On the class group of an imaginary cyclic field of conductor $8 p$ and 2 -power degree

Humio Ichimura and Hiroki Sumida-Takahashi

Abstract

Let $p=2^{e+1} q+1$ be an odd prime number with $2 \nmid q$. Let K be the imaginary cyclic field of conductor p and degree 2^{e+1}. We denote by \mathcal{F} the imaginary quadratic subextension of the imaginary $(2,2)$ extension $K(\sqrt{2}) / K^{+}$with $\mathcal{F} \neq K$. We determine the Galois module structure of the 2-part of the class group of \mathcal{F}.

1 Introduction

For a prime number p with $p \equiv 3 \bmod 4$, let $F=\mathbb{Q}(\sqrt{-2 p})$. It is well known that the 2-part of the class group of F is nontrivial and cyclic by Gauss, and that $4 \mid h_{F}$ if and only if p splits in $\mathbb{Q}(\sqrt{2})$ by Rédei and Reichardt [11]. Here, h_{N} denotes the class number of a number field N. There are many other papers and related results on the 2-part of the class group of a quadratic field such as $[1,6,8,9,12,15,19]$.

In this paper, we give a generalization of the classical results on $F=$ $\mathbb{Q}(\sqrt{-2 p})$ for a general odd prime number p and an imaginary cyclic field of conductor $8 p$ and 2-power degree. Let $e \geq 0$ be a fixed integer, and let $p=2^{e+1} q+1$ denote an odd prime number with $2 \nmid q$. Let K be the imaginary subfield of the p th cyclotomic field $\mathbb{Q}\left(\zeta_{p}\right)$ of degree 2^{e+1}. Here, for an integer m, ζ_{m} denotes a primitive m th root of unity. The extension $K(\sqrt{2}) / K^{+}$is an imaginary (2, 2)-extension, where N^{+}denotes the maximal real subfield of a CM-field N. We denote by $\mathcal{F}=\mathcal{F}_{p}$ the imaginary quadratic intermediate

[^0]field of $K(\sqrt{2}) / K^{+}$with $\mathcal{F} \neq K$. We see that \mathcal{F} is an imaginary cyclic field of conductor $8 p$ and degree 2^{e+1}. For the case $e=0$, we have $K=\mathbb{Q}(\sqrt{-p})$ and $\mathcal{F}=\mathbb{Q}(\sqrt{-2 p})$. For a number field $N, C l_{N}$ and $A_{N}=C l_{N}(2)$ denote the ideal class group of N in the usual sense and its 2-part, respectively. When N is a CM-field, let $C l_{N}^{-}$be the kernel of the norm map $C l_{N} \rightarrow C l_{N^{+}}$and $h_{N}^{-}=\left|C l_{N}^{-}\right|$the relative class number of N. Further, A_{N}^{-}denotes the 2-part of $C l_{N}^{-}$. We have $A_{\mathcal{F}}=A_{\mathcal{F}}^{-}$because $F^{+}=K^{+}$and $h_{K^{+}}$is odd (Washington [13, Theorem $10.4(\mathrm{~b})])$. We study the Galois module structure of $A_{\mathcal{F}}$.

Let $\Gamma=\operatorname{Gal}(\mathcal{F} / \mathbb{Q})$ and $R=\mathbb{Z}_{2}[\Gamma]$, where \mathbb{Z}_{2} is the ring of 2-adic integers. We choose and fix a generator γ of the cyclic group Γ of order 2^{e+1}. Let $\Lambda=$ $\mathbb{Z}_{2}[[T]]$ be the power series ring with indeterminate T. In all what follows, we identify R with $\Lambda /\left((1+T)^{2^{e+1}}-1\right)$ by the correspondence $\gamma \leftrightarrow 1+T$:

$$
R=\Lambda /\left((1+T)^{2^{e+1}}-1\right)
$$

The group $A_{\mathcal{F}}$ is naturally regarded as a module over R, and hence as a module over Λ. The following assertion generalizes the classical fact due to Gauss that $A_{\mathcal{F}}$ is a cyclic group when $e=0$ and $\mathcal{F}=\mathbb{Q}(\sqrt{-2 p})$.

Proposition 1. Under the above setting, the class group $A_{\mathcal{F}}$ is cyclic over Λ.

We denote by $I_{\mathcal{F}}(\subseteq \Lambda)$ the annihilator of the cyclic Λ-module $A_{\mathcal{F}}$, so that we have an isomorphism $A_{\mathcal{F}} \cong \Lambda / I_{\mathcal{F}}$ of Λ-modules. We see that

$$
\begin{equation*}
(1+T)^{2^{e}}+1 \in I_{\mathcal{F}} \tag{1}
\end{equation*}
$$

because the complex conjugation $\gamma^{2^{e}}=(1+T)^{2^{e}}$ acts on $A_{\mathcal{F}}=A_{\mathcal{F}}^{-}$via (-1) multiplication. When $e=0$, the classical fact due to Gauss implies that $I_{\mathcal{F}}=\left(2^{s}, 2+T\right)$ with $s=\operatorname{ord}_{2}\left(h_{\mathcal{F}}\right)$ and hence

$$
\begin{equation*}
A_{\mathcal{F}} \cong \Lambda /\left(2^{s}, 2+T\right)\left(\cong \mathbb{Z} / 2^{s}\right) \tag{2}
\end{equation*}
$$

Here, $\operatorname{ord}_{2}(*)$ denotes the additive 2 -adic valuation on \mathbb{Q} with $\operatorname{ord}_{2}(2)=1$.
We generalize the fact (2) for the case $e \geq 1$. To state our results, we need some more preliminaries. We denote by $\kappa=\kappa_{p}$ the smallest nonnegative integer with $0 \leq \kappa \leq e+1$ such that p splits completely in $\mathbb{Q}\left(2^{1 / 2^{e-\kappa+1}}\right)$. By definition, we have $\kappa_{p}=0$ if and only if p splits completely in $\mathbb{Q}\left(2^{1 / 2^{e+1}}\right)$. Thus, when $e=0$, the condition $\kappa_{p}=0$ is nothing but the one in the old paper [11] which we mentioned at the beginning of this section. On the value κ_{p}, the following assertion holds.

Lemma 1. When $e=1$, we have $\kappa_{p}=e+1=2$. When $e \geq 2$, for each i with $0 \leq i \leq e$ (resp. $i=e+1$), there exist infinitely many (resp. no) prime numbers p such that $p=2^{e+1} q+1$ with $2 \nmid q$ and $\kappa_{p}=i$.

We have $\operatorname{ord}_{2}\left(h_{\mathcal{F}}\right)=\operatorname{ord}_{2}\left(h_{\mathcal{F}}^{-}\right)$as $h_{K^{+}}$is odd. On the value $\operatorname{ord}_{2}\left(h_{\mathcal{F}}\right)$, we show the following assertion.

Proposition 2. (I) When $e=1$, we have $\operatorname{ord}_{2}\left(h_{\mathcal{F}}\right)=1$.
(II) When $e \geq 2$ and $\kappa=\kappa_{p} \geq 1$, we have $\operatorname{ord}_{2}\left(h_{\mathcal{F}}\right)=2^{e-\kappa+1}$.
(III) When $\kappa=0$, $\operatorname{ord}_{2}\left(h_{\mathcal{F}}\right)=2^{e}+1=5$ for the case $e=2$ and $\operatorname{ord}_{2}\left(h_{\mathcal{F}}\right) \geq 2^{e}+2$ for the case $e \geq 3$.

