ID | 114211 |
Title Alternative | Effects of dabigatran on diabetic endothelial dysfunction
|
Author |
Rahadian, Arief
Tokushima University
Salim, Hotimah Masdan
Tokushima University
Yagi, Shusuke
Tokushima University
Tokushima University Educator and Researcher Directory
KAKEN Search Researchers
Kusunose, Kenya
Tokushima University
Tokushima University Educator and Researcher Directory
KAKEN Search Researchers
Yamada, Hirotsugu
Tokushima University
Tokushima University Educator and Researcher Directory
KAKEN Search Researchers
Soeki, Takeshi
Tokushima University
Tokushima University Educator and Researcher Directory
KAKEN Search Researchers
Sata, Masataka
Tokushima University
Tokushima University Educator and Researcher Directory
KAKEN Search Researchers
|
Keywords | Thrombin
Endothelial function
Dabigatran
Inflammation
Diabetes
|
Content Type |
Journal Article
|
Description | Diabetic patients have coagulation abnormalities, in which thrombin plays a key role. Whereas accumulating evidence suggests that it also contributes to the development of vascular dysfunction through the activation of protease-activated receptors (PARs). Here we investigated whether the blockade of thrombin attenuates endothelial dysfunction in diabetic mice. Induction of diabetes by streptozotocin (STZ) increased the expression of PAR1, PAR3, and PAR4 in the aorta. STZ-induced diabetic mice showed impairment of endothelial function, while the administration of dabigatran etexilate, a direct thrombin inhibitor, significantly attenuated endothelial dysfunction in diabetic mice with no alteration of metabolic parameters including blood glucose level. Dabigatran did not affect endothelium-independent vasodilation. Dabigatran decreased the expression of inflammatory molecules (e.g., MCP-1 and ICAM-1) in the aorta of diabetic mice. Thrombin increased the expression of these inflammatory molecules and the phosphorylation of IκBα, and decreased the phosphorylation of eNOSSer1177 in human umbilical endothelial cells (HUVEC). Thrombin significantly impaired the endothelium-dependent vascular response of aortic rings obtained from wild-type mice. Inhibition of NF-κB attenuated thrombin-induced inflammatory molecule expression in HUVEC and ameliorated thrombin-induced endothelial dysfunction in aortic rings. Dabigatran attenuated the development of diabetes-induced endothelial dysfunction. Thrombin signaling may serve as a potential therapeutic target in diabetic condition.
|
Journal Title |
Vascular Pharmacology
|
ISSN | 15371891
|
NCID | AA11703926
AA12726778
|
Publisher | Elsevier
|
Volume | 124
|
Start Page | 106632
|
Published Date | 2019-11-20
|
Rights | © 2019. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/
|
EDB ID | |
DOI (Published Version) | |
URL ( Publisher's Version ) | |
FullText File | |
language |
eng
|
TextVersion |
Author
|
departments |
Medical Sciences
University Hospital
|