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Temporomandibular joint osteoarthritis is a degenerative disease that is characterized by permanent
cartilage destruction. Transforming growth factor (TGF)-b is one of the most abundant cytokines in the
bone matrix and is shown to regulate the migration of osteoprogenitor cells. It is hypothesized that
TGF-b/Smad3 signaling affects cartilage homeostasis by influencing sphingosine 1-phosphate (S1P)/
S1P receptor signaling and chondrocyte migration. We therefore investigated the molecular mechanisms
by which crosstalk may occur between TGF-b/Smad3 and S1P/S1P receptor signaling to maintain
condylar cartilage and to prevent temporomandibular joint osteoarthritis. Abnormalities in the condylar
subchondral bone, including dynamic changes in bone mineral density and microstructure, were
observed in Smad3�/� mice by microcomputed tomography. Cell-free regions and proteoglycan loss
characterized the cartilage degradation present, and increased numbers of apoptotic chondrocytes and
matrix metalloproteinase 13þ chondrocytes were also detected. Furthermore, expression of S1P receptor
3 (S1P3), but not S1P1 or S1P2, was significantly down-regulated in the condylar cartilage of Smad3�/�

mice. By using RNA interference technology and pharmacologic tools, S1P was found to transactivate
Smad3 in an S1P3/TGF-b type II receptor-dependent manner, and S1P3 was found to be required for
TGF-beinduced migration of chondrocyte cells and downstream signal transduction via Rac1, RhoA, and
Cdc42. Taken together, these results indicate that the Smad3/S1P3 signaling pathway plays an
important role in the pathogenesis of temporomandibular joint osteoarthritis. (Am J Pathol 2015, 185:
1e15; http://dx.doi.org/10.1016/j.ajpath.2015.06.015)
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Temporomandibular disorder is an orofacial disease that refers
to a number of clinical problems that involve the masticatory
musculature, the temporomandibular joint (TMJ), and associ-
ated structures.1 Osteoarthritis (OA) is a severe pathologic
change that often affects the TMJ of patients with severe
temporomandibular disorder and is characterized by progres-
sive cartilage degradation and subchondral bone changes.2,3

Despite extensive studies of the pathogenesis of cartilage
degradation in OA, current therapies are unable to impede or
reverse histopathologic progression to advanced OA.4 Low
bone mineral density and abnormal bone turnover were iden-
tified in the early stages of OA in the knee joint.5 These results
suggest that abnormal subchondral bone remodeling plays an
important role in the pathogenesis of OA in the knee. The TMJ
is one of the most common sites for OA,3,6 and emerging
stigative Pathology.
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evidence indicates that abnormal remodeling of mandibular
condylar subchondral bone occurs during the early stages of
TMJ-OA.7e9 Thus, subchondral bone may have a causative
role in TMJ-OA disorder. In the mandibular condyle, sub-
chondral bone is mainly formed by endochondral ossification,
and this process is regulated by factors that are endogenously
expressed by chondrocytes.10 However, the cause and effect
relation between subchondral bone abnormalities and the
development of TMJ-OA has not yet been established.
Furthermore, it is hypothesized that the accumulation of
124
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chondroprogenitor cells at injury sites is due to the migration of
these cells from the surrounding matrix. Nevertheless, the
physiologic and/or pathologic functions of chondroprogenitor
cells and their migratory effects on healing in TMJ-OA joints
remain unknown.

Transforming growth factor (TGF)-b is one of the most
abundant cytokines in the bone matrix11 and is shown to
play a central role in the remodeling of bone by regulating
the migration, proliferation, and differentiation of osteo-
progenitor cells.12,13 Cytokine signaling is transduced via a
heteromeric complex of two types of transmembrane serine/
threonine kinase receptors that phosphorylate receptor-
activated Smad proteins. Correspondingly, an osteoar-
thritic phenotype is observed in mice that express a
dominant-negative TGF-b type II receptor (TGF-bRII) and
in mice with systemic ablation of Smad3,14 a key effector of
TGF-b signaling. The long-lasting action exerted by the
TGF-b/Smad3 signaling pathway implies that a complex
cascade of transcriptional events is involved, and the
mechanistic details are not fully characterized. Several
studies have reported that some of the effects elicited by the
TGF-b/Smad3 signaling pathway are transmitted via a
pathway initiated by activation of sphingosine kinase
(Sphk), followed by intracellular generation of the bioactive
lipid, sphingosine 1-phosphate (S1P).15 Once formed, S1P
can serve as an extracellular ligand for five distinct mem-
brane receptors (termed S1P1e5) or as an intracellular
mediator.16 As a result, S1P is involved in regulating vital
functions such as cell migration, inflammation, angiogen-
esis, and wound healing.17e19

Here, we hypothesize that TGF-b/Smad3 signaling
influences cartilage homeostasis by influencing S1P/S1P
receptor signaling and chondrocyte migration. To test this
hypothesis, mandibular chondrocyte cells were isolated
from Smad3�/� mice, and the expression profile of the
S1P1e5 receptors was investigated. In addition, the effects of
Smad3 and S1P on chondrocyte cell migration and proteo-
glycan degradation in mandibular condylar cartilage were
investigated.
8
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Materials and Methods

Mice

Smad3�/� mice were previously generated by deleting
exon 8 of Smad3 by homologous recombination.20 Litters
from mated pairs of mice heterozygous for the targeted
deletion of Smad3 on a mixed 129/C57B6 background
were used in the present study. PCR genotyping of the
Smad3�/� mice was performed as previously described.20

Both Smad3�/� and wild-type (WT) mice were main-
tained under specific pathogen-free conditions and were
analyzed in this study.21 This study was approved by the
Ethics Committee of Tokushima University for Animal
Research (approval 12134).
2
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Micro-CT

Mandibles were resected from 4-month-old mice. The man-
dibleswere free of soft tissues andwerefixed overnight in 70%
ethanol. The bones were then analyzed by high-resolution
microcomputed tomography (micro-CT; SkyScan 1176
scanner and CTAn software version 1.15 Q; Bruker, Billerica,
MA). Briefly, image acquisition was performed at 50 kV and
200 mA.During scanning, the samples were enclosed in tightly
fitting plastic wrap to prevent movement and dehydration.
Thresholding was applied to the images to segment the bone
from the background. Two-dimensional images were used to
generate three-dimensional (3D) renderings with the use of the
3D Creator software CTVox version 3.0 (Bruker) Qsupplied
with the instrument. The resolution of the micro-CT images is
9 mm per pixel. The microstructural variables analyzed
included the bone volume-to-trabecular volume ratio, trabec-
ular thickness, and trabecular separation.

Tissue Preparation and Histologic Staining

TMJ tissues were removed and fixed in 4% freshly prepared
paraformaldehyde with EDTA in phosphate-buffered saline
(PBS) for 20 days. With the use of a microtome (Carl Zeiss
HM360, Jena, Germany), serial sagittal sections were cut from
paraffin-embedded TMJ tissue blocks. Serial sections of each
condyle were stained with hematoxylin and eosin for histologic
assessment, 0.1% safranin-O, and 0.02% fast green to detect
cartilage and proteins, respectively, and toluidine blue to detect
proteoglycans. Tartrate-resistant acid phosphatase staining was
used to identify osteoclasts according to the manufacturer’s
instructions (387-A; Sigma-Aldrich, St. Louis, MO).

Histologic Analysis

A modified Mankin scoring system22 was used to assess the
degree of cartilage degeneration. Safranin-Oestained sections
were used to score samples for features of cartilage disease,
including changes in cellularity, structural abnormalities, and
uptake of safranin-O as a measure of glycosaminoglycan
distribution and loss. The sections were analyzed by three in-
dependent experts who were blinded Qto the type of samples
analyzed.

