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Abstract

In this paper, we define the concept of partial, partial-modified and
partial-mixed Fourier microfunctions and investigate their structures.
Thereby we obtain the decomposition of singularity of partial, partial-
modified and partial-mixed Fourier hyperfunctions. Then we can deduce
the qualitative and quantitative property of partial, partial-modified and
partial-mixed Fourier hyperfunctions by examining only their singu-
larity spectrums. We also investigate their vector-valued versions,

1991 Mathematics Subject Classification, Primary 32A45;Secondary 46F15

Introduction

This paper is the third part of the series of papers on the theory of Fourier
microfunctions of several types,

In this paper, we define the concept of partial, partial-modified and
partial-mixed Fourier microfunctions and their vector-valued versions, and
study their fundamental properties, We can investigate these in a similar way
to S. K. K. [21] and Ito[ 41, [4bis], [ 5],

Sheaf homomorphisms o® —— %", ' ——> %" and *— F* are
defined and they become injections, Thereby, the concept of partial, partial-
modified and partial-mixed Fourier hyperfunctions can be considered as a
generalization of the concept of slowly increasing and real-analytic functions.
One purpose of this paper is to analyse the structure of the quotient sheaves
B, F'/or" and /%, We can analyse this structure by a similar
way to the theory of Sato and Fourier microfunctions, For Sato and Fourier
microfunctions, we refer the reader to Kaneko[ 9], [10], [11], Kashiwara-
Kawai-Kimura[12], Morimoto[14], [15], Sato[17], [18], [19], [20], Sato-Kawai-




30 Yoshifumi ITo

Kashiwara[21] and Ito[ 4], [4bis], [5]. The first target is to show that we
can define the sheaves %, @' and @* of partial, partial-modified and partial-
mixed Fourier microfunctions over S*M, respectively, which is the cosphere
bundle over M, and we can have the fundamental exact sequences

0 &0 B T.g"——0,

0 7 A 1. —— 0,
and

0 I B* T FZ*——0,

where 7:S*M——> M is the projection and z,%’,7,%’ and 7,%* denote the
direct images of #°, #* and * with respect to 7, respectively,

Further we investigate more precise structures of partial, partial-modified
and partial-mixed Fourier microfunctions, Until now, the flabbiness of the
sheaves #°, @* and €” is not yet known,

Next, we consider a similar construction of the theory of vector-valued
versions,

At last we note that partial, partial-modified and partial-mixed Fourier
microfunctions and their vector-valued versions on an open set in S*R!"lare
nothing else but Sato microfunctions and vector-valued Sato microfunctions,
respectively, where S*R/"is the cosphere bundle over R!"/,

In section 8, we construct the theory of partial Fourier microfunctions,

In section 9, we construct the theory of vector-valued and partial Fourier
microfunctions, .

In section 10, we construct the theory of partial and modified Fourier mi-
crofunctions,

In section 11, we construct the theory of vector-valued, partial and modi
fied Fourier microfunctions,

In section 12, we construct the theory of partial and mixed Fourier micro-
functions,

In section 13, we construct the theory of vector-valued, partial and mixed
Fourier microfunctions,

8. Partial Fourier microfunctions

8.1. Partial Fourier hyperfunctions. In this subsection we recall the
notion of partial Fourier hyperfunctions following Ito[ 2 .

Let n = (n,, n,) be a pair of nonnegative integers with |n|=n,+n, # 0.

We denote the product spaces C 'X C > and R"'x R by C*'" and R**
respectively, Also put C*' = C"'xC", X=C""and M=R"", Then M is the
closure of R"'=R™"x R"%in X, We denote z=(2",2”")eC'"! so that 2’=(z,, -,
2,0, 27= (20 ur, 0, 20,
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Let ¢#* be the sheaf of slowly increasing and holomorphic functions on X
following Ito[ 2], Definition 7. 1.1, p, 43, Put o’ =¢"ly. Then "’ is the
sheaf of slowly increasing and real-analytic functions on M, Then we have
&= 112", where :M C___, X is the canonical injection,

As in Ito[ 2], we define the sheaf of partial Fourier hyperfunctions on
M

Definition 8.1. The sheaf #° is, by definition,
%' = (0" = Dist"(M, 7",

where the notation in the right hand side of the above equality is due to Sato
[16], p. 405. A section of &’ is called a partial Fourier hyperfunction,

As stated in Ito [ 2], #4(27") =0 for k # |n| and #*® constitutes a flabby
sheaf on M,

Now we apply Lemma 1.1 of Ito[ 4] to this case where &%, X and Y
correspond to #°,X and M respectively, Then we obtain the sheaf homo-
morphism

Mb—)gb

which will be proved to be injective later, This injection allows us to consider
partial Fourier hyperfunctions as a generalization of slowly increasing and
real-analytic functions, The one purpose of this section is to analyse the
structure of the quotient sheaf %’/ %" by a similar way to S.K.K. [ 21].

