number of access : ?
number of downloads : ?
ID 115101
Author
Miwa, Yasushi MEDRx
Hamamoto, Hidetoshi MEDRx
Keywords
Ionic liquid
Poorly water soluble drug
Skin permeability
Topical delivery
Etodolac
Content Type
Journal Article
Description
Poor transdermal penetration of active pharmaceutical ingredients (APIs) impairs both bioavailability and therapeutic benefits and is a major challenge in the development of transdermal drug delivery systems. Here, we transformed a poorly water-soluble drug, etodolac, into an ionic liquid in order to improve its hydrophobicity, hydrophilicity and skin permeability. The ionic liquid was prepared by mixing etodolac with lidocaine (1:1, mol/mol). Both the free drug and the transformed ionic liquid were characterized by differential scanning colorimetry (DSC), infrared spectroscopy (IR), and saturation concentration measurements. In addition, in vitro skin-permeation testing was carried out via an ionic liquid-containing patch (Etoreat patch). The lidocaine and etodolac in ionic liquid form led to a relatively lower melting point than either lidocaine or etodolac alone, and this improved the lipophilicity/hydrophilicity of etodolac. In vitro skin-permeation testing demonstrated that the Etoreat patch significantly increased the skin permeation of etodolac (9.3-fold) compared with an etodolac alone patch, although an Etoreat patch did not increase the skin permeation of lidocaine, which was consistent with the results when using a lidocaine alone patch. Lidocaine appeared to self-sacrificially improve the skin permeation of etodolac via its transformation into an ionic liquid. The data suggest that ionic liquids composed of approved drugs may substantially expand the formulation preparation method to meet the challenges of drugs which are characterized by poor rates of transdermal absorption.
Journal Title
European Journal of Pharmaceutics and Biopharmaceutics
ISSN
09396411
NCID
AA10836618
AA11527164
Publisher
Elsevier
Volume
102
Start Page
92
End Page
100
Published Date
2016-03-02
Rights
This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
EDB ID
DOI (Published Version)
URL ( Publisher's Version )
FullText File
language
eng
TextVersion
Publisher
departments
Pharmaceutical Sciences