Immunohistochemistry

After the deparaffinization and blocking of sections, immu-
nohistochemistry was performed with various primary anti-
bodies. Briefly, sections were incubated with primary rabbit
polyclonal antibodies that recognized phospho (p)-Smad3,
type II collagen (Col2a1), aggrecan, matrix metallopeptidase
(MMP)-13, MMP-9, Sphk1, S1P3, type X collagen (Col10a1;
Abcam, Cambridge, United Kingdom), cleaved caspase-3,
caspase-9 (Cell Signaling Technology, Danvers, MA), or
S1P1 (Cayman Chemical, Ann Arbor, MI) diluted in PBS that
contained 0.1% bovine serum albumin overnight at 4�C. The
ajp.amjpathol.org - The American Journal of Pathology
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sections were then washed in PBS and were incubated with
corresponding secondary antibodies at room temperature.
After 1 hour, antibody binding was visualized by staining with
3,3-diaminobenzidine (2.5 mg/mL), followed by counter-
staining with Mayer’s hematoxylin. Control sections were
incubated with nonimmune (control) IgG antibodies. All of the
stained sections were mounted and analyzed with a BioRevo
BZ-9000 microscope (KEYENCE, Osaka, Japan).

TUNEL Staining

The distribution of apoptotic chondrocyte cells was assessed
with the TdT-mediated dUTP-digoxigenin nick-end labeling
(TUNEL) method, which specifically labels the 30-hydroxyl
terminus of DNA strand breaks. TUNEL staining was per-
formed with an Apoptosis In Situ Detection Kit (Wako Pure
Chemical, Osaka, Japan), according to the manufacturer’s
directions. Negative controls were stained with TdT substrate
solution without TdT. TUNELþ apoptotic cells were observed
by microscopy (KEYENCE).

RNA Extraction and Real-Time PCR

Total RNA was extracted from mandibular condylar cartilage
with the use of Nucleo Spin RNA II kits (Macherey-Nagel,
Duren, Germany) according to the manufacturer’s instructions.
RNA concentrationswere estimatedwith aNanoDropND-2000
(Nano Drop Technologies, Wilmington, DE). Total RNA was
converted to cDNA with the use of a High-Capacity RNA to
c-DNAKit (Applied Biosystems, Foster City, CA) according to
the manufacturer’s instructions. PCR amplifications were then
performed for each reaction mix that contained cDNA, primers,
and PowerSYBR Green PCR Master Mix (Applied Bio-
systems). mRNA levels of Smad3, Sphk1, S1P1e5,MMP-9,
MMP-13, aggrecan, Col2a1, Sox9, osteocalcin, type I
collagen, and Col10a1 were measured by a 7500 Real-Time
PCR system (Applied Biosystems). All quantitations were
normalized to an endogenous control, glyceraldehyde
3-phosphate dehydrogenase, and were calculated according
to the comparative cycle threshold method (DDCt). The
following primers were used: S1P1, 50-CGCAGTTCTG-
AGAAGTCTCTGG-30 (sense) and 50-GGATGTCACAG-
GTCTTCGCCTT-30 (antisense); S1P2, 50-TGTTGCTGG-
TCCTCAGACGCTA-30 (sense) and 50-AGTGGGCTTTG-
TAGAGGACAGG-30 (antisense); S1P3, 50-GCTTCATCGT-
CTTGGAGAACCTG-30 (sense) and 50-CAGAGAGCCA-
AGTTGCCGATGA-30 (antisense); S1P4, 50-GTGTATGGC-
TGCATCGGTCTGT-30 (sense) and 50-GAGCACATAG-
CCCTTGGAGTAG-30 (antisense); S1P5, 50-AGACTCCTC-
CAACAGCTTGCAG-30 (sense) and 50-TAGAGCTGCG-
ATCCAAGGTTGG-30 (antisense); Sphk1, 50-GCTTCTGT-
GAACCACTATGCTGG-30 (sense) and 50-ACTGAGCACA-
GAATAGAGCCGC-30 (antisense); MMP-13, 50-GATGA-
CCTGTCTGAGGAAGACC-30 (sense) and 50-GCATTTCT-
CGGAGCCTGTCAAC-30 (antisense); MMP-9, 50-GCTGA-
CTACGATAAGGACGGCA-30 (sense) and 50-TAGTGGT-
The American Journal of Pathology - ajp.amjpathol.org
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GCAGGCAGAGTAGGA-30 (antisense); aggrecan, 50-CAG-
GCTATGAGCAGTGTGATGC-30 (sense) and 50-GCTGC-
TGTCTTTGTCACCCACA-30 (antisense); Col2a1, 50-GCT-
GGTGAAGAAGGCAAACGAG-30 (sense) and 50-CCATC-
TTGACCTGGGAATCCAC-30 (antisense); Sox9, 50-AGTA-
CCCGCATCTGCACAAC-30 (sense) and 50-ACGAAGG-
GTCTCTTCTCGCT-30 (antisense); osteocalcin, 50-CAGCG-
GCCCTGAGTCTGA-30 (sense) and 50-GCCGGAGTCTG-
TTCACTACCTTA-30 (antisense); type I collagen, 50-GAG-
CGGAGAGTACTGGATCG-30 (sense) and 50-GTTAGG-
GCTGATGTACCAGT-30 (antisense); Col10a1, 50-GTACC-
AAACGCCCACAGGCATA-30 (sense) and 50-GGACC-
AGGAATGCCTTGTTCTC-30 (antisense); glyceraldehyde
3-phosphate dehydrogenase, 50-AGGTCGGTGTGAACG-
GATTTG-30 (sense) and 50-TGTAGACCATGTAGTTGAG-
GTCA-30 (antisense).

Immunoblot Analysis

Total protein was extracted from primary chondrocyte cells
isolated from mandibular condylar cartilage in a lysis buffer
composed of 10 mmol/L Tris-HCl (pH 7.4), 150 mmol/L
NaCl, 5 mmol/L EDTA, 1% SDS, 10 mg/mL aprotinin, 50
mg/mL leupeptin, and 1 mmol/L phenylmethanesulfonyl
fluoride. After centrifugation, supernatant fluids were
collected, and whole lysate protein concentrations were
determined by using BCA Protein Assay Reagent (Thermo
Fisher Scientific, Rockford, IL). Equal amounts of lysates in
2� Laemmli sample buffer were resolved by 8% to 12% SDS-
PAGE at 85 V for 2 hours. Separated proteins were subse-
quently transferred electrophoretically onto polyvinylidene
difluoride membranes. The membranes were blocked with
0.1% Tween 20eTris-buffered saline that contained 5% skim
milk at room temperature. After 1 hour, primary rabbit poly-
clonal antibodies that recognized MMP-13, Col2a1, p-Smad3,
S1P3, Sphk1, TGF-bRII, Col10a1 (Abcam), p-extracellular
signal-regulated kinase Q(ERK), p-Akt, p-p38, cleaved
caspase-3, cleaved caspase-9 (Cell Signaling Technology),
S1P1 (Cayman Chemical), or Sox-9 (Santa Cruz Biotech-
nology, Santa Cruz, CA) were added as appropriate (each
diluted 1:1000), and the membranes were incubated overnight
at 4�C. Levels of b-actin were detected as a loading control
with the use of a mouse monoclonal antibody (Sigma-Aldrich)
in 0.1% Tween 20eTris-buffered saline (dilution 1:5000).
Membranes were subsequently washed with 0.1% Tween
20eTris-buffered saline (15 minutes, 3�) and then were
incubated for 1 hour with the appropriate secondary anti-
mouse (Millipore, Billerica, MA) or anti-rabbit (Cell
Signaling) antibodies conjugated to horseradish peroxidase.
Bound antibodies were visualized by using the LumiGLO
Western blot Detection System (Cell Signaling).