8.2. Definition of partial Fourier microfunctions. Suppose that M=R""
and X = C"*, We denote by ¢ the sheaf of partially slowly increasing and
holomorphic functions defined on X, The (co-)sphere bundle iSM (resp, 1S*M)
are defined similarly to subsection 2.2 of Ito[4]., We also use a similar
notation to subsection 2.2 of Ito[ 4], Then we have the following diagram :

M¥+ D DM
T ~ T X 7w N\ T
“X O iSM MxX* 5 iS*M
T N T X 7w / &
X oM

Theorem 8.2. We have % tsu(z~'0")=0 fork # 1, where v : "X — > X
is the canonical projection,
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The following theorem is the most essential one in the theory of partial
Fourier microfunctions, This is deeply connected with the “Edge of the Wedge”
Theorem.,

Theorem 8.3. We have ¥ tssu(m ") = 0for k + |n|, wherer - MY
X is the canonical projection.
In the proof of the above theorem, the following theorem is essential,

Theorem 8.4(the “Edge of the Wedge” Theorem). Put G={z=x+iyeCl";
20(1=j=|n|) )} Then we have, for each xEM,

FHE(). =0 fork#|n|.
Definition 8.5. We define the sheaf @’ on iS*M by the relation
gb :%L@*M(n—lﬁb)a,

where we denote by a the antipodal map iS*M——iS*M, and by ¥ ° the
inverse image under a of a sheaf & on iS*M, A section of ¥’ is called a
partial Fourier microfunction,

Now we define the sheaves 9", 7’ ¢ and "-f by

_sz%}SM(T_lﬂb),
O =i (O x_)s
=0 o,

Wherej:X—MC__;”)?, 7 MX*—>X and 7:*X——>X are canonical maps,
By Proposition 1.3 of Ito[4] and Theorems 8.2 and 8.3, we have the
following,

Proposition 8.6. We have

(g")°, (k=|n|—-1),
k -1 gb—
Riz.nl2 '{0, (k#|n|—1).
Theorem 8.7. We have

Rk”*gb:Rlﬁ-‘"l—l‘[*gb:O for k#+ 0,

and we have the exact sequence

0 o’ B T E— 0.

This i1s the required decomposition of singularity of partial Fourier
hyperfunctions,

Corollary 8.8. We have the exact sequence

0—— o (M)—2 > 2 D)—L g GS* M) ——> 0.
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Definition 8.9. Let ue %*(M). We call sp(w)eg®(iS*M) a spectrum of
u. We denote by S.S.u the support supp sp(w) of sp(u) and call it a singularity
spectrum of u, 7 (S.S.u) is evidently the subset where u is not partially slowly
increasing nor real-analytic and is called the singular support of w.

Corollary 8.10. Let uc %°(M). Then u is a partially slowly increasing
and real-analytic function on M if and only if S.S.u=4.

Since =" |grlnl, #=.%"|gpin and ¥ =%"|,5«rlnl hold in the notation of
S.K.K.[21], we have the following Corollary by restricting the exact sequence
in Theorem 8. 7.

Corollary 8.11. Let m:iS*R"—— RI"l.  Then we have the exact sequence

0 % K74 TyE 0.

8.3. Fundamental diagram on &’". We apply the arguments in the
subsection 1. 2 of Ito [ 4 ] to a special case, At first we apply Proposition 1. 10 of
Ito[ 4] to the situation # =(2")°, X=M, S=iSM. Then we have =%" and
&=r.%¢". We obtain the following.

Proposition 8.12. We have
Riz,c7 1" =0 fork+0

and we have the exact sequence

0 o T\, ——r, 1 —— 0.

Now we apply the same proposition to the case where % =_o*#  Thus
we obtain a homomorphism

8.1) P T AR b8
&/b ’ﬁsz*(ﬂb‘X—M)|isM ’

where j:X—MC__, #X is the canonical injection, which implies that
R" 'z, o P =R (20 (] x-w).
Hence we can define the canonical map
R, o b b

It yields, together with (8.1), a homomorphism **——7"1 %" Summing
up, we have obtained the following,

Theorem 8.13. We have the following diagram of exact sequences of
sheaves on 1SM:
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0 0
0——7 Ly’ ——> " 2° 0
|
(8.2) 0——7 gt ——r 1 ——1ln g’ ——0

T =, F

0 0

Let us transform the diagram (8. 2) of the sheaves on iSM to a diagram of
the sheaves on iS*M by the functor Rz{z’~!, where t’, 7’ are projections IM
— iS*M and IM——iSM, respectively.