When $e=1$, there is nothing to do on the structure of the class group $A_{\mathcal{F}}$ because of Proposition 2(I). So we let $e \geq 2$ in the following. When $e \geq 2$ and $\kappa_{p}=0$, we put

$$
s_{p}=\left\lceil\frac{\operatorname{ord}_{2}\left(h_{\mathcal{F}}\right)}{2^{e}}\right\rceil
$$

and

$$
a_{p}=2^{e} s_{p}-\operatorname{ord}_{2}\left(h_{\mathcal{F}}\right) \quad \text { and } \quad b_{p}=2^{e}\left(1-s_{p}\right)+\operatorname{ord}_{2}\left(h_{\mathcal{F}}\right)
$$

Here, $\lceil x\rceil$ denotes the smallest integer $\geq x$. We easily see that $s_{p} \geq 2$ by Proposition 2(III) and that $a_{p} \geq 0, b_{p} \geq 1$ and $a_{p}+b_{p}=2^{e}$. Further, when $e=2$, we have $s_{p}=2, a_{p}=3$ and $b_{p}=1$ by Proposition 2(III). The following assertions on $A_{\mathcal{F}}$ and its annihilator $I_{\mathcal{F}}$ are the main results of the paper. They generalize the classical result (2).

Theorem 1. Let $e \geq 2$ and $\kappa=\kappa_{p} \geq 1$. Then

$$
I_{\mathcal{F}}=\left(2, T^{2^{e-\kappa+1}}\right), \quad \text { and hence } \quad A_{\mathcal{F}} \cong(\mathbb{Z} / 2)^{\oplus 2^{e-\kappa+1}}
$$

as abelian groups.
Theorem 2. Let $e \geq 2$ and $\kappa_{p}=0$. Then

$$
I_{\mathcal{F}}=\left(2^{s_{p}}, 2^{s_{p}-1} T^{b_{p}},(1+T)^{2^{e}}+1\right)
$$

and hence

$$
\begin{equation*}
A_{\mathcal{F}} \cong\left(\mathbb{Z} / 2^{s_{p}-1}\right)^{\oplus a_{p}} \oplus\left(\mathbb{Z} / 2^{s_{p}}\right)^{\oplus b_{p}} \tag{3}
\end{equation*}
$$

as abelian groups.

Corollary 1. Let $e=2$ and $\kappa_{p}=0$. Then

$$
A_{\mathcal{F}} \cong(\mathbb{Z} / 2)^{\oplus 3} \oplus \mathbb{Z} / 4
$$

as abelian groups.
For a finite abelian group A and an integer $t \geq 1$, we denote by

$$
r_{t}(A)=\operatorname{dim}_{\mathbb{F}_{2}}\left(2^{t-1} A / 2^{t} A\right)
$$

the 2^{t}-rank of A. Here, \mathbb{F}_{2} is the finite field with two elements. The following assertion is an immediate consequence of Theorems 1 and 2 . It is a generalization of the classical result of Rédei and Reichardt for the case $e=0$.

Corollary 2. When $e \geq 2$, the 4 -rank $r_{4}\left(A_{\mathcal{F}}\right)$ is positive if and only if $\kappa_{p}=0$.
Remark 1. In [17, 18], Yue generalized a result of Rédei [12] and gave a formula for the 4 -rank of the class group of a relative quadratic extension E / F. It is possible to show Corollary 2 using his formula.

Remark 2. Let $e \geq 2$. For $x>0$, let $P_{e}(x)$ be the set of prime numbers $p=2^{e+1} q+1<x$ with $2 \nmid q$. We put

$$
\theta_{e}=\lim _{x \rightarrow \infty} \frac{\left|\left\{p \in P_{e}(x) \mid r_{4}\left(A_{\mathcal{F}}\right)>0\right\}\right|}{\left|P_{e}(x)\right|} .
$$

We see that $\theta_{e}=2^{-e}$ from Corollary 2 and the Chebotarev density theorem.
When $e=0$, this type of density results are already obtained for prime numbers p such that $\left(p \equiv 3 \bmod 4\right.$ and) $2^{s} \mid h_{\mathcal{F}}$ with $s=2,3$ and 4 by Rédei-Reichardt [11], Morton [9] and Milovic [8], respectively.

This paper is organized as follows. In $\S 2$, we show Lemma 1 and Proposition 2. We show Theorems 1 and 2 , respectively, in $\S 3$ and $\S 4$. Proposition 1 is shown in $\S 5$. In $\S 6$, we consider which unramified quadratic extension over \mathcal{F} extends to an unramified cyclic quartic extension. In §7, we give some numerical data on $\operatorname{ord}_{2}\left(h_{\mathcal{F}}\right)$ and the class group $A_{\mathcal{F}}$.

2 Proof of Proposition 2

Let $p=2^{e+1} q+1, K, \mathcal{F}$ and $\kappa=\kappa_{p}$ be as in $\S 1$. We begin by showing Lemma 1 in $\S 1$.

Proof of Lemma 1. When $e=1$ (and hence $p \equiv 5 \bmod 8), p$ does not split in $\mathbb{Q}(\sqrt{2})$ and hence $\kappa_{p}=e+1=2$. Let us deal with the case $e \geq 2$. As $p \equiv 1 \bmod 8, p$ splits in $\mathbb{Q}(\sqrt{2})$ and hence $\kappa_{p} \leq e$. Fixing i with $0 \leq i \leq e$, let $k=\mathbb{Q}\left(\zeta_{2^{e+1}}, 2^{1 / 2^{e-i+1}}\right)$. We put

$$
L=k\left(\zeta_{2^{e+2}}, 2^{1 / 2^{e-i+2}}\right), \quad L_{1}=k\left(\zeta_{2^{e+2}}\right), \quad L_{2}=k\left(2^{1 / 2^{e-i+2}}\right) .
$$

We see that L is a $(2,2)$-extension over k, and that L_{1} and L_{2} are two of the three quadratic intermediate fields of L / k. Let L_{3} be the third intermediate field of L / k. By the Chebotarev density theorem, there exist infinitely many prime ideals \mathfrak{P} of L_{3} which is degree one over \mathbb{Q} and remains prime in the quadratic extension L / L_{3}. Let $\wp=\mathfrak{P} \cap k$. Then the prime ideal \wp of k remains prime in L_{1}, L_{2} and splits in L_{3}. For the prime number $p=\wp \cap \mathbb{Q}$, we see that $p=1+2^{e+1} q$ with $2 \nmid q$ and $\kappa_{p}=i$.

To show Proposition 2 on the class number $h_{\mathcal{F}}$, it suffices to deal with the relative class number $h_{\mathcal{F}}^{-}$as $h_{K^{+}}$is odd. We see that the unit index of our imaginary abelian field \mathcal{F} is 1 by Conner and Hurrelbrink [2, Lemma 13.5]. Then it follows from the class number formula [13, Theorem 4.17] that

$$
\begin{equation*}
h_{\overline{\mathcal{F}}}^{-}=2 \times \prod_{\delta}\left(-\frac{1}{2} B_{1, \delta \psi}\right) . \tag{4}
\end{equation*}
$$