Small GTPase Activity Assays

To measure the activity of Rac1, Cdc42, and RhoA, pull-down
assays were performed (Cell Biolabs, Inc., Rockford, IL).
3
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Briefly, cell lysates were incubated with 2 mg of glutathione
S-transferaseetagged Rho binding domain (for RhoA) and
glutathione S-transferase-taggedep21-activated kinase 1 (for
Rac1 and Cdc42) at 4�C with gentle mixing. After 1 hour, the
lysates were immunoblotted with antibodies specific for
RhoA, Rac1, and Cdc42, as appropriate.

Cell Isolation and Culturing

Primary chondrocytes were isolated from mouse mandib-
ular condyles according to a previously published
method.23,24 Briefly, TMJ condylar cartilage tissues were
dissected from 6- to 8-week-old mice and were washed in
a-minimal essential medium (MEM; Gibco, Grand Island,
NY). Pieces of cartilage were minced with a scalpel and then
were digested with 3 mg/mL collagenase (Wako Pure
Chemical, Osaka, Japan) and 4 mg/mL dispase (Gibco) in
1� PBS at 37�C with shaking. After 3 hours, enzymatic
digestion was stopped by adding a-MEM that contained
10% lot-elected fetal bovine serum (FBS; Japan Bioserum
Co. Ltd., Fukuyama, Japan). The resulting cell suspension
was filtered through a nylon mesh (70-mm pore size; BD
Falcon, Franklin Lakes, NJ) to eliminate cell-matrix resi-
dues, then was centrifuged for 10 minutes at 250 � g. The
chondrocytes obtained were washed 3� with a-MEM and
were cultured in 5% CO2 at 37�C in basal medium that
consisted of a-MEM supplemented with 20% FBS, 2 mmol/L
glutamine, 100 U/mL penicillin, 100 mg/mL streptomycin
(Gibco), and 100 mmol/L 2-mercaptoethanol (Gibco). After 4
to 6 days, the adherent cells were detached with trypsin-EDTA
(Gibco) and were passaged.

A mouse chondroprogenitor cell line, ATDC5 (RIKEN
BioResource Center Cell Bank, Tsukuba, Japan), was cultured
as a monolayer in high-glucose Dulbecco’s modified Eagle’s
medium (Sigma-Aldrich) with 5% FBS.

Both mouse primary chondrocytes and ATDC5 cells were
treated with 5 ng/mL TGF-b1 (Roche Diagnostics, Man-
nheim, Germany) or 10 mmol/L S1P (Cayman Chemical)
when the cells reached confluence if needed.

siRNA Targeting of Smad3, S1PR3, and TGFBR2

For siRNA targeting of Smad3, a siTrio Full Set (B-Bridge
International, Sunnyvale, CA) was used. Briefly, a cocktail that
included three sets of sense and antisense RNA oligonucleo-
tides: 50-GAGGAGAAGUGGUGCGAGATT-30 (sense) and
50-UCUCGCACCACUUCUCCUCTT-30 (antisense), 50-GC-
AGAGUACAGGAGACAGATT-30 (sense) and 50-UCUGU-
CUCCUGUACUCUGCTT-30 (antisense), and 50-GGAGA-
AUGCUGUAGGAGAATT-30 (sense) and 50-UUCUCCUA-
CAGCAUUCUCCTT-30 (antisense), were transfected into
cells with Lipofectamine RNAiMAX (Invitrogen, Carlsbad,
CA). For S1PR3-targeting siRNA, the following oligonucleo-
tides were chemically synthesized: 50-ACACCUAAGAG-
CCAAAUUAUGCGAT-30, 50-GGCAUUUACGUAGGCA-
CAGGGCATC-30, and 50-AGGAGUCACCAACGCAUUU-
4
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CAGCCT-30 (OriGene Technologies Inc., Rockville, MD). For
siRNA that targeted TGFBR2, a siTrio Full Set (BiONEER,
Daejeon, Republic of Korea) was used which included the
following three sets of sense and antisense RNA oligonu-
cleotides: 50-GUCUACAAGGCCAAGCUGA-30 (sense)
and 50-UCAGCUUGGCCUUGUAGAC-30 (antisense),
50-CAGAAGAUGGCUCGCUGAA-30 (sense) and 50-UU-
CAGCGAGCCAUCUUCUG-30 (antisense), and 50-CA-
CAGUGACCACACUCCUU-30 (sense) and 50-AAGGA-
GUGUGGUCACUGUG-30 (antisense).

Cell Transfections

Cells were plated in six-well dishes (6 � 104 cells per well).
After 24 hours, the cells were transfected with Lipofectamine
RNAiMAX according to the manufacturer’s instructions
(Life Technologies). Briefly, Lipofectamine RNAiMAX was
incubated with the siRNAs in Dulbecco’s modified Eagle’s
medium without serum and antibiotics at room temperature.
After 20 minutes, the lipid/RNA complexes were added to
the ATDC5 cells or the mouse primary chondrocytes isolated
from mandibular condylar cartilage with gentle agitation at a
final concentration of 50 nmol/L in serum that contained 1
mg/mL bovine serum albumin. The transfected cells were
used for experiments within 48 hours of being transfected.
Gene knockdown was confirmed by real-time PCR or
Western blot analysis.

Wound Healing Assays

ATDC5 cells or mouse primary chondrocytes were plated at a
high density in 12-well plates and were grown to confluence.
With the use of a sterile P-200micropipette, a scratch was made
through each cell monolayer. The cells were then washed three
times with PBS and were incubated in growth media with or
without TGF-b. Images of the samefield-of-viewwere obtained
with a lightmicroscope (KEYENCE) at the beginning and at the
end of the experiments after each PBS wash. At least four fields
were photographed for each condition at each time point, and
gap distances were calculated with ImageJ software version
1.49 Q(NIH, Bethesda, MD; http://imagej.nih.gov/ij). Wound
healingwas defined as a reduction in the gap distance over time.

Cell Migration Assays

To evaluate the chemotaxis stimulated by S1P and TGF-b in
primarymandibular chondrocyte cell cultures derived fromWT
and Smad3�/�mice, a Cultrex 96-well CellMigrationAssay kit
(Trevigen, Gaithersburg, MD) was used according to the
manufacturer’s instructions. Before the assay, cells were starved
for 24 hours in serum-free medium and then were incubated in
Dulbecco’s modified Eagle’s medium without FBS in the
presence of S1P and TGF-b for 8 hours. The cells were also
pretreated with inhibitors, including FTY720 (BioVision, San
Francisco, CA) and suramin (Sigma-Aldrich) for 1 hour before
the migration assays were performed.
ajp.amjpathol.org - The American Journal of Pathology
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Figure 1 The effect of Smad3 deficiency on mandibular condyles. A: A three-dimensional reconstruction of mandibular condyles from 4-month-old
Smad3�/� and WT mice. Representative transverse, sagittal, and coronal views from micro-CT scans of the condyles. B: Trabecular BV was determined in
representative sagittal plane sections, and these values are presented as BV/TV ratio. Data are expressed as means � SD. n Z 5. *P < 0.05. Scale bar Z 500
mm. BV, bone volume; micro-CT, microcomputed tomography; Tb.Sp, trabecular separation; Tb.Th, trabecular thickness. TV, tissue volume; WT, wild-type.
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3D Matrigel Cultures

