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Abstract

Using the methods developed in [5] and J.H.E.Cohn’s results on some quartic dio-
phantine equation, we shall show the structure of the unit groups of the quartic fields
\/Fem + 4, \/LGn + 16), where F,, and L,, are the mth Fibonacci and Lucas numbers.
At the same time, we shall show the explicit class number formulae for these quartic fields.
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1. Introduction and preliminary lemmas

In our previous paper [5], we have shown the structure of the unit groups of
Q(\/F2n +1 \/L% + 1) and Q( \/A +1 \/Bgn ), where Fy,, L, A and B,, are the

mth I'ibonacci, Lucas, Pell and companion Pell uurnbers. Using the methods developed

in [5] and J.H.E.Cohn’s results on some quartic diophantine equation, we shall show the
structure of the unit groups of the bicyclic biquadratic fields Q( \/ +4 \/L + 16).

Let d be a positive integer. We assume d is not perfect square and the minimal

positive integer solution z =t and y = u of the Pellian equation 2% — dy? = —4 satisfies
=u=1 (mod 2). We denote (t +u/d)/2 by . Then it is known that:

Lemma 1. (cf. J.H.E.Cohn [2]) With the above notation, the diophantine equation

22 — dy* = —1 has at most one positive integer solution and the only possible solution is
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given by &+ y*V/d = €% .

As a corollary of this lemma, we have the following.

Corollary 1. The diophantine equation z* — by* = —1 has only one integer solution
(z,y) = (2,1).
Corollary 2. The diophantine equation 2? — 125y* = —1 has no integer solutions.

2. Unit groups of Q(\/an + 4, \/Lén +16)

Let d; and d, be nonzero rational numbers. We denote d; ~ d; when d; (Q*)? = d3(Q*)?
in Q*/(Q*)2. Then it is clear that d; ~ dy <= Q(Vd1) = Q(v/d2). Put £, + fuV/B
= (24+5)", then F;, = an and Ls, = 2¢,,. Let K be the bicyclic biquadratic field
\/Fan +4 \/Z + 16) \/f?n +1, \/Egn +4) (n >1). From the fact f7, +1
= fon_1* fony1 and Corollaues 1 and 2, we see f2 + 141 and f2, +145 for n > 1.
Hence K contains exactly 3 quadratic subfields Q(v/5), Q(v/f2, +1) and Q(1/€3, + 4).
We denote the discriminants of Q(y/f2, + 1) and Q(y/43, +4) by Dy and D,. We note
Dj~ 2.+ 1= fon—1- font1 and Dy ~ €3, +4 =5fsn-1 - fons1. Let €1 be the fundamen-
tal unit (1 + \/5)/2 of Q(\/g) Let €; be the unit fy, +1/f3, +1 and ¢; be the unit

(Lo, + /4%, +4)/2. We denote the fundamental units of Q(y/fZ, + 1) and Q(y/43, +4)

by €2 > 1 and €3 > 1, respectively. Let N be the norm maps from the quadratic fields to
Q. Since N(e;) = N(eg) = —1, one knows N(g3) = N(e3) = —1 and e; = e3¢, = = gt
for some integers 7 and ;.

Ey denotes the unit group of K. Then Eg contains the subgroup £ =< +1,¢e;,¢€2,€3 >.
As usual, we call the number Qx = [Fx : F], the unit index of K. For any € € Ey, it
is known (cf. [6] or [11]) that €2 € E and Ex/E = E}/E? C E/E*. Therefore, to find a
system of generators of the unit group Eg, we must list up the element of E which are
perfect squares in K from among 7 numbers £§ 62 €3 (# 1), where a, 8,7 =0 or 1.

Since N(g&;) = N(ez) = N(e3) = —1, the number elazeg does not become totally positive
for the values of (o, 3,) other than (1,1,1). Hence one knows the unit index Qx of K is
1 or2and

Qr =2 <= Jee:e3 € K.
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Since £; = £%*! and ¢, = ¢! for some i, € Z, we see
f 14 s )

VEr1Ees € K = \Jfee56¢ € K, where ¢, = 6113 =2+ /5.
It is known (cf. [6] or [11])that:

Lemma 2. Put C = Trg/q(eceser — €0 — €5 — €1), then (/Eeseq € K if and only if
C is contained in one of (Q*)?%, 5(Q*)?%, D;(Q*)? and D,(Q*)*.

Since Dy ~ fou_1 - fant1 and Dy ~ 5f5,_1 + fangr, One sees
Vet € K < C~1lor C~5o0r C~ fopoy* fang1 08 C ~5fono1 - fonsr.

From the definition of C, we have C = 4(fonlon + (€3, +4)/2 = 2 — for, — €2, /2)
= 2(2 fon + £2s) (€3, — 1). Since 2 [z, 4+ £o, = fon41 and €y, — 1 ~ 2 when n is odd and ~ 10
when n is even, we have C' ~ fy,4; when n is odd and C ~ 5 fa,41 when n is even. Hence

we have shown

VEiEes € K < \fE6/61 € K <> fopg1 ~1o0r 5 (n > 1).

From Corollaries 1 and 2, we see fo,4+1 ~ 1 or b if and only if n = 1. Hence, we have shown:

Theorem. With the above notation,

Ex =< £1, . /€1€3€3,€q,63 > forn =1,
Fr =< i1,€1,€2,€3 > fOT‘TL > 2.

Let k¢ and h; be the class numbers of the quadratic fields Q(y/ 2, + 1) and Q(+/43, + 4).
Let hy be the class number of K. Since the class number of Q(1/5) is one, we have the
following.

Qrhyhe
—~

From the above theorem, one sees the unit index Qg = 2 forn =1 and Qx =1 forn > 2.

hi =

Hence we have:

Corollary 3. With the above notation,
_ hshe

hx

forn=1,

hshe
4

hg = for n > 2.
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Remark. In the above discussion, it is not so obvious that there are infinitely many
bicyclic biquadratic fields of the form Q(y/FZ, +4,1/L%, +16) = Q(1/f2, +1,v/5). The
infinity of these quartic fields is equivalent to the infinity of the real quadratic fields ex-

pressed in the form Q(1/f%, + 1) (n =1,2,...). Suppose, on the contrary, the number of
real quadratic fields of this type is finite. Then there exists a constant r such that, for any

n>r, Q\L/fi +1)=Q(yf3 + 1) for some k (1 < k <r). By the Dirichlet’s theorem on

primes in arithinetical progressions, there exists a prime p such that p = 1(mod (2r + 1)!).
Consider the real quadratic field Q(y/f2,; + 1). Then, from the assumption, there exists
k(1 <k <r), which satifies 2., + 1 = f,fora ~ for + 1 = for—1forq1. Hence, there exist
nonzero integers © and y such that 22, fy12 = y?fak—1f2641. Since (p,p +2) = (p, 2k — 1)
= (p,2k +1) = 1, one sees (fp, fo12) = (fypy fae-1) = (fp» farq1) = 1. Hence one sees f, is

always a perfect square, which contradicts Corollary 1.
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