Here, δ runs over the odd Dirichlet characters of conductor p and order 2^{e+1}, and ψ is the even Dirichlet character of conductor 8 and order 2. In the following, we regard these characters to be $\overline{\mathbb{Q}}_{2}$-valued, where $\overline{\mathbb{Q}}_{2}$ is a fixed algebraic closure of the 2-adic rationals \mathbb{Q}_{2}. Let $\omega=\omega_{4}$ be the Teichmüller character of conductor 4 . We put $\mathcal{O}=\mathcal{O}[\delta]=\mathbb{Z}_{2}\left[\zeta_{2^{e+1}}\right]$. Iwasawa constructed a power series $G_{\delta \omega}(T)$ in the power series ring $\mathcal{O}[[T]]$ related to the 2-adic L-function $L_{2}(s, \delta \omega)$ by

$$
\begin{equation*}
G_{\delta \omega}\left((1+4 p)^{s}-1\right)=\frac{1}{2} L_{2}(s, \delta \omega) \tag{5}
\end{equation*}
$$

for $s \in \mathbb{Z}_{2}$. The power series $G_{\delta \omega}(T)$ also satisfies

$$
\begin{equation*}
G_{\delta \omega}\left(-(1+4 p)^{s}-1\right)=\frac{1}{2} L_{2}(s, \delta \psi \omega) \tag{6}
\end{equation*}
$$

for $s \in \mathbb{Z}_{2}$. For (5) and (6), see Iwasawa [$5, \S 6$, Lemma 3] or [13, Theorem 7.10]. By a theorem of Ferrero and Washington ([13, Theorem 7.15]), we have $2 \nmid G_{\delta \omega}$. Then it follows that

$$
G_{\delta \omega}(T)=P(T) u(T)
$$

for some distinguished polynomial $P(T) \in \mathcal{O}[T]$ and a unit $u(T)$ of $\mathcal{O}[[T]]$ from [13, Theorem 7.3]. The degree λ_{p} of $P(T)$ is the Iwasawa lambda invariant of the power series $G_{\delta \omega}$. It follows from (5), (6) and [13, Theorem 5.11] that

$$
\begin{align*}
G_{\delta \omega}(0) & =\frac{1}{2} L_{2}(0, \delta \omega)=-\frac{1}{2}(1-\delta(2)) B_{1, \delta} \\
& =-\frac{1}{2}\left(1-\zeta_{2^{e+1}}\right) B_{1, \delta} \times \frac{1-\delta(2)}{1-\zeta_{2^{e+1}}} \tag{7}
\end{align*}
$$

and that

$$
\begin{equation*}
G_{\delta \omega}(-2)=\frac{1}{2} L_{2}(0, \delta \psi \omega)=-\frac{1}{2}(1-\delta \psi(2)) B_{1, \delta \psi}=-\frac{1}{2} B_{1, \delta \psi} \tag{8}
\end{equation*}
$$

Further, it is known that

$$
\begin{equation*}
\frac{1}{2}\left(1-\zeta_{2^{e+1}}\right) B_{1, \delta} \in \mathcal{O}^{\times} \tag{9}
\end{equation*}
$$

(See Hasse [3, Satz 32] or [4, Lemma 7].)
Lemma 2. On the lambda invariant λ_{p}, we have

$$
\lambda_{p}= \begin{cases}2^{\operatorname{ord}_{2}(q+1)-1}-1, & \text { for } e=0 \tag{10}\\ 2^{e-1}-1, & \text { for } e \geq 1\end{cases}
$$

Proof. Let K_{∞} / K be the cyclotomic \mathbb{Z}_{2}-extension over K, and let λ_{K} be the Iwasawa lambda invariant of the ideal class group of K_{∞}. The invariant λ_{K} equals $2^{e} \lambda_{p}$ by a theorem of Wiles [14, Theorem 6.2] (Iwasawa main conjecture). On the other hand, it is an immediate consequence of the formula (II) in Kida $[7, \S 6]$ that λ_{K} equals 2^{e} times of the right-hand side of (10). Thus we obtain the assertion.
Lemma 3. Let D_{p} be the decomposition field of the prime 2 in the cyclic extension K / \mathbb{Q} of degree 2^{e+1}, and let i be an integer with $0 \leq i \leq e+1$. Then the following three conditions are equivalent to each other.
(I) The value $\delta(2)$ is a primitive 2^{i} th root of unity.
(II) $\left[D_{p}: \mathbb{Q}\right]=2^{e-i+1}$.
(III) $\kappa_{p}=i$.

Proof. As the character δ has order 2^{e+1}, the equivalence (I) \Leftrightarrow (II) follows immediately from the reciprocity law for $\mathbb{Q}\left(\zeta_{p}\right) / \mathbb{Q}$. The condition (I) is equivalent to the condition that the congruence $x^{2^{-i+1}} \equiv 2 \bmod p$ has a solution but (for the case $i \geq 1) y^{2^{e-(i-1)+1}} \equiv 2 \bmod p$ has no solution. We easily see that the last condition is equivalent to $\kappa_{p}=i$.

Proof of Proposition 2(I). Let $e=1$. Then the power series $G_{\delta \omega}$ is a unit of $\mathcal{O}[[T]]$ by Lemma 2. Then it follows from (8) that $\frac{1}{2} B_{1, \delta \psi}$ is a unit of \mathcal{O}. Therefore, we obtain the assertion from the class number formula (4).

In the following, we assume that $e \geq 2$. Then the degree λ_{p} of $P(T)$ is positive by Lemma 2. By (7) and Lemma 3, we obtain the following:

Lemma 4. The polynomial $P(T)$ is divisible by T if and only if $\kappa_{p}=0$.
Proof of Proposition 2(II), (III). For an integer $i \geq 0$, we put $\pi_{i}=\zeta_{2^{i+1}}-1$. Then π_{e} is a uniformizer of $\mathcal{O}=\mathbb{Z}_{2}\left[\zeta_{2^{e+1}}\right]$. First, let us show the assertion (II) for the case $\kappa=\kappa_{p} \geq 1$. It follows from (7), (9) and Lemma 3 that

$$
P(0) \sim G_{\delta \omega}(0) \sim \alpha=\pi_{\kappa-1} / \pi_{e}
$$

Here, for elements x and y of $\overline{\mathbb{Q}}_{2}^{\times}$, we write $x \sim y$ when x / y is a 2 -adic unit. We see that $P(-2) \sim P(0)$ because $P(T) \in \mathcal{O}[T]$ and $P(0) \sim \alpha$ is a divisor of $2 / \pi_{e}$. Hence, $G_{\delta \omega}(-2) \sim P(-2) \sim \alpha$. Then we see from (4) and (8) that

$$
h_{\mathcal{F}}^{-} \sim 2 \times\left(\pi_{\kappa-1} / \pi_{e}\right)^{2^{e}} \sim 2 \times 2^{2^{e-\kappa+1}} \times 2^{-1}=2^{2^{e-\kappa+1}} .
$$

Next, we show the assertion (III) when $\kappa=0$ and $e \geq 3$. Then $\lambda_{p} \geq$ 3 by Lemma 2. It follows from Lemma 4 that $P(T)=T Q(T)$ for some distinguished polynomial $Q(T) \in \mathcal{O}[T]$ of degree $\lambda_{p}-1 \geq 2$. Since $Q(-2)$ is divisible by π_{e}, it follows from (4) and (8) that $h_{\mathcal{F}}^{-}$is divisible by

$$
2 \times(-2)^{2^{e}} \times \pi_{e}^{2^{e}} \sim 2^{2^{e}+2} .
$$

Finally, we show (III) when $\kappa=0$ and $e=2$. We have $P(T)=T$ by Lemmas 2 and 4. Then we obtain the assertion from (4) and (8).