To evaluate the influence of extracellular matrix (ECM)
components, 3D Matrigel cultures were grown in six-well
plates. Growth factor-reduced Matrigel (Trevigen) was
handled according to the manufacturer’s instructions.
ATDC5 cells transfected with Smad3-targeted siRNA or
primary chondrocyte cells transfected with S1PR3-targeted
siRNA with the use of 3D-Fectin transfection reagent (OZ
Biosciences, Marseille, France) were cultured on this
Matrigel and were incubated in the presence of 5 ng/mL
TGF-b1 for 0 to 30 minutes. Cell lysates were subsequently
isolated with a 3D Culture Cell Harvesting Kit (Trevigen).
½F2�½F2�
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Statistical Analysis

All experiments were performed at least in triplicate for each
set of conditions, and each experiment was independently
repeated at least two or three times. The results are presented
as the means � SD. These data were statistically analyzed
with t-test or one-way analysis of variance with post hoc
Tukey honest significant differences test, as appropriate for
each case. P < 0.05 was considered statistically significant.
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Results

Maintenance of Normal Condylar Cartilage and a Role
for Smad3

To evaluate the role of Smad3 in mandibular condyle
development and maintenance, the TMJs of Smad3�/� mice
were analyzed. The micro-CT results found that the bone
The American Journal of Pathology - ajp.amjpathol.org
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volume-to-trabecular volume ratio and the trabecular thick-
ness were reduced among different regions of the condylar
subchondral bone in the 4-month-old Smad3�/� mice
compared with the age-matched WT mice (Figure 1, A and
B). In contrast, the trabecular separation was significantly
greater in the 4-month-old Smad3�/� mice than in the age-
matched WT mice (Figure 1, A and B), thereby indicating
the dynamic nature of bone mineral density and microstruc-
ture in Smad3�/�mice. The phenotype of the Smad3�/�mice
was also more prominent in the mandibular condylar cartilage.
For example, Smad3-dependent differences were apparent in
the 4-month-old mice on the basis of the decrease in overall
safranin O staining with fast green and the reduced toluidine
blue staining in each TMJ that were observed. These observa-
tions also became more prominent with age (Figure 2, DeF).
The modified Mankin scores that were assigned22 further
confirmed that deficiency of Smad3 caused important changes
in structural characteristics that parallel the progression of OA
(Figure 2G). Other hallmarks of OA were observed in the
condylar cartilage of the 4-month-old Smad3�/� mice,
including deterioration of the smooth articular cartilage surface
and fibrillation of the superficial layer (Figure 2, A and D).
Consistent with previous in vitro studies of osteoclastogenesis
in bonemarrow cells of Smad3�/�mice,25 few osteoclasts were
present in the condylar subchondral bone of the Smad3�/�mice
examined (Figure 2, B and C).
Smad3 Maintains a Normal Cartilage Matrix
Composition

To investigate the molecular basis of the Smad3-
dependent differences observed in the structure and
5
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Figure 2 The effect of Smad3 deficiency on articular cartilage and subchondral bone. Serial
sections of mandibular condyles were stained by hematoxylin and eosin (A) and TRAP (B). C:
Comparison of N.Oc/B.Pm (arrows, B) per in the subchondral bone of condyles obtained from 4M
Smad3�/� and WT mice. D and E: Serial sections of mandibular condylar cartilage were histo-
chemically stained with safranin O and fast green (D) and toluidine blue (E). F: Comparison of
proteoglycan staining of the cartilage of the central and posterior thirds of the mandibular condylar
fromWT and Smad3�/�mice.G:Histologic grading according to modified Mankin scores recorded for
the cartilage of the mandibular condylar samples obtained from 1M and 4M WT and Smad3�/� mice.
Date are expressed as means� SD. nZ 5 mice per group. *P< 0.05, **P< 0.01. Scale barZ 100
mm. N.Oc/B.Pm, number of TRAPþ cells per bone perimeter; TRAP, tartrate-resistant acid
phosphatase; WT, wild-type; 1M, 1-month-old mice; 4M, 4-month-old mice.

Mori et al

621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682

683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
composition of the cartilage matrix, mRNA levels of
Col2a1 and aggrecan were detected. The corresponding
proteins represent key components of the cartilage ma-
trix. Levels of Col2a1 mRNA were reduced by 50% in
the cartilage samples obtained from 4-month-old
Smad3�/� mice compared with the cartilage samples
obtained from age-matched, control littermates
(Figure 3A). Progressive loss of the Col2a1 and aggre-
can proteins and loss of Smad3 phosphorylation were
also observed in Western blot analysis and immunohis-
tochemistry assay of the articular cartilage of the
Smad3�/� mice (Figure 3, B and C, and Supplemental
Figure S1A). Taken together, these results suggest that
6
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Smad3 is essential for the sustained expression of two
key components of the cartilage matrix, Col2a1 and
aggrecan.

Levels of MMP-13 and MMP-9 Are Higher in Condylar
Cartilage Obtained from Smad3�/� Mice

