ID | 114035 |
タイトル別表記 | Texture analysis of myopathy
|
著者 |
Sogawa, Kazuki
Tokushima University
Takamatsu, Naoko
Tokushima University
Hashiguchi, Shuji
Tokushima University
Saito, Miho
Tokushima Hospital
Mori, Atsuko
Tokushima University|Itsuki Hospital
|
キーワード | myopathy
texture analysis
muscle ultrasound
machine learning
|
資料タイプ |
学術雑誌論文
|
抄録 | Given the recent technological advent of muscle ultrasound (US), classification of various myopathic conditions could be possible, especially by mathematical analysis of muscular fine structure called texture analysis. We prospectively enrolled patients with three neuromuscular conditions and their lower leg US images were quantitatively analyzed by texture analysis and machine learning methodology in the following subjects : Inclusion body myositis (IBM) [N=11] ; myotonic dystrophy type 1 (DM1) [N=19] ; polymyositis/dermatomyositis (PM-DM) [N=21]. Although three-group analysis achieved up to 58.8% accuracy, two-group analysis of IBM plus PM-DM versus DM1 showed 78.4% accuracy. Despite the small number of subjects, texture analysis of muscle US followed by machine learning might be expected to be useful in identifying myopathic conditions.
|
掲載誌名 |
The Journal of Medical Investigation
|
ISSN | 13496867
13431420
|
cat書誌ID | AA12022913
AA11166929
|
出版者 | Tokushima University Faculty of Medicine
|
巻 | 66
|
号 | 3-4
|
開始ページ | 237
|
終了ページ | 240
|
並び順 | 237
|
発行日 | 2019-08
|
EDB ID | |
出版社版DOI | |
出版社版URL | |
フルテキストファイル | |
言語 |
eng
|
著者版フラグ |
出版社版
|
部局 |
医学系
病院
|