3 Proof of Theorem 1

First, we recall a formula for the number of "ambiguous" classes of a CMfield. Let N be a CM-field. An ideal class $c \in C l_{N}$ is ambiguous when $c^{J}=c$, where J is the nontrivial automorphism of N over N^{+}(the complex conjugation). Let $a(N)$ be the number of ambiguous classes of N. For a number field L, we denote by \mathcal{O}_{L} and $E_{L}=\mathcal{O}_{L}^{\times}$the ring of integers and the group of units of L, respectively. It is known that

$$
\begin{equation*}
a(N)=h_{N^{+}} \times \frac{2^{t_{N}-1}}{\left[E_{N^{+}}: E_{N^{+}} \cap \mathcal{N}\left(N^{\times}\right)\right]} . \tag{11}
\end{equation*}
$$

Here, t_{N} is the number of prime divisors of N^{+}(finite or infinite) which are ramified in N, and \mathcal{N} is the norm map form N to N^{+}. For this formula, see Yokoi [16] for example.
Lemma 5. The 2 -rank $r_{2}\left(A_{\mathcal{F}}\right)$ equals 2^{e} or $2^{e-\kappa+1}$ according as $\kappa=\kappa_{p}=0$ or $\kappa \geq 1$.
Proof. We use the above formula for $N=\mathcal{F}$ noting that $\mathcal{F}^{+}=K^{+}$. We put $r=r_{2}\left(A_{\mathcal{F}}\right)$ for brevity. Let $B_{\mathcal{F}}$ be the ambiguous classes in $A_{\mathcal{F}}$. Then $b(\mathcal{F})=\left|B_{\mathcal{F}}\right|$ is nothing but the 2-part of $a(\mathcal{F})$. We see that a class c in $A_{\mathcal{F}}$ is ambiguous $\left(c^{J}=c\right)$ if and only if $c^{2}=1$ as $A_{\mathcal{F}}=A_{\mathcal{F}}^{-}$. It follows that $b(\mathcal{F})=2^{r}$. As \mathcal{F} is a CM-field, every element $x \in \mathcal{N}\left(\mathcal{F}^{\times}\right)$is totally positive. It follows that

$$
\left(E_{K^{+}}\right)^{2} \subseteq E_{K^{+}} \cap \mathcal{N}\left(\mathcal{F}^{\times}\right) \subseteq\left\{\epsilon \in E_{K^{+}} \mid \epsilon \text { is totally positive }\right\} .
$$

As h_{K} is odd ([13, Theorem 10.4(b)]), we see from [2, Corollary 13.10] that a unit ϵ of K^{+}is totally positive if and only if ϵ is a square in K^{+}. Therefore, $E_{K^{+}} \cap \mathcal{N}\left(\mathcal{F}^{\times}\right)$coincides with $\left(E_{K^{+}}\right)^{2}$, and hence

$$
\begin{equation*}
\left[E_{K^{+}}: E_{K^{+}} \cap \mathcal{N}\left(\mathcal{F}^{\times}\right)\right]=2^{2^{e}} \tag{12}
\end{equation*}
$$

by the Dirichlet unit theorem. The primes of $K^{+}=\mathcal{F}^{+}$ramified in \mathcal{F} are those over p or 2 and the infinite prime divisors. By Lemma 3, we see that $2 \mathcal{O}_{K^{+}}$is a product of $2^{e}\left(\right.$ resp. $\left.2^{e-\kappa+1}\right)$ prime ideals of K^{+}when $\kappa=0$ (resp. $\kappa \geq 1$). Hence, it follows that

$$
t_{\mathcal{F}}=1+2^{e}+2^{e} \text { or } 1+2^{e-\kappa+1}+2^{e}
$$

according as $\kappa=0$ or $\kappa \geq 1$. Accordingly, we obtain from (11) and (12) that $b(\mathcal{F})=2^{2^{e}}$ or $2^{2^{e-\kappa+1}}$. Thus we have shown that $r=2^{e}$ or $2^{e-\kappa+1}$ according as $\kappa=0$ or $\kappa \geq 1$.

Proof of Theorem 1. By Proposition 2(II) and Lemma 5, we see that the abelian group $A_{\mathcal{F}}$ is isomorphic to $2^{e-\kappa+1}$ copies of $\mathbb{Z} / 2$. The assertion on the annihilator $I_{\mathcal{F}}$ of the cyclic Λ-module $A_{\mathcal{F}}$ follows from this.

4 Proof of Theorem 2

Let $e \geq 2$ and $\kappa=\kappa_{p}=0$. We already know that

$$
r_{2}\left(A_{\mathcal{F}}\right)=2^{e} \quad \text { and } \quad A_{\mathcal{F}}=A_{\mathcal{F}}^{-}
$$

The proof of Theorem 2 is based upon Propositions 1, 2 and the following purely algebraic assertion.

Proposition 3. Let A be a cyclic module over $R=\Lambda /\left((1+T)^{2^{e}}-1\right)$ with a generator g, and let I_{A} be the annihilator of the Λ-module A (so that $A \cong \Lambda / I_{A}$ as Λ-modules). Assume that $g^{2^{2^{e}}}=g^{-1}$ and that

$$
A \cong(\mathbb{Z} / 2)^{\oplus \ell} \oplus(\mathbb{Z} / 4)^{\oplus m}
$$

with $m \geq 1$ and $1 \leq \ell+m \leq 2^{e}$. Then we have $\ell+m=2^{e}$ and

$$
I_{A}=\left(4,2 T^{m},(1+T)^{2^{e}}+1\right)
$$

Proof of Theorem 2. We write

$$
A_{\mathcal{F}}=A_{\mathcal{F}}^{-} \cong \bigoplus_{i=1}^{s}\left(\mathbb{Z} / 2^{i}\right)^{t_{i}}
$$

for some integers $s \geq 1$ and $t_{i} \geq 0(1 \leq i \leq s)$ with $t_{s} \geq 1$. As $r_{2}\left(A_{\mathcal{F}}\right)=2^{e}$, these integers s and t_{i} satisfy

$$
\sum_{i=1}^{s} t_{i}=2^{e} \quad \text { and } \quad \sum_{i=1}^{s} i t_{i}=\operatorname{ord}_{2}\left(h_{\mathcal{F}}\right)
$$

Further, we see that $s \geq 2$ since $\operatorname{ord}_{2}\left(h_{\mathcal{F}}\right) \geq 2^{e}+1$ by Proposition 2(III). Assume that $t_{i} \geq 1$ for some i with $i \leq s-2$. Then it follows that

$$
A_{\mathcal{F}}^{2^{s-2}} \cong(\mathbb{Z} / 2)^{\oplus t_{s-1}} \oplus(\mathbb{Z} / 4)^{\oplus t_{s}}
$$

and $t_{s-1}+t_{s}<2^{e}$. This is impossible by Proposition 3 because $A_{\mathcal{F}}=A_{\mathcal{F}}^{-}$is cyclic over Λ by Proposition 1. Therefore, we observe that

$$
A_{\mathcal{F}} \cong\left(\mathbb{Z} / 2^{s-1}\right)^{\oplus a} \oplus\left(\mathbb{Z} / 2^{s}\right)^{\oplus b}
$$

for some integers a and b such that $a \geq 0, b \geq 1, a+b=2^{e}$ and $(s-1) a+s b=$ $\operatorname{ord}_{2}\left(h_{\mathcal{F}}\right)$. We see that $s=s_{p}, a=a_{p}$ and $b=b_{p}$ from the last four conditions, and thus we obtain the second assertion (3) of Theorem 2. Further, by Proposition 3, the annihilator of $A_{\mathcal{F}}^{2^{s-2}}$ equals $\left(4,2 T^{b_{p}},(1+T)^{2^{e}}+1\right)$. It follows from this and (1) that the ideal I of Λ generated by $2^{s_{p}}, 2^{s_{p}-1} T^{b_{p}}$ and $(1+T)^{2^{e}}+1$ is contained in the annihilator $I_{\mathcal{F}}$ of $A_{\mathcal{F}}$. Since $\Lambda / I \cong A_{\mathcal{F}}$ as abelian groups by (3), we obtain $I=I_{\mathcal{F}}$.