Degenerative changes in the cartilage matrix may result from
reduced matrix synthesis, increased matrix degradation, or
both. To distinguish these possibilities, expression levels and
localization of MMPs, MMP-13 and MMP-9, were exam-
ined. MMP-13 and MMP-9 degrade aggrecan and Col2a1,
respectively, and are present at higher levels during OA.
ajp.amjpathol.org - The American Journal of Pathology
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Figure 3 Q16Molecular composition of the mandibular condylar cartilage in Smad3�/� mice. A: mRNA levels of Col2a1, aggrecan, MMP-13, and MMP-9 were
detected in mandibular condylar cartilage samples obtained from 1M and 4M Smad3�/� mice and their littermates. Expression of each mRNA was quantified and
normalized to GAPDH. The real-time PCR results are representative of independent experiments. B: Western blot analysis of Col2a1 and MMP-13 expression in
mandibular condylar cartilage obtained from WT and Smad3�/� littermates. b-Actin was used as an internal control. C: Immunohistochemical analysis of phos-
phorylated Smad3, Col2a1, and aggrecan in mandibular articular cartilage samples obtained from 4M WT and Smad3�/� littermates. As a negative control,
mandibular articular cartilage obtained from 4M WT mice were stained with rabbit IgG (isotype control). D: The distribution of MMP-13 and MMP-9 proteins in 4M
Smad3�/� articular cartilage. As a negative control, mandibular articular cartilage obtained from 4M Smad3�/� mice were stained with rabbit IgG (isotype control).
The number of MMP-13þ and MMP-9þ cells in the central and posterior thirds of the mandibular condylar cartilage samples from WT and Smad3�/� mice were
examined. E: Serial sections of condylar cartilage obtained from 1M and 4M Smad3�/� mice were stained in TUNEL assays. As a negative control, mandibular articular
cartilage obtained from 4M Smad3�/� mice were stained with TdT substrate solution without TdT. The number of TUNELþ cells in the central and posterior thirds of
the mandibular condylar cartilage obtained from WT and Smad3�/� mice were compared. F: Serial sections of condylar cartilage from 4M Smad3�/� mice were
immunostained for active caspase-3 and caspase-9. As a negative control, mandibular articular cartilage obtained from 4M Smad3�/� mice were stained with rabbit
IgG (isotype control). The number of active caspase-3þ and caspase-9þ cells in the central and posterior thirds of the mandibular condylar cartilage obtained from
WT and Smad3�/� mice were compared. G: Immunoblot analysis of cleaved caspase-3 and cleaved caspase-9 in primary mandibular chondrocyte cells isolated from
1M and 4M WT and Smad3�/� mice. Data are expressed as means � SD. nZ 5 mice per group (A); nZ 3 independent experiments (A and B); nZ 2 independent
experiments (G). *P < 0.05, **P < 0.01. Scale bar Z 100 mm. Col2a1, type II collagen; GAPDH, glyceraldehyde 3-phosphate dehydrogenase; MMP, matrix
metallopeptidase; TUNEL, TdT-mediated dUTP-digoxigenin nick-end labeling; 1M, 1-month-old mice; 4M, 4-month-old mice.
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Unlike their control littermates, the mRNA levels of MMP-13
and MMP-9 that were detected in the articular cartilage
samples obtained from Smad3�/� mice were highly variable
(Figure 3A). Moreover, an increased distribution of MMP-13
The American Journal of Pathology - ajp.amjpathol.org
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and MMP-9 proteins was consistently observed in both the
proliferative and hypertrophic layers of the cartilage samples
obtained from the 4-month-old Smad3�/� mice (Figure 3D
and Supplemental Figure S1B).
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Figure 4 Effect of Smad3-targeted siRNA on chondrocyte functions. A: Relative mRNA levels of Smad3 in mouse chondroprogenitor ATDC5 cells were
detected by real-time PCR 48 hours after transfection with control siRNA and Smad3-targeted siRNA. B: ATDC5 cells were transfected with Smad3-targeting
siRNA and were incubated in the presence or absence of 5 ng/mL TGF-b1 for 8 hours. Messenger RNA levels of MMP-13 were detected by real-time PCR. C:
ATDC5 cells were transfected with Smad3-targeted siRNA and were incubated in the presence or absence of 5 ng/mL TGF-b1 for 0, 3, 6, 12, and 24 hours. Total
cell lysates (50 mg) were subjected to Western blot analysis to detect cleaved caspase-3 and cleaved caspase-9. D: ATDC5 cells were prepared as described in A
and were evaluated in wound healing assays. Cell migration is quantified in the lower panel. E: ATDC5 cells were transfected with Smad3-targeted siRNA and
were incubated in the presence or absence of 5 ng/mL TGF-b1 for 0 to 60 minutes. Total cell lysates (50 mg) were subjected to Western blot analysis to
detect expression of Rac1-GTP, Cdc42-GTP, and RhoA-GTP. Data are expressed as means � SD. n Z 3 independent experiments that displayed similar results
(A); n Z 2 independent experiments (C and E); n Z 4 of three independent experiments. *P < 0.05, **P < 0.01. MMP, matrix metallopeptidase; TGF,
transforming growth factor.
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Higher Numbers of Apoptotic Chondrocytes Are
Present in the Smad3�/� Mice

Studies have suggested that cell death in OA cartilage occurs
primarily via apoptosis.26,27 The cartilage obtained from the
4-month-old Smad3�/� mice exhibited a greater number of
cell-free regions, and these were accompanied by extensive
areas of proteoglycan loss (Figure 2, A and DeG). TUNEL
assays were subsequently performed to determine whether
abnormal chondrocyte apoptosis preferentially occurred in
degraded cartilage. In WT mice, the number of TUNELþ

chondrocytes was low. However, in the mildly degraded areas
of cartilage obtained from the 4-month-old Smad3�/� mice, a
marked increase in the number of TUNELþ cells was
observed, and these cells were predominantly located in the
proliferative and hypertrophic layers of the cartilage
(Figure 3E).

In the present study, detection of cleaved caspase-3 and
cleaved caspase-9 represented a means by which to distinguish
apoptotic chondrocytes from cells that died by other mecha-
nisms, such as necrosis.26,28 In the mandibular condylar carti-
lage obtained from the Smad3�/� mice, cells positive for
cleaved caspase-3 and caspase-9 were progressively distributed
8
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within whole layers of the cartilage (Figure 3F and
Supplemental Figure S1C). In contrast, low levels of cleaved
caspase-3 and cleaved caspase-9 were detected in the condylar
cartilage tissues ofWTmice. Moreover, these expression levels
were confirmed by Western blot analysis (Figure 3G). Taken
together, these results strongly suggest that TGF-b/Smad3
signaling contributes to the apoptosis of mandibular condylar
cartilage cells via activated caspase signaling cascades.

Effects of Smad3-Targeted siRNA on
Chondroprogenitor Cell Functions

To more precisely examine the effects of TGF-b and Smad3
on the functions of chondrocytes, and to confirm the mo-
lecular mechanisms that mediate breakdown of the
mandibular condylar cartilage in Smad3�/� mice, the mouse
embryonal carcinoma-derived cell line ATDC5 was used as
a model of chondroprogenitor cells. First, ATDC5 cells
were transfected with Smad3-targeted siRNA. A 95%
reduction in Smad3 mRNA levels was achieved relative to
the levels detected in cells transfected with control siRNA
(Figure 4A). On the basis of the results described above
whereby increased expression of MMP-13 corresponded
ajp.amjpathol.org - The American Journal of Pathology

992

� 20 August 2015 � 2:19 pm � EO: AJP14_0737

http://ajp.amjpathol.org


½F5�½F5�

Chondrocyte Migration Mediated by Smad3/S1P3

993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054

1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
with increased proteolysis of Col2a1 and aggrecan and
progressive degradation of mandibular condyle cartilage
(Figure 3, AeD, and Supplemental Figure S1, A and B),
MMP-13 expression was also assayed in ATDC5 cells. In
the ATDC5 cells that expressed the control siRNA,
TGF-bemediated repression of MMP-13 mRNA was
detected. In contrast, TGF-bemediated repression of MMP-
13 mRNA was absent in cells that expressed the Smad3-
targeted siRNAs (Figure 4B). To confirm the enhanced
apoptotic signaling that was detected in the mandibular
condylar cartilage of the Smad3�/� mice (Figure 3, EeG,
and Supplemental Figure S1C), cleavage of caspase-3 was
assayed after the transfection of Smad3-targeting siRNA.
The active form of caspase-3 was found to be markedly
up-regulated 24 hours after TGF-b stimulation, whereas
only a slight increase in levels of cleaved caspase-3 were
detected in ATDC5 cells transfected with the control
siRNA. Similarly levels of cleaved caspase-9 in ATDC5
cells transfected with Smad3-targeted siRNA increased be-
tween 3 and 24 hours after TGF-b stimulation, whereas only
a slight increase in the levels of cleaved caspase-9 were
detected in the ATDC5 cells transfected with the control
siRNA (Figure 4C). These data support the in vivo findings
that Smad3 may contribute to the maintenance of condylar
cartilage via caspase signaling cascades.

Endochondral bone formation begins with the migration and
condensation of chondroprogenitor cells. Subsequently, overt
chondrogenesis provides a cartilaginous mold for bone forma-
tion in mammals.29 To clarify the molecular basis of Smad3
participation in the regulation of chondrocyte migration,
ATDC5 cells were subjected to a wound healing/scratch assay.
The ATDC5 cells that were transfected with the Smad3-
targeted siRNA found a greater decrease in cell motility in
response to TGF-b than the ATDC5 cells transfected with the
control siRNA (Figure 4D). Moreover, when the activity of
Rac1-GTP, Cdc42-GTP, and RhoA-GTP were assayed, time-
dependent increases in the corresponding activity levels were
detected after TGF-b stimulation in the ATDC5 cells trans-
fected with the control siRNA. In contrast, the activity levels of
these three Rho GTPases in the ATDC5 cells transfected with
Smad3-targeted siRNAwere repressed after TGF-b stimulation
(Figure 4E). These experiments were also performed on a 3D
gel matrix that was shown to optimally activate migration-
organizing molecules in response to TGF-b (Supplemental
Figure S2A). Similarly, the activities of these three Rho
GTPases in the ATDC5 cells transfected with Smad3-targeted
siRNA were repressed after TGF-b stimulation (Supplemental
Figure S2B).

