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Abstract

We study the decay property of energy to the initial boundary value
problem for nonlinear partial integro-—differential equations with
nonlinear damping terms.
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1. Introduction and Result

We consider the asymptotic behaivor of solutions to the initial boundary value prob-
lem for the following nonlinear partial integro-differential equations with nonlinear
damping terms :

Ugs — (/ |Vu(',t)|2dur.)7Au + 8|usPus =0 in QxR*
Q

(1.1)

’ u(z,0) = up(z), wuz,0)=1us(2), and wu(z,t)|sn =0,
where €0 is a bounded domain in N-dimensional Euclidean space RN with smooth
boundary 012, 4 a nonnegative constant, § a positive constant, # a nonnegative constant,
ug = Ou/0t, |Vul? = 2;\,:1 |0u/0x|?, and Au = E;\l:l 9%u/0x3.

When N = 1, Eq.(1.1) describes a small amplitude vibration of an elastic string
without the initial axial tension. In the case of § = 0, Kirchhoff [10] firstly studied
such integro-differential equations (with the initial tension), which are called Kirchhoff
equations after his name. (Also see [3], [4], [6], [13], [14].)
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The local well-posedness (equivalent to the local existence and uniqueness) in Sobolev
space has been already studied by many authors (see [1], [2], [5], [7], [24], [26], and the
references cited therein). Indeed, using the fact that if ug # 0, then [, [Vu(-,t)]*dz > 0
for some t > 0, we can show the existence of a local solution u of Eq.(1.1) (e.g. see [19],
[22] and also [1], [8]) :

Propsition 1.1.  Suppose that {ug,u;} € H?(Q) N H}(N) x H}(Q) with ug # 0
and vy > 1 and B < 4/(N —2) (B < oo if N < 2). Then, there exists a unique local
solution u of Bq.(1.1) satisfying u € Cy,([0,T); H2(Q) N HY(N)) N CL([0,T); HL () n
C([0, T); H3())NC([0,T]; L3(2)) end uy € LPH2((0,T)x Q) for some T = T(||uol| g2 +
||u1HH1) > 0.

We note that Eq.(1.1) has not any solutions in the energy class. Moreover, in order
to get a global solution of Eq.(1.1), we need to derive the a-priori estimate : |ju(t)||g2 +
lue(t)|| g1 < oo for ¢t > 0, where || - || s is the norm of H/(2).

In the case of § = 0 (i.e. linear damping case) in Eq.(1.1), making the best possi-
ble use of an effect of the damping term wu,, Nishihara and Yamada [17] have derived
[Vue()))2/IVu(t)||> +]| Au(t)||? < C for t > 0 (]|-]| is the norm of L?(£2)) and shown the
existence of a global solution (also see Ono [21] for sharp decay properties). Moreover,
in addition to their method, utilizing the sharp energy decay (see (1.4)), we also have
proved the global-in-time solvability for Eq.(1.1) with 8 = 0 and the perturbation terms
f(u) = £|u|*u, £|u|**! in [19, 20]. Indeed, the sharp energy decay estimate has played
an important role in the proof. On the other hand, the global-in-time solvability of the
degenerate equation (1.1) with 3 > 0 has not known at the present. Our goal in this
paper is to derive the decay estimate of energy for an assumed solution of Eq.(1.1).

We define the energy E(t) associated with Eq.(1.1) as

(1.2) E(t) = lue)]? + (1 + )Y Vu(®)] 20+,

where || - || is the norm of L2(Q).
Our main result is as follows.

Theorem 1.2. Let N > 1 and let u be a solution of Eq.(1.1). Suppose that
B <4/(N —2)if N >3. Then, the energy E(t) satisfies

2(y+1)

(1.3) E(t) < CA+8~D  with 6(v,8) = DR

for t > 0.

When v > 0 and § = 0 in Eq.(1.1), the following decay estimate of the energy E(t)
is well known (e.g. see Nakao [11]) :

(1.4) (145 ITu@IP <) EB(#$) < C(1+ )70/,

Then we see 6(v,0) = (y+1)/7.
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Moreover, when the degenerate equation (1.1) has the strong damping term —Au,
instead of |u¢|fuy, in addition to the above decay (1.4), Nishihara [15] has derived the
following lower decay estimate :

C'(1+ )70 <[ Vu@®)|2Ht)  for t>T,

with some T, > 0 (also see [16], [18], [23]), that is, we know that the decay (1.4) is sharp
(when 8 = 0in Eq.(1.1)).

On the other hand, when 4 = 0 and 8 > 0 in Eq.(1.1), the following decay estimate
of the energy E(t) is well known (e.g. see [9], [12], [25], [27]) :

E#)<C(+t)"%%  for t>0.
Then we see 6(0,3) = 2/p.
2. Proof

Following Nakao [11, 12], we shall give the proof of Theorem 1.2.
Multiplying (1.1) by 2u; and integrating over §), we have the energy identity :

(2.1) E(f) + 2llud(t)|515 =
where || - || g+2 is the norm of Lﬂ”'z(Q), and E(t) is non-increasing, that is, E(t) > E(s)

for t > s > 0. Integrate (2.1) over [¢,t + 1] to obtain

t+1
(2.2) 2/ lue(s)llfEsds = E(t) - E(t+ 1) (E D(t)f’“).
t
Then, it follows that
(2:3) D(t)’** < E(t) < E(0),
and there exist two numbers t; € [t,t + 1/4] and t5 € [t 4+ 3/4,t + 1] such that
(2.4) lue®)Es <2D()*?  for j=1,2.

Multiplying (1.1) by u and integrating over Q x [t;,,], we have from the Sobolev-
Poincaré inequality that

(2.5)
t2
[ IvutsEeena,

t

ta 2 t2
S/ lee(o)lPds + 3 lrua(t;)llu(,)] +/ llwe()l 32 luls)llg+2ds
ty j=1 ty

[ 2/(B+2)
< C(/t ||ut(8)“gig(ls) CZ [lwe ()] g+2 <sup | Vu(s)]|

j=1

t+1 (8+1)/(8+2)
+C(/ Hut(Q)”ﬂ—Hde) sup
t t<s<t+1
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Moreover, it follows from (1.2) and (2.2)-(2.5) that

[ B s [T hutorpass [ iwuoreas

< CD(#)E(t)/C0+D)) L oD(¢)?.

For any 7 € [t,t + 1], integrating (2.1) over [r,t;], we have
ts \
E(r) = E(t2) +2 / lue(o)ll512ds
T

ts t4+1
<9 / B(s)ds +2 / lue()|[5+2ds
ty t

and from above

E(t) < CD(t)2(7+l)/(27+1) +CD(t)?.

Thus, we obtain

2(v+1)

E(t)1+1/00B) < ¢, D(1)P*2,  6(v,8) = v+ DB+ 27

= C{E(t) - Bt + 1)} .

Setting 1(t) = E(t)~1/6(%8) (see Nakao [12]), we see
'd .
Y(t+1)—d(t) = / 7 (Bt +1) + (1= n)E()} /Py
o dn

1
=001,8)7" [ 9B+ 1)+ (1= B}y (B () - B+ 1)
0
2 0(v, )T E(t) TP E(t) - E(t+ 1)} > C7'0(v, )7
and
V(E+1) 2 $(0)+ CT0(v, )7t

Hence, we arrive at
E(t) < {E(0)7/*0) 4 CT16(y, B)7 [t — 1]+} 70009
for t > 0, where [a]* = max{0, a}, which implies the desired estimate (1.3). Q.E.D.
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