Proof of Proposition 3. As $m \geq 1$, the module A^{2} is nontrivial. Let J_{1} be the annihilator of the Λ-module $A^{2}=\Lambda \cdot g^{2}$. As A^{2} is isomorphic to $(\mathbb{Z} / 2)^{\oplus m}$ as abelian groups, we see that $J_{1}=\left(2, T^{m}\right)$ and that

$$
\begin{equation*}
A^{2}=\left\langle g^{2}\right\rangle \times\left\langle g^{2 T}\right\rangle \times \cdots \times\left\langle g^{2 T^{m-1}}\right\rangle \tag{13}
\end{equation*}
$$

Here, $\langle *\rangle$ denotes the cyclic group generated by $*$. It follows that $g^{2 T^{m}}=1$ and hence $2 T^{m} \in I_{A}$. The assumption $g^{\gamma^{2^{e}}}=g^{-1}$ implies that $(1+T)^{2^{e}}+1 \in$ I_{A}. As the ideal I_{A} contains 4 and $2 T^{m}$, it follows that

$$
\begin{equation*}
T^{2^{e}} \equiv 2+\sum_{i=1}^{m-1} 2 a_{i} T^{i} \bmod I_{A} \tag{14}
\end{equation*}
$$

for some $a_{i} \in \mathbb{Z}$. Let ${ }_{2} A$ be the elements x of A with $x^{2}=1$. Then, noting that $A^{2} \subseteq{ }_{2} A$, we put $B={ }_{2} A / A^{2}$. We see from $J_{1}=\left(2, T^{m}\right)$ that m is the smallest integer with $g^{T^{m}} \in{ }_{2} A$, and hence that the Λ-module B is generated by the class $\left[g^{T^{m}}\right]$. Further, $B \cong(\mathbb{Z} / 2)^{\oplus \ell}$ as abelian groups. Let J_{2} be the annihilator of B. Then, from the above, we observe that

$$
J_{2}=\left\{\alpha \in \Lambda \mid g^{T^{m} \alpha} \in A^{2}\right\}=\left(2, T^{\ell}\right)
$$

and that $g^{T^{m+\ell}} \in A^{2}=\Lambda \cdot g^{2}$. Because of (13), this implies that

$$
T^{m+\ell} \equiv \sum_{i=0}^{m-1} 2 b_{i} T^{i} \bmod I_{A}
$$

for some $b_{i} \in \mathbb{Z}$. Now assume that $m+\ell<2^{e}$. Then, as $2 T^{m} \in I_{A}$, we observe that

$$
T^{2^{e}}=T^{m+\ell} T^{2^{e}-(m+\ell)} \equiv \sum_{i=1}^{m-1} 2 c_{i} T^{i} \bmod I_{A}
$$

for some $c_{i} \in \mathbb{Z}$ with $1 \leq i \leq m-1$. It follows from (14) that

$$
2 \equiv \sum_{i=1}^{m-1} 2 d_{i} T^{i} \bmod I_{A}
$$

for some $d_{i} \in \mathbb{Z}$, and hence

$$
2 f(T) \in I_{A} \quad \text { with } \quad f(T)=1-\sum_{i=1}^{m-1} d_{i} T^{i}
$$

This implies that $2 \in I_{A}$ because the polynomial $f(T)$ is a unit of Λ. However, this contradicts the assumption $m \geq 1$. Thus we obtain $m+\ell=2^{e}$.

Let $I=\left(4,2 T^{m},(1+T)^{2^{e}}+1\right)$. We already know that $I \subseteq I_{A}$. Using $m+\ell=2^{e}$, we see that Λ / I is isomorphic to A as an abelian group. Therefore, we obtain $I_{A}=I$.

5 Proof of Proposition 1

In this section, we construct the class field corresponding to $A_{\mathcal{F}} / A_{\mathcal{F}}^{2}$ and show Proposition 1. We begin with the following lemma.

Lemma 6. Let k be a totally real number field of degree n. Assume that the narrow class number \tilde{h}_{k} of k is odd and that the prime number 2 splits completely in $k ; 2=\mathfrak{L}_{1} \cdots \mathfrak{L}_{n}$. Then the natural map

$$
\varphi: E_{k} \rightarrow\left(\mathcal{O}_{k} / 4 \mathcal{O}_{k}\right)^{\times}=\bigoplus_{j=1}^{n}\left(\mathcal{O}_{k} / \mathfrak{L}_{j}^{2}\right)^{\times}
$$

induced by reduction modulo 4 is surjective.
Proof. We write $E=E_{k}$ for brevity. By the second assumption, we see that $\left(\mathcal{O}_{k} / 4 \mathcal{O}_{k}\right)^{\times}$is isomorphic to $(\mathbb{Z} / 2 \mathbb{Z})^{\oplus n}$ as an abelian group. If a unit $\epsilon \in E$ satisfies $\epsilon \equiv 1 \bmod 4$, then $k(\sqrt{\epsilon}) / k$ is unramified outside the infinite prime
divisors by [13, Exercise 9.3]. As \tilde{h}_{k} is odd, this implies that ϵ is a square in k. It follows that $\operatorname{ker} \varphi=E^{2}$. Now, we see that φ is surjective because E / E^{2} is isomorphic to $(\mathbb{Z} / 2 \mathbb{Z})^{\oplus n}$ as an abelian group by the Dirichlet unit theorem.

Let $p=2^{e+1} q+1$ be an odd prime number, and we use the same notation as in the previous sections. We choose and fix a totally negative element d of K^{+}with $(d, 2)=1$ and $K=K^{+}(\sqrt{d})$. We have

$$
\begin{equation*}
d \equiv u^{2} \bmod 4 \tag{15}
\end{equation*}
$$

for some $u \in K^{+}$by [13, Exercise 9.3] since K / K^{+}is unramified at the primes over 2 . Let \wp be the unique prime ideal of K^{+}over p. We put $h^{+}=h_{K^{+}}$for brevity. In addition to (15), we may as well assume that

$$
(d)=\wp^{h^{+}}
$$

since h^{+}is odd and K / K^{+}is ramified only at \wp (and the infinite prime divisors). We see that $\mathcal{F}=K^{+}(\sqrt{2 d})$ from the definition of \mathcal{F} and that the quadratic extension $\mathcal{F}(\sqrt{2})=\mathcal{F}(\sqrt{d})$ over \mathcal{F} is unramified.

For brevity, we put

$$
r=2^{e} \quad \text { or } \quad 2^{e-\kappa+1}
$$

according as $\kappa=0$ or $\kappa=\kappa_{p} \geq 1$. By Lemma $5, r=r_{2}\left(A_{\mathcal{F}}\right)$. Let k be the intermediate field of the cyclic extension K^{+} / \mathbb{Q} with $[k: \mathbb{Q}]=r$. The cyclic $\operatorname{group} \operatorname{Gal}(k / \mathbb{Q})$ of order r is generated by $\rho=\gamma_{\mid k}$ where γ is the generator of $\Gamma=\operatorname{Gal}(\mathcal{F} / \mathbb{Q})$ fixed in $\S 1$. By Lemma 3, the prime 2 splits completely in k. We choose a prime ideal \mathfrak{q} of k over 2 . We put $\mathfrak{q}_{i}=\mathfrak{q}^{\rho^{i-1}}$ for each $1 \leq i \leq r$, so that we have a decomposition $2=\mathfrak{q}_{1} \cdots \mathfrak{q}_{r}$ in k. As h_{K} is odd, the narrow class number \tilde{h}_{k} of k is odd. Therefore, by Lemma 6 , we can choose a generator $w=w_{1} \in k^{\times}$of the principal ideal $\mathfrak{q}_{1}^{h^{+}}$such that

$$
\frac{w}{2^{h^{+}}} \equiv 1 \bmod \mathfrak{q}_{1}^{2} \quad \text { and } \quad w \equiv 1 \bmod \mathfrak{q}_{j}^{2} \quad \text { for } 2 \leq j \leq r
$$