Expression of Sphk1 and S1P3 Reduces in
Smad3-Deficient Chondrocytes

The S1P receptor is expressed on the cell surface and is
internalized on binding of an S1P ligand as part of the
migratory response.30 To analyze the expression of the S1P
receptor, primary mandibular chondrocytes were isolated.
The American Journal of Pathology - ajp.amjpathol.org
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These cells were found to express high levels of Sox9 and
Col2a1 mRNA, they were positive for Alcian Blue staining,
and they were positive for Col2a1 expression by immuno-
cytochemistry (Supplemental Figure S3, A and B). Col2a1
is a marker of the chondrogenic lineage. With the use of
real-time PCR, mRNA levels of Sphk1 and S1P1e5 were
also detected in the primary mandibular chondrocyte cells
isolated from WT and Smad3�/� mice. No differences were
found in the mRNA levels of S1P1, S1P2, S1P4, and S1P5
that were detected between the two sets of samples. How-
ever, significantly lower levels of Sphk1 and S1P3 mRNAs
were detected in the Smad3�/� chondrocytes than in the WT
chondrocytes (Figure 5A). When the same cells were
analyzed by Western blot analysis for expression of Sphk1,
S1P1, and S1P3, protein levels of Sphk1 and S1P3 were
found to be significantly lower in the Smad3�/� chon-
drocyte extracts than in the WT chondrocyte extracts
(Figure 5B). In contrast, the levels of S1P1 remained largely
unchanged. When expression levels of Sphk1, S1P1, and
S1P3 were detected in the mandibular condyles of WT and
Smad3�/� mice by immunohistochemical analysis, Sphk1
and S1P3 expression levels were significantly lower in the
latter than in the former (Figure 5C).

It was reported that Sox9 and Col10a1 are cartilage-
specific genes.31e33 In addition, OA chondrocytes were
found to express lower levels of Sox9; overexpression of
Sox9 was found to restore the ECM of OA tissue.34 When
OA chondrocytes from the Smad3�/� and WT mice were
analyzed by real-time PCR and Western blot analysis,
mRNA and protein levels of Sox9 were found to be
significantly lower in the Smad3�/� chondrocyte extracts
than in the WT chondrocyte extracts. Accumulating evi-
dence suggests that the expression of Col10a1 is elevated in
human OA cartilage as a result of chondrocyte hypertrophy
and cartilage calcification.35,36 Up-regulation of Col10a1
was also reported in experimental OA animal models.37

Expression levels of Col10a1 in the Smad3�/� chon-
drocyte extracts were significantly higher than the levels
detected in the WT chondrocyte extracts (Supplemental
Figure S3, C and D). Similarly, expression levels of
Col10a1 were significantly higher in the condylar cartilage
samples obtained from Smad3�/� mice than the expression
levels detected in the WT mice by immunohistochemical
analysis (Supplemental Figure S3E).

Quantitative analysis of S1P receptor expression was also
performed with real-time PCR, and it was confirmed that
TGF-b1 strongly affected levels of S1P receptor mRNA in
primary chondrocytes derived from WT mice. In particular,
a marked increase in S1P3 and Sphk1 mRNA levels were
detected in primary chondrocytes derived from WT mice
that were treated for 24 hours with TGF-b. In contrast, the
same TGF-b treatment of primary chondrocytes derived
from Smad3�/� mice did not induce an increase in S1P3 and
Sphk1 mRNA levels (Figure 5D).

Next, cell migration in relation to TGF-b/Smad3 and
S1P/S1P receptor signaling was investigated with an S1P
9
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receptor agonist, FTY720, and an S1P3 antagonist,
suramin. WT chondrocytes migrated in response to
stimulation by TGF-b and S1P, whereas migration was
inhibited after pretreatment with FTY720 or suramin
10
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(Figure 5E). Taken together, these data indicate that
crosstalk occurs between the TGF-b/Smad3 and S1P/
S1P3 signaling pathways in mandibular condylar
chondrocytes.
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Crosstalk between TGF-b/Smad3 and S1P/S1P3
Signaling Pathways Regulates the Migratory Function
of Chondrocytes

To examine whether S1P3 regulates chondrocyte migration,
primary chondrocytes were isolated from the mandibular
condylar cartilage of WT mice and were transfected with
S1P3-targeted siRNA. A 75% reduction in mRNA and
protein levels of S1P3 was achieved relative to the cells
transfected with the control siRNA (Figure 6, A and B).
When both sets of transfected cells were treated with S1P
for various periods of time, S1P-stimulated phosphorylation
of Smad3 was found to be inhibited in the cells transfected
with S1P3-targeted siRNA compared with the cells trans-
fected with the control siRNA (Figure 6C).

It was reported that stimulation of mesangial cells with S1P
leads to rapid activation of all three major mitogen-activated
protein kinase signaling cascades, ERK, p38, and c-Jun N-
terminal kinase.38 Activation of these cascades can be detected
by measuring the phosphorylation levels of different members
of these cascades. Phosphorylation of Akt and the mitogen-
activated protein kinase signaling targets, ERK and p38,
rapidly increased in the primary chondrocytes that were
transfected with the control siRNA and then stimulated with
S1P (Figure 6C). In contrast, decreased phosphorylation of
Akt, ERK, and p38 was detected in the primary chondrocytes
that were transfected with the S1P3-targeted siRNA and then
stimulated with S1P (Figure 6C). When the primary chon-
drocytes were pretreated with the S1P3 antagonist, suramin, 1
hour before stimulation with S1P for 15 minutes, S1P-
stimulated Smad3 phosphorylation was inhibited (Figure 6D).
These results suggest that S1P transactivates Smad3 in an S1P3-
dependent manner.

Finally, the involvement of TGF-bR II in S1P signaling was
investigated after the transfection of TGFBR2-targeting siRNA.
The down-regulation of TGF-bR II abrogated S1P-induced
Smad3 phosphorylation (Figure 6E). In addition, Western
blot analysis of the same cell lysates confirmed that lower levels
of TGF-bR II protein were present after the transfection of
TGFBR2-targeting siRNA versus the control RNA (Figure 6E).

In a wound healing/scratch assay, primary chondrocytes
that were isolated from mandibular condylar tissue and
Figure 5 Expression of S1P receptors by chondrocytes from Smad3�/� mice. A
and Smad3�/� (black bars) mice and were subjected to real-time PCR analysis wi
GAPDH. B: Immunoblot analysis of mandibular primary chondrocyte cells isolate
Sphk1 and S1P3 were detected in the articular cartilage. Detection of b-actin was
articular cartilage obtained from 4-month-old WT and Smad3�/� mice. Reduced e
negative control, mandibular articular cartilage obtained from 4-month-old Smad3
analysis of Sphk1 and S1P1e5 mRNA levels detected by real-time PCR with the use
from 4-month-old WT and Smad3�/� mice that were stimulated (þ) or not (�) wi
method (with the S1P3 subtype used for calibration), are presented E: Migration as
with FTY720 or suramin and then were incubated with 5 ng/mL TGF-b or 10 mmol/
that displayed similar results (A); n Z 3 independent experiments (B); n Z 5
triplicate and repeated three times with analogous results (D); n Z 3 from three i
GAPDH, glyceraldehyde 3-phosphate dehydrogenase; SIP, sphingosine 1-phosph
kinase; TGF, transforming growth factor; WT, wild-type.
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transfected with a S1PR3-targeting siRNA exhibited a
greater decrease in cell motility in response to TGF-b than
the control cells (Figure 6F). Small GTPase activity levels
for key downstream targets of G protein-signaling cascades
were also assayed, and these included Rac1-GTP, RhoA-
GTP, and Cdc42-GTP. The activity levels of these signal
transduction proteins were enhanced in the cells transfected
with the control siRNA and were not enhanced in the
chondrocytes that were transfected with S1PR3-targeting
siRNA and then stimulated with TGF-b (Figure 6G). When
the primary chondrocytes were grown in a 3D gel matrix
after being transfected with S1PR3-targeted siRNA, the
activity of these three Rho GTPases were repressed after
TGF-b stimulation (Supplemental Figure S2C).
Discussion

