実装,及びSympyを用いたヘシアン生成自動化過程についても述べる.
|
Description Alternative | Python is gaining attention as a fundamental programming language for machine learning and data science. In this paper, we describe a detailed Python approach to nonlinear problems, especially the bifurcation problems of periodic solutions. It is a highly readable implementation of the bifurcation algorithm, independent of the computer and the operating system, and it allows interactive trial-and-error processing. We describe the advantages of Python for bifurcation problems with some illustrated codes. We also show a compact implementation of computation for Neimark-Sacker bifurcation using the bialternate product and an automated process for generating the Hessian using Sympy.
|
Journal Title |
IEICE ESS Fundamentals Review
|
ISSN | 18820875
|
Publisher | 電子情報通信学会
|
Volume | 16
|
Issue | 3
|
Start Page | 139
|
End Page | 146
|
Published Date | 2023-01-01
|
Rights | © 2023 IEICE
|
EDB ID | |
DOI (Published Version) | |
URL ( Publisher's Version ) | |
FullText File | |
language |
jpn
|
TextVersion |
Publisher
|
departments |
Center for Administration of Information Technology
|