We put $w_{i}=w^{\rho^{i-1}}$ for each i with $1 \leq i \leq r$. Then we see that for each i,

$$
\begin{equation*}
\frac{w_{i}}{2^{h^{+}}} \equiv 1 \bmod \mathfrak{q}_{i}^{2}, \quad \text { and } \quad w_{i} \equiv 1 \bmod \mathfrak{q}_{j}^{2} \quad \text { for any } j \neq i \tag{16}
\end{equation*}
$$

and that

$$
\begin{equation*}
2^{h^{+}}=w_{1} \cdots w_{r} \tag{17}
\end{equation*}
$$

As $\mathcal{F}=K^{+}(\sqrt{2 d})$ and h^{+}is odd, $\mathcal{F}\left(\sqrt{w_{i}}\right)=\mathcal{F}\left(\sqrt{w_{i} / 2^{h+} d}\right)$. Therefore, we see from (15) and (16) that

$$
L=\mathcal{F}\left(\sqrt{w_{i}} \mid 1 \leq i \leq r\right)
$$

is an unramified extension over \mathcal{F} by [13, Exercise 9.3].
We put $X=\mathcal{F}^{\times} /\left(\mathcal{F}^{\times}\right)^{2}$ for brevity, and let V be the subgroup of X generated by r elements $\left[w_{i}\right](1 \leq i \leq r)$. Here, $[x]$ denotes the class in X containing an element $x \in \mathcal{F}^{\times}$. These groups are naturally regarded as vector spaces over \mathbb{F}_{2}.

Lemma 7. Under the above setting, the demension of the vector space V equals r.

Proof. We put

$$
x=\prod_{i=1}^{r} w_{i}^{s_{i}}
$$

with $0 \leq s_{i} \leq 1$. If x is a square in \mathcal{F}, then we see that x or $2 d x$ is a square in K^{+}because $x \in K^{+}$and $\mathcal{F}=K^{+}(\sqrt{2 d})$. If x is a square in K^{+}, then $\prod_{i}\left(\mathfrak{q}_{i} \mathcal{O}_{K^{+}}\right)^{h^{+} s_{i}}$ is a square of an ideal of K^{+}. It follows that $s_{i}=0$ since h^{+} is odd and the prime ideal \mathfrak{q}_{i} remains prime in K^{+} / k. If $2 d x$ is a square in K^{+}, then we obtain $K=K^{+}(\sqrt{d})=K^{+}(\sqrt{2 x})$. However, this is impossible because K / K^{+}is ramified at \wp but $K^{+}(\sqrt{2 x}) / K^{+}$is unramified at \wp. Thus we obtain the assertion.

From Lemmas 5 and 7, we obtain:
Proposition 4. Under the above setting, the unramified extension L / \mathcal{F} corresponds to the class group $A_{\mathcal{F}} / A_{\mathcal{F}}^{2}$.

Proof of Proposition 1. The group X is naturally regarded as a module over $R=\mathbb{Z}_{2}[\Gamma]$. Then V is a cyclic R-submodule of X generated by $[w]$. By Proposition 4, the class group $A_{\mathcal{F}} / A_{\mathcal{F}}^{2}$ is isomorphic to the Galois group $G=\operatorname{Gal}(L / \mathcal{F})$ via the reciprocity law map which is compatible with the action of Γ. The Kummer pairing

$$
G \times V \rightarrow \mu_{2} ;(g,[v]) \rightarrow\langle g, v\rangle=(\sqrt{v})^{g-1}
$$

is nondegenerate and satisfies $\left\langle g^{\delta}, v^{\delta}\right\rangle=\langle g, v\rangle$ for $g \in G,[v] \in V$ and $\delta \in \Gamma$. Therefore, we obtain an isomorphism

$$
G \cong H=\operatorname{Hom}\left(V, \mu_{2}\right)
$$

of R-modules. Here, $\delta \in \Gamma$ acts on $f \in H$ by the rule $f^{\delta}([v])=f\left([v]^{\delta^{-1}}\right)$. As V is cyclic over R, so is the Galois group G. Therefore, we see that $A_{\mathcal{F}} / A_{\mathcal{F}}^{2}$ is cyclic over R from the above. This implies that $A_{\mathcal{F}}$ is cyclic over R by Nakayama's lemma ([13, Lemma 13.16]).

6 Unramified cyclic quartic extension

In this section, we consider which unramified quadratic extension over \mathcal{F} extends to an unramified cyclic quartic extension when $r_{4}\left(A_{\mathcal{F}}\right) \geq 1$. We use the same notation as in the previous sections. In the following, we let $e \geq 2$ and $\kappa=\kappa_{p}=0$ in view of Corollary 2. Let $\Gamma^{+}=\operatorname{Gal}\left(K^{+} / \mathbb{Q}\right), \rho=\gamma_{\mid K^{+}}$and $R^{+}=\mathbb{F}_{2}\left[\Gamma^{+}\right]$. Let W be the subgroup of $X^{+}=\left(K^{+}\right)^{\times} /\left(\left(K^{+}\right)^{\times}\right)^{2}$ generated by the classes $\left[w_{i}\right]$ in X^{+}. The group X^{+}is naturally regarded as a module over R^{+}, and W as an R^{+}-submodule of X^{+}. In this section, we use Γ^{+}, R^{+} and W instead of Γ, R and V. This is justified because the inclusion map $K^{+}=\mathcal{F}^{+} \rightarrow \mathcal{F}$ induces an isomorphism between the abelian groups W and V because of Lemma 7. The module W is cyclic over R^{+}with a generator [$\left.w\right]$ similary to V. Further, it follows from Lemma 7 that $\operatorname{dim}_{\mathbb{F}_{2}} W=\operatorname{dim}_{\mathbb{F}_{2}} R^{+}=$ 2^{e}. Hence, the cyclic R^{+}-module W is also free over R^{+}. Namely we have

$$
\begin{equation*}
W=R^{+} \cdot[w] \cong R^{+} \tag{18}
\end{equation*}
$$

This is the advantage of using W in place of V.
Let U_{i} be the principal ideal of R^{+}generated by $(1+\rho)^{i}$ for $0 \leq i \leq 2^{e}$. We have a filtration

$$
\begin{equation*}
U_{0}=R \supset U_{1} \supset \cdots \supset U_{2^{e}-1} \supset U_{2^{e}} \tag{19}
\end{equation*}
$$

We see that

$$
\begin{equation*}
(1+\rho)^{2^{e}-1}=\sum_{t=0}^{2^{e}-1} \rho^{t}(:=\operatorname{Tr}) \quad \text { and } \quad(1+\rho)^{2^{e}}=0 \tag{20}
\end{equation*}
$$

It follows that

$$
\begin{equation*}
U_{2^{e}-1}=\{0, \operatorname{Tr}\} \quad \text { and } \quad U_{2^{e}}=\{0\} . \tag{21}
\end{equation*}
$$

Lemma 8. The ideals U_{i} are all the ideals of R^{+}and $\operatorname{dim}_{\mathbb{F}_{2}} U_{i}=2^{e}-i$.