Here, bone mineral density, subchondral bone volume, and
osteoclast activities were reduced in the mandibular condyles
of the Smad3�/� mice examined. In addition, the articular
surfaces were collapsed, the thickness of the articular carti-
lage was reduced, and the abundance of cartilage matrix
proteins was progressively decreased. As a result, erosion of
the articular cartilage of the mandibular condyles had
occurred. Previously, Smad3�/� mice were characterized by
a diminished T-cell response to TGF-b,20,39 accelerated
wound healing,40 and a higher incidence of colon cancer.41

TGF-b1einduced Smad activation was shown to inhibit
the expression of proteases that regulate degradation of the
ECM (eg, MMPs) and to inhibit the proteolysis of cell
surface membrane proteins during physiologic processes.
The latter include embryonic development and wound
healing, whereas the affected pathologic conditions include
cancer and tissue fibrosis.42 Here, degradation of the
Smad3�/� mandibular condylar cartilage was associated
with impaired anabolic activity and increased cartilage
degradation. MMP-13 and MMP-9 were shown to
contribute to the breakdown of articular cartilage and the
resorption of subchondral bone,43e45 and both are important
contributors to the histologic phenotype of OA. Smad3�/�

mandibular chondrocytes were found to express higher
: Mandibular primary chondrocyte cells were isolated from WT (white bars)
th the use of primers specific for Sphk1, S1P1, S1P2, S1P3, S1P4, S1P5, and
d from 4-month-old WT and Smad3�/� littermates. Reduced expression of
used as an internal control. C: Immunohistochemical analysis of mandibular
xpression of Sphk1 and S1P3 were detected in the articular cartilage. As a
�/� mice were stained with rabbit IgG (isotype control). D: A quantitative
of total RNA extracted from mandibular primary chondrocyte cells obtained
th 5 ng/mL TGF-b1 for 48 hours. Fold-change data, according to the 2�DDCT

says of WT and Smad3�/� chondrocyte cells that were pretreated for 1 hour
L S1P. Data are expressed as means � SD. n Z 3 independent experiments
mice from each group (C); n Z 1 representative experiment performed in
ndependent experiments (E). *P < 0.05, **P < 0.01. Scale bar Z 100 mm.
ate; S1P1e5, sphingosine 1-phosphate receptor 1e5; Sphk, sphingosine
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Figure 6 Effect of S1PR3-targeted siRNA on chondrocyte functions. A: Relative mRNA levels of S1P3 were detected by real-time PCR in primary chondrocyte
cells transfected with control and S1PR3-targeted siRNAs. Expression levels were normalized to GAPDH. B: After the transfection of primary chondrocyte cells
with control and S1PR3-targeted siRNAs for 48 hours, S1P3 protein levels were detected by Western blot analysis. Detection of b-actin was used as a loading
control. C: Primary chondrocyte cells were transfected with control or S1PR3-targeted siRNAs and were subsequently stimulated with 10 mmol/L S1P for the
indicated time points. Western blot analyses used primary antibodies that recognize p-Smad3, p-Akt, p-ERK, and p-p38. D: Primary chondrocytes were treated
with suramin and then stimulated with 10 mmol/L S1P for the indicated time periods. Western blot analyses were performed with a p-Smad3 primary antibody.
E: Primary chondrocytes were transfected with control siRNA or mouse TGFBR2-targeted siRNA and then were stimulated with either vehicle or 10 mmol/L S1P
(15 minutes). F: Primary chondrocytes were transfected with control or S1PR3-targeted siRNAs, stimulated with 5 ng/mL TGF-b for the indicated time periods, and then
subjected to wound healing assays. Cell migration is quantified in the lower panel.G: Primary chondrocytes were transfected with control or S1PR3-targeted siRNAs and
then stimulated with 5 ng/mL TGF-b for the indicated time periods. The activity levels of Rac1-GTP, RhoA-GTP, and Cdc42-GTP were measured in pull-down assays. H: A
proposedmodel for themechanisms bywhich crosstalk between the TGF-b/Smad3 and S1P/S1P3 signaling pathways regulate chondrocytemigration. Data are expressed
as means � SD. nZ 3 for each from three independent experiments (A); nZ 3 independent experiments (BeG). *P < 0.05, **P < 0.01. ERK, extracellular signal-
regulated kinase; GAPDH, glyceraldehyde 3-phosphate dehydrogenase; p, phospho; S1P, sphingosine 1-phosphate; S1P3, sphingosine 1-phosphate receptor 3; Sphk,
sphingosine kinase; TGF, transforming growth factor; TGF-bRII, transforming growth factor-b type II receptor.
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levels of MMP-13 and MMP-9 in the hypertrophic layer of
the condylar cartilage in 4-month-old Smad3�/� mice than
in the same tissue in 1-month-old Smad3�/� mice. In
addition, the former synthesized less Col2a1 and aggrecan,
both of which are substrates for MMP-13 andMMP-9. Taken
together, these results are consistent with the degradation and
remodeling of the mandibular condylar cartilage that were
observed in the 4-month-old Smad3�/� mice examined.
12
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The results of the present study indicate that spontaneous
abnormalities in the mandibular condyle subchondral bone
can induce progressive cartilage degradation in mice. These
results are consistent with a mouse model of chondrocyte-
specific deletion of Smad3 that has provided a model of OA
in the knee joint.46 In humans, mutations in Smad3 were
found in the MH2 domain of the Smad3 protein, a region
that is extremely well conserved among other species and
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among other Smad proteins that are associated with early-
onset OA.47 Moreover, it was recently reported that over-
expression of TGF-b1 in subchondral bone leads to
mandibular condyle degradation in mice.48

Chondrocyte death is commonly accepted as a hallmark
of OA28 and appears to positively correlate with the severity
of matrix depletion and destruction that are observed in
osteoarthritic cartilage.28,49 In the present study, cell death
in the condylar cartilage of Smad3�/� mice also appeared to
be progressive, because the numbers of both TUNELþ and
active caspase-3þ and caspase-9þ cells were not signifi-
cantly higher than those of the 1-month-old Smad3�/� mice,
yet they were markedly increased compared with the
4-month-old Smad3�/� mice.