For a sheaf & on M, we have

Rein’ 't i - Rtyt’ 'z s =n ' [1—|n]|].
By Proposition 1. 7 of Ito[ 4],

Rtin’ " ‘ma '¢’~ Rtin’ " 'Ru,o '@’ = €' [1—|n]|].
By operating R7i7’~! on exact columns in (8. 2), we obtain °

R*tin’"19*=0 fork#|n|—1,
Rt ' " =0 fork#|n|—1.

We define the sheaves o’ and 2"¥ on iS*M by

"V =R rin ot
9P »V:R|"|"1T’l7z-’—l‘9b.

Then, in this way, we obtain the following theorem,

Theorem 8.14. We have the diagram of exact sequences of sheaves on
1S*M:
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0 0
0——r ' ——" 2 0
(8.3) \—— 7y —r @ — gl @ —0
sp
0 0

and the diagram (8.2) and the diagram (8. 3) are mutually transformed by the
functors Rtin" " '[|n|— 1] and Rm,T7 ",

We give a direct application of Theorem 8.13, which gives a relation
between singularity spectrum and the domain of the defining function of a
partial Fourier hyperfunction.

By using similar notions as in subsection 2. 3 of Ito [4], we can state the
following proposition,

Proposition 8.15. Let U be an open subset of iSM with convex fiber, and
V a convex hull of U. Then we have

1) If ger (U, o ?), then S.8.(A(@))cU". Conversely, if f(x)E(zU,
Z*)satisfies S.S.(f)CU?", then there exists a unique ¢ €[ (U, o *) such that
f=2(). Namely, we have the exact sequence ‘

00— " A (D)—2> 5 (D) —s g (S M-U"),
2) I'(V, o’ P)——I'(U, o" %) is an isomorphism.

Definition 8.16. We say us %’ (2)to be micro-analytic at (x, in) in iS*M
if (x, in)&S.S.u. This is equivalent to being represented as

u=IA(9), p, e’ WU, (x, in=)&Us.

9. Vector-valued and partial Fourier microfunctions

9.1. Vector-valued and partial Fourier hyperfunctions. In this subsection
we recall the notion of vector-valued and partial Fourier hyperfunctions
following Ito[ 2],

We use a similar notation to subsection 8.1, Let E be a Fréchet space
over the complex number field,
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Let 22" be the sheaf of E-valued, partially slowly increasing, and holo-
morphic functions on X following Ito[ 2 ], Definition 8. 1.1, p. 55, and put Ze/”
=£2"|u. Then £¢/’ is the sheaf of E-valued, partially slowly increasing, and
real-analytic functions on M, Then we have £o/* =¢ 122", where ;M. X
is the canonical injection,

As in Ito[2], we define the sheaf of E-valued and partial Fourier
hyperfunctions on M

Definition 9.1. The sheaf £’ is, by definition,
*F =2 (") =Dist" (M, £ ),

A section of 2%’ is called an E-valued and partial Fourier hyperfunction,

As stated in Ito[ 2], #L(*2")= 0 for k+ |n| and £%’ constitutes a flabby
sheaf on M, : ‘

Now we apply Lemma 1. 1 of Ito[ 4 Jto this case where .-, X and Y corre-
spond to £2°, X and M respectively. Then we obtain the sheaf homomorphism

By’ — Bt

which will be proved to be injective later, This injection allows us to consider
E-valued and partial Fourier hyperfunctions as a generalization of E-valued,
partially slowly increasing, and real-analytic functions, The one purpose of
this chapter is to analyse the structure of the quotient sheaf £%°/2¢" by a
similar way to S.K.K. [21].

9.2. Definition of vector-valued and partial Fourier microfunctions. We
use a similar notation to subsection 8.2, Let E be a Fréchet space over the
complex number field, We denote by £/" the sheaf of E-valued, partially
slowly increasing, and holomorphic functions defined on X, We have the fol-
lowing,

Theorem 9.2. We have #isu(t 120°)= 0 for k#1, where t MX——X is
the canonical projection.

The following theorem is the most essential one in the theory of E-valued
and partial Fourier microfunctions, This is deeply connected with the “Edge
of the Wedge” Theorem,

Theorem 9.3. We have #tsu(n-'E2°) =0 for k#|n|, where 7 MX*——
X is the canonical projection.
In the proof of the above theorem, the following theorem is essential,

Theorem 9.4 (the “Edge of the Wedge” Theorem). Put G= {z=x+iycC"l:
¥, 2001 <j<|n|)}', Then we have, for each x€M,
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FHECEO®) =0 for k#|n|,
Definition 9.5. We define the sheaf £&’ in iS*M by the relation
P =2 om0

A section of 2#” is called an E-valued and partial Fourier microfunctions,
Now we define the sheaves 29", £2° % £./°# by the relations

PP =H lu(z 1EDY),
o =1 O I xou)s
EJa/b'ﬁ:Eﬂb'”iSM,

Wherej:X—MC_>M5(, 7 MX*———>X and 7:X—>X are canonical maps,
By Proposition 1.3 of Ito[4] and Theorems 9.2 and 9.3, we have the

following,

Proposition 9.6. We have

CEghye, (k=|nl-1),

& -1Egb =
Rz, t2 {0, (k#|n|-1).