Proof. We see from (20) that the homomorphism $\varphi: \mathbb{F}_{2}[T] \rightarrow R^{+}$sending $1+T$ to ρ induces an isomorphism

$$
\mathbb{F}_{2}[T] /\left(T^{2^{e}}\right) \cong R^{+}
$$

From this we obtain the assertion.
For each j with $0 \leq j \leq 2^{e}$, letting $i=2^{e}-j$, we put

$$
L_{j}=\mathcal{F}\left(\sqrt{w^{x}} \mid x \in U_{i}\right)
$$

From (17) with $r=2^{e}$, (19) and (21), we have

$$
L_{0}=\mathcal{F} \subset L_{1}=\mathcal{F}(\sqrt{2}) \subset \cdots \subset L_{2^{e}-1} \subset L_{2^{e}}=L
$$

Proposition 5. Let $e \geq 2$ and $\kappa_{p}=0$.
(I) When $r_{4}\left(A_{\mathcal{F}}\right)=j$ with $1 \leq j \leq 2^{e}$, an unramified quadratic extension E / \mathcal{F} extends to an unramified quartic cyclic extension if and only if $E \subseteq L_{j}$.
(II) The unramified extension $\mathcal{F}(\sqrt{2}) / \mathcal{F}$ extends to an unramfied quartic cyclic extension.

Proof. First we show the assertion (I). Let E_{1} / \mathcal{F} and E_{2} / \mathcal{F} be quadratic extensions contained in L with $E_{1} \neq E_{2}$, and let E_{3} / \mathcal{F} be the third quadratic extension in the $(2,2)$-extension $E_{1} E_{2} / \mathcal{F}$. We see that if both of E_{1} and E_{2} extend to unramified quartic cyclic extensions, then E_{3} has the same property. Let N_{j} be the composite of all unramified quadratic extensions E / \mathcal{F} which extends to an unramfied quartic cyclic extension. Then, from the above and $j=r_{4}\left(A_{\mathcal{F}}\right)$, we see that $\operatorname{Gal}\left(N_{j} / \mathcal{F}\right) \cong(\mathbb{Z} / 2)^{\oplus j}$. Further, we see that N_{j} is Galois over \mathbb{Q}. Let W_{j} be the submodule of W such that

$$
N_{j}=\mathcal{F}\left(\sqrt{v} \mid[v] \in W_{j}\right) .
$$

As N_{j} is Galois over \mathbb{Q}, W_{j} is an R^{+}-submodule of W with $\operatorname{dim}_{\mathbb{F}_{2}}\left(W_{j}\right)=j$. Then we see from (18) and Lemma 8 that $W_{j}=U_{i} W=U_{i} \cdot[w]$ with $i=2^{e}-j$. Therefore, we obtain $N_{j}=L_{j}$. Thus we have shown the assertion (I). The assertion (II) follows from (I) because $r_{4}\left(A_{\mathcal{F}}\right) \geq 1$ by Corollary 2 .

7 Numerical data

In the previous sections, we were working with a fixed e and various prime numbers p of the form $p=2^{e+1} q+1$. In this section, we deal with various e
and various prime numbers $p<10^{6}$ (or 10^{7}), and we put $e_{p}=\operatorname{ord}_{2}(p-1)-1$ so that $p=2^{e_{p}+1} q+1$ with $2 \nmid q$. Further, $\mathcal{F}=\mathcal{F}_{p}, \kappa=\kappa_{p}, A_{\mathcal{F}}$ and $h_{\mathcal{F}}$ are the same as in $\S 1$. In Table 1, we give the number of prime numbers p with $\left(e_{p}, \kappa_{p}\right)=(e, \kappa)$ for $p<10^{6}$. For instance, on the row for $e=4$, we see that the ratio $155: 150: 312: 621: 1218$ is approximately equal to $1: 1: 2: 4: 8$. This is because of the Chebotarev density theorem on the ray class group of $M_{e}=\mathbb{Q}\left(\zeta_{2^{e+1}}\right)$ corresponding to the abelian extension $M_{e}\left(2^{1 / 2^{e+1}}\right) / M_{e}$.

Table 1: The number of prime numbers with $\left(e_{p}, \kappa_{p}\right)=(e, \kappa)$.

e	κ	1	2	3	4	5	6	7	8	9	total
0	19669	19653	0	0	0	0	0	0	0	0	39322
1	0	0	19623	0	0	0	0	0	0	0	19623
2	2471	2426	4894	0	0	0	0	0	0	0	9791
3	600	609	1206	2434	0	0	0	0	0	0	4849
4	155	150	312	621	1218	0	0	0	0	0	2456
5	38	34	69	174	294	624	0	0	0	0	1233
6	11	12	24	29	71	149	322	0	0	0	618
7	0	1	3	11	22	41	83	146	0	0	307
8	3	1	1	0	7	18	18	33	72	0	153
9	0	0	1	2	2	2	2	10	19	34	72

κ	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	total
10	1	0	1	1	1	5	7	15	0	0	0	0	0	0	0	31
11	0	0	1	2	1	1	1	4	15	0	0	0	0	0	0	25
12	0	0	0	0	1	0	0	1	2	5	0	0	0	0	0	9
13	0	0	0	0	0	0	0	0	1	1	2	0	0	0	0	4
14	0	0	0	0	0	0	0	0	1	0	0	1	0	0	0	2
15	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	1
16	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
17	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1

In the following, we let $e_{p} \geq 2$ because $2 \| h_{\mathcal{F}}$ when $e_{p}=1$ by Proposition 2(I). When $\kappa_{p} \geq 1$, we have $A_{\mathcal{F}} \cong(\mathbb{Z} / 2)^{\oplus r}$ with $r=2^{e_{p}-\kappa_{p}+1}$ and the 4$\operatorname{rank} r_{4}\left(A_{\mathcal{F}}\right)=0$ by Theorem 1. On the other hand, when $\kappa_{p}=0$, we have $r_{4}\left(A_{\mathcal{F}}\right)>0$ by Corollary 2. Therefore, we see from Table 1 that there are $3278=2471+600+155+38+11+3$ prime numbers p with $r_{4}\left(A_{\mathcal{F}}\right)>0$ in the range $p<10^{6}$.

We already know the precise structure of $A_{\mathcal{F}}$ when $\kappa_{p}=0$ and $e_{p}=2$
by Corollary 1 . When $e_{p} \geq 3$, to know the structure of $A_{\mathcal{F}}$, we need to know the value $t_{p}=\operatorname{ord}_{2}\left(h_{\mathcal{F}}\right)$ in view of Theorem 2. By Proposition 2(III), $t_{p} \geq 2^{e_{p}+2}$. We computed t_{p} for $p<10^{6}$ with $e_{p} \geq 3$ and $\kappa_{p}=0$ by the class number formula (4). Let $n_{e, t}$ be the number of prime numbers p with $\left(e_{p}, \kappa_{p}, t_{p}\right)=(e, 0, t)$ in the range. Let $p_{e, t}$ be the minimum prime number p satisfying $\left(e_{p}, \kappa_{p}, t_{p}\right)=(e, 0, t)$. In Table 2, we give $n_{e, t}$ and $p_{e, t}$ for each e and t.