Relevant issues about regenerative therapy attempts
include the recruitment of chondroprogenitor cells to the
affected cartilage, modulation of MMPs, and the impact of
the ECM on the migration of cells.50e52 Moreover, bioac-
tive lysophospholipids, primarily S1P, are recent additions
to the list of potent mediators of tissue repair and wound
healing because of their regulatory function in cell migra-
tion. S1P is released from most cells after stimulation with
growth factors such as TGF-b.15 Thus, the importance of
S1P receptors for chondrocyte cell migration should be
considered, although their role in OA is largely uncharac-
terized. On the basis of the role that S1P has in controlling
cell migration in other tissues,53 S1P and its family of
receptors (previously known as EDG receptors) were
investigated in Smad3�/� chondrocyte cells. In renal
mesangial cells, several S1P receptors are expressed,
including S1P1e5, and these receptors potentially mediate
mobilization of intracellular calcium, activation of the
classical mitogen-activated protein kinase cascade, and cell
proliferation.38 Mandibular condylar cartilage is distinct
from knee hyaline articular cartilage, and chondrocyte cells
derived from the condylar cartilage of Smad3�/� mice were
analyzed in the present study. The primary chondrocyte
cells that were derived from the WT mice expressed higher
levels of S1P3 compared with the other S1P receptors
assayed. Conversely, expression of S1P3 by the primary
chondrocytes derived from the Smad3�/� mice was signif-
icantly weaker. This difference in S1P3 expression was
further enhanced after TGF-b stimulation. These results are
consistent with the observation that signaling through the
Sphk1/S1P3 axis is enhanced during the TGF-induced
transdifferentiation of myoblasts into myofibroblasts.54,55

Human articular chondrocytes also express S1P receptors
in vitro,56 and S1P-mediated cell proliferation was reported
in a rat chondrocyte model.57 However, in the latter study, a
different set of S1P receptors was identified. In particular,
S1P4 rather than S1P3 was detected.

57

It was reported that crosstalk occurs between S1P receptors
and the Smad signaling pathway, because TGF-b up-regulates
both mRNA and protein levels of Sphk1 and increases Sphk1
activity in dermal fibroblasts and myofibroblasts.58 It was also
found that S1P uses the signaling of S1P receptors to stimulate
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the phosphorylation and activation of TGFbR kinase, thereby
resulting in the phosphorylation of Smad2 and Smad3 inde-
pendent of the TGF-b ligand, and the proliferation and
migration of keratinocytes.59 Thus, abrogation of Smad3
appears to prevent S1P-mediated effects, which suggests a
surprising, yet essential role for Smad3 in the signaling
cascade of the lysophospholipid, S1P.59,60 By using S1P3-
targeting siRNA and suramin, it was further found that
receptor S1P3 contributes to Smad activation. Correspond-
ingly, suramin was reported to be a selective antagonist of the
S1P3 receptor, in vitro.61 Abrogation of S1P-stimulated
Smad3 activation by TGFBR2-targeting siRNA also sup-
ports the hypothesis that TGF-bR II is a component of the S1P
signaling cascade. However, additional studies are needed to
identify the mechanistic details about the signaling of these
two receptors and the identity of the cross-linked proteins that
appear in Figure 6D.

Rho GTPases play a key role in coordinating the cellular
responses required for cell migration.62,63 In the present study,
the Rho GTPases assayed exhibited increased levels of activity
after stimulation by TGF-b. However, when primary chon-
drocyte cells were transfected with S1P3-targeted siRNA, the
activity levels of GTP-Rac1, GTP-RhoA, and GTP-Cdc42
decreased after TGF-b stimulation. Furthermore, similar
results were obtained when the same set of transfected cells
were grown on a 3D gel matrix and were stimulated with
TGF-b (Supplemental Figure S2C).

Taken together, these findings suggest that the maintenance
of chondrocyte cells, which includes the processes of cell
motility and apoptosis, are regulated by crosstalk between the
TGF-b/Smad3 and S1P/S1P3 signaling pathways. Furthermore,
Smad3/S1P3 signaling in chondrocytes may play a crucial role
in the cause of TMJ-OA.
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Supplemental Figure S1 Immunohistochemical analysis of mandibular articular cartilage obtained from 1M WT and Smad3�/� littermates. A: Expression
levels of phosphorylated Smad3, Col2a1, and aggrecan were detected. B: Expression levels of MMP-13 and MMP-9 were detected by immunohistochemistry. C:
Expression levels of caspase-3 and caspase-9 were detected. For the immunohistochemical analysis of negative controls, primary antibodies were replaced with
IgG to confirm the specificity of the staining. n Z 5 mice from each group. Scale bar Z 100 mm. Col2a1, type II collagen; MMP, matrix metallopeptidase; WT,
wild-type; 1M, 1-month-old mice.

Supplemental Figure S2 A: Growth of mouse chondroprogenitor ATDC cells in a 3D culture matrix enhances TGF-bemediated Rho-GTP activity. ATDC5
cells were cultured in 3D Matrigel or on 2D culture dishes in the presence of 5 ng/mL TGF-b1 for 0 to 30 minutes. The corresponding total cell lysates (50 mg)
were subjected to Western blot analysis to detect expression of p-Smad3. GAPDH was used as an internal control. Levels of Rac1-GTP and RhoA-GTP activities
were measured by a pull-down assay kit, with total Rac1 and RhoA immunoblotted in lysates. B: ATDC5 cells that were transfected with Smad3-targeted siRNA
and cultured on 3D Matrigel were incubated with 5 ng/mL TGF-b1 for 0 to 30 minutes. ATDC5 cell lysates were then assayed for levels of Rac1-GTP, RhoA-GTP,
and Cdc42-GTP activities by using a pull-down assay kit. Total cell lysates (50 mg) were also subjected to Western blot analysis to detect expression of total
Rac1, total RhoA, and total Cdc42. C: Primary chondrocytes transfected with S1P3-targeted siRNA were cultured on 3D Matrigel and then were incubated with 5
ng/mL TGF-b1 for 0 to 30 minutes. Total cell lysates were assayed for levels of Rac1-GTP, RhoA-GTP, and Cdc42-GTP activities by using a pull-down assay kit.
Total cell lysates (50 mg) were also subjected to Western blot analysis to detect expression of total Rac1, total RhoA, and total Cdc42. n Z 2 independent
experiments. GAPDH, glyceraldehyde 3-phosphate dehydrogenase; S1P3, sphingosine 1-phosphate receptor 3; TGF, transforming growth factor; 2D, two-
dimensional; 3D, three-dimensional.

Supplemental Figure S3 A: Calvarial osteoblast and mandibular primary chondrocyte cells were isolated from WT mice and were subjected to real-time
PCR analysis with the use of primers specific for Sox9, Col2a1, osteocalcin, Col1a1, and GAPDH. B: Mandibular primary chondrocyte cells were isolated from WT
mice and were stained with Alcian Blue. Immunocytochemistry also detected Col2a1 (green), one of the markers of the chondrogenic lineage. Nuclei were
stained with DAPI (blue). C: Mandibular primary chondrocytes were isolated from 4-month-old WT and Smad3�/� mice and subjected to real-time PCR analysis
with the use of primers specific for Sox9, Col10a1, and GAPDH. D: Immunoblot analysis of mandibular primary chondrocyte cells isolated from 4-month-old WT
and Smad3�/� littermates. Expression levels of Sox9 and type X collagen were detected in the articular cartilage. Detection of b-actin was used as an internal
control. E: Immunohistochemical analysis of type X collagen in mandibular articular cartilage obtained from 4-month-old WT and Smad3�/� mice. As a
negative control, mandibular articular cartilage obtained from 4-month-old Smad3�/� mice were stained with rabbit IgG (isotype control). Data are expressed
as means � SD (A). n Z 3 from three independent experiments (A and B); n Z 5 mice per group of three independent experiments (C); n Z 2 independent
experiments (D); n Z 3 mice from each group (E). Scale bar Z 100 mm. *P < 0.05, **P < 0.01. Col1a1, type I collagen; Col2a1, type II collagen; GAPDH,
glyceraldehyde 3-phosphate dehydrogenase; WT, wild-type.
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