Table 2: The exponent of 2-class number and the minimum primes.

e	t	$n_{e, t}$	$p_{e, t}$	e	t	$n_{e, t}$	$p_{e, t}$	e	t	$n_{e, t}$	$p_{e, t}$
3	10	309	337	4	18	85	2593	5	34	18	15809
	11	112	43441		19	31	26849		35	8	131009
	12	80	39761		20	21	10657		36	1	868801
	13	49	28657		21	13	68449		37	6	83777
	14	25	12049		22	8	138977		38	4	92737
	15	5	79889		23	2	598817		39	1	470081
	16	11	34961		24	6	31649				
	17	7	44497		25	1	476513				
	18	2	57457		26	2	572321				

e	t	$n_{e, t}$	$p_{e, t}$	e	t	$n_{e, t}$	$p_{e, t}$
6	66	6	266369	8	258	3	115201
	67	2	195457				
	68	2	299393				
	70	1	710273				

By Theorem 2, the 8 -rank $r_{8}\left(A_{\mathcal{F}}\right)$ is positive if and only if $t>2^{e+1}$. In Table 2, we see that the condition $t>2^{e+1}$ is satisfied only when $(e, t)=$ $(3,17)$ or $(3,18)$ and that there are $9=7+2$ prime numbers with $r_{8}\left(A_{\mathcal{F}}\right)>0$ in the range $p<10^{6}$. These prime numbers are $p=44497,79697,103409$, 162257, 717841, 797201 and 921841 with $(e, t)=(3,17)$, and $p=57457$ and 875377 with $(e, t)=(3,18)$. By Theorem 2, we have

$$
A_{\mathcal{F}} \cong(\mathbb{Z} / 4)^{\oplus 7} \oplus \mathbb{Z} / 8 \quad \text { or } \quad A_{\mathcal{F}} \cong(\mathbb{Z} / 4)^{\oplus 6} \oplus(\mathbb{Z} / 8)^{\oplus 2}
$$

according as $t=17$ or 18 .
Further, we computed t_{p} for $p<10^{7}$ with $e_{p}=3$ and $\kappa_{p}=0$. Let $n_{3, t}^{\prime}$ be the number of prime numbers with $\left(e_{p}, \kappa_{p}, t_{p}\right)=(3,0, t)$ in the range. In Table 3, we give $n_{3, t}^{\prime}, p_{3, t}$ and the structure of $A_{\mathcal{F}}$ for each t.

Table 3: The exponent of 2-class number $\left(p<10^{7}\right)$.

t	$n_{3, t}^{\prime}$	$p_{3, t}$	$A_{\mathcal{F}}$
10	2610	337	$(\mathbb{Z} / 2)^{\oplus \oplus} \oplus(\mathbb{Z} / 4)^{\oplus 2}$
11	1164	43441	$(\mathbb{Z} / 2)^{\oplus 5} \oplus(\mathbb{Z} / 4)^{\oplus 3}$
12	707	39761	$(\mathbb{Z} / 2)^{\oplus 4} \oplus(\mathbb{Z} / 4)^{\oplus 4}$
13	321	28657	$(\mathbb{Z} / 2)^{\oplus 3} \oplus(\mathbb{Z} / 4)^{\oplus 5}$
14	194	12049	$(\mathbb{Z} / 2)^{\oplus 2} \oplus(\mathbb{Z} / 4)^{\oplus 6}$
15	94	79889	$(\mathbb{Z} / 2)^{\oplus}(\mathbb{Z} / 4)^{\oplus 7}$
16	75	34961	$(\mathbb{Z} / 4)^{\oplus 8}$
17	37	44497	$(\mathbb{Z} / 4)^{\oplus 7} \oplus(\mathbb{Z} / 8)$
18	7	57457	$\left(\mathbb{Z} / 4 \oplus^{\oplus 6} \oplus(\mathbb{Z} / 8)^{\oplus 2}\right.$
19	10	2347409	$(\mathbb{Z} / 4)^{\oplus 5} \oplus(\mathbb{Z} / 8)^{\oplus 3}$
20	3	3295249	$(\mathbb{Z} / 4)^{\oplus 4} \oplus(\mathbb{Z} / 8)^{\oplus 4}$
21	3	3238801	$(\mathbb{Z} / 4)^{\oplus \oplus} \oplus(\mathbb{Z} / 8)^{\oplus 5}$
22	1	5897329	$(\mathbb{Z} / 4)^{\oplus 2} \oplus(\mathbb{Z} / 8)^{\oplus 6}$
26	1	6765169	$(\mathbb{Z} / 8)^{\oplus 6} \oplus(\mathbb{Z} / 16)^{\oplus 2}$

Among 5227 prime numbers, there is only one prime number such that the 16 -rank of $A_{\mathcal{F}}$ is positive.

References

[1] H. Cohn and J. C. Lagarias, On the existence of fields governing the 2-invariants of the classgroup of $\mathbb{Q}(\sqrt{d p})$ as p varies, Math. Comp., 41 (1983), no. 164, 711-730.
[2] P. E. Conner and J. Hurrelbrink, Class Number Parity, World Scientific, Singapore, 1988.
[3] H. Hasse, Über die Klassenzahl abelscher Zahlkörper, Akademie-Verlag, Berlin, 1952. Reprinted with an introduction by J. Martine; Springer, Berlin, 1985.
[4] H. Ichimura, Triviality of Stickelberger ideals of conductor p, J. Math. Sci. Univ. Tokyo, 13 (2006), no. 4, 617-628.
[5] K. Iwasawa, Lectures on p-Adic L-Functions, Annals of Math. Stud., No. 74. Princeton Univ. Press, Princeton, N. J.; Univ. Tokyo Press, Tokyo, 1972.
[6] H. Jung and Q. Yue, 8-ranks of class groups of imaginary quadratic number fields and their densities, J. Korean Math. Soc., 48 (2011), no. 6, 1249-1268.
[7] Y. Kida, Cyclotomic \mathbb{Z}_{2}-extension of J-fields, J. Number Theory, 14 (1982), no. 3, 340-352.
[8] D. Milovic, On the 16 -rank of class groups of $\mathbb{Q}(\sqrt{-8 p})$ for $p \equiv$ $-1 \bmod 4$, Geom. Funct. Anal., 27 (2017), no. 4, 973-1016.
[9] P. Morton, The quadratic number fields with cyclic 2-classgroups, Pacific J. Math., 108 (1983), no. 1, 165-175.
[10] W. Narkiewicz, Elementrary and Analytic Theory of Algebraic Numbers (3rd ed.), Springer, Berlin, 2004.
[11] L. Rédei und H. Reichardt, Die Anzahl der durch 4 teilbaren Invarianten der Klassengruppe im quadratischer Zahlkörper, J. Reine Angew. Math., 170 (1933), 69-74.
[12] L. Rédei, Arithmetischer Beweis des Satzes über die Anzahl der durch vier teilbaren Invarianten der absoluten Klassengruppe im quadratischen Zahlkörper, J. Reine Angew. Math., 171 (1934), 55-60.
[13] L. C. Washington, Introduction to Cyclotomic Fields (2nd. ed.), Springer, New York, 1987.
[14] A. Wiles, Iwasawa conjecture for totally real fields, Ann. of Math., 131 (1990), no. 3, 493-540.
[15] Y. Yamamoto, Divisibility by 16 of class number of quadratic fields whose 2-class groups are cyclic, Osaka J. Math., 21 (1984), no. 1, 1-22.
[16] H. Yokoi, On the class number of a relatively cyclic number field, Nagoya Math. J., 29 (1967), 31-44.
[17] Q. Yue, The generalized Rédei-matrix, Math. Z., 261 (2009), no. 1, 23-37.
[18] Q. Yue, Class groups under relative quadratic extensions, Acta Arith., 150 (2011), no. 4, 399-414.
[19] L. Zhang and Q. Yue, Another case of a Scholz's theorem on class groups, Int. J. Number Theory, 4 (2008), no. 3, 459-501.

[^0]: 2010 Mathematics Subject Classification: 11R18, 11R23
 Keywords and phrases: class group, 2-part, imaginary cyclic field