Theorem 9.7. We have
Rin, @’ =Rrnl-17 £9°=0  for k+ 0

and we have the exact sequence

0 EUQ/IJ Egb Z*Egb 0
This is the required decomposition of singularity of E-valued and partial
Fourier hyperfunctions,

Corollary 9.8. We have the exact sequence
S
0 —— o (M E)—— 5" (M E)—e @ 1S M E)——(,

Definition 9.9. Let ue %" (M;E)., We call sp(u) e @*(@S*M;E) a spectrum
of u., We denote by S.S.u the support supp sp(u) of sp(u) and call it a
singularity spectrum of w, 7z (S.S.u) is evidently the subset where u is not
slowly increasing nor real-analytic, and it is called the singular support of u,

Corollary 9.10. Let use % (M;E). Then u is an E-valued, partially
slowly increasing, and real-analytic function on M if and only if S.S.u=¢.

Put Eor =070 [ glnl, Lo/ =L/ | pinl and E@=E&"| ...pixl.  Then we have the
following Corollary by restricting the exact sequence in Theorem 9. 7.

Corollary 9.11. Let 7 : iS*R"——R" be the canonical projection. Then
we have the exact sequence
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0 4 F T EE—0.

9.3. Fundamental diagram on £¢”. We apply the arguments in the
subsection 1. 2 of Ito[ 4] to a special case. At first we apply Proposition 1. 10 of
Ito[ 4] to the situation & =(¥2")¢, X=M, S=iSM. Then we have @=2%"
and ¢ =n,f%". We obtain the following,

Proposition 9.12. We have
Rz, t 1Eg"=(0 for k#(

and we have the exact sequence

0 ' T Y —— g ——0.

Now we apply the same proposition to the case where =4 #  Thus
we obtain a homomorphism

(g. ].) EMb'B—)T_lR‘"l_IT*EMb‘B,
Eyr? 'E:Rj*(Eﬂ”X—-M) ‘ iSM,

where j: X-Mc_, ¥X is the canonical injection, which implies that
Rl"l—lT*EMb ’ﬂZRl""l(roj)*(E(?’”|X_M).
Hence we can define the canonical map
Rl b Egh

It yields, together with (9.1), a homomorphism Eg*f— 7 1E5",
Summing up, we have obtained the following.

Theorem 9.13. We have the following diagram of exact sequences of
sheaves on iSM :

0 0
00— 7-lEq/d — 5 Egrbb o EQb .
\
(9.2) 0 —— 7718/ —— 715" —— g g’ ——
T, Egh T T 1B
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Let us transform the diagram (9. 2) of the sheaves on iSM to a diagram of
the sheaves on tS*M by the functor Rziz’ "', where 7’, z’ are projections IM
—>1S*M and IM——iSM, respectively,

For a sheaf # on M, we have

Rtz 't '\ F=Rtit 'z ' F=n"' 7 [1—|n|].
By Proposition 1. 7 of Ito[ 4 ],
Rtin ‘n,o Vf @' =R iz’ "'Rr,t 15’ =Eg"[1— |n]].
By operating Rziz’ ! on exact columns in (9. 2), we obtain

Ritin’ 159" =0 fork# |n|— 1,
Ritin' Ve’ =0 for k#|n|—1.

We define the sheaves 27" and £2°"¥ on iS*M by the relations

EJa/b V= Rlnl-1 Tfﬂ/_lEMb'B,
E_Qb V=PRIn-1 T!’ﬂ"_lE_Qb'E.

Then, in this way, we obtain the following theorem,

Theorem 9.14. We have the diagram of exact sequences of sheaves on
IS*M:

0 0
) ——> ﬂ—lEMb - Eyb,v > Egb,v 0
9.3 0 —— 7 1y —— g 18P’ —— g ig f¢" —— 0
sp
0 0

and the diagram (9. 2) and the diagram (9. 3) are mutually transformed by the
functors Rtin’ '[|n|—1]and Rzt L.

We give a direct application of Theorem 9.13, which gives a relation
between singularity spectrum and the domain of the defining function of an
E-valued and partial Fourier hyperfunction,

Proposition 9.15. Let U be an open subset of iSM with convex fiber, and
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V a convex hull of U. Then we have

1) If oer(U, oy’ ?), then S.S.(A(@))cU°. Conversely, if f(x)eI'(zU,
Eg®) satisfies S.S. (f)CU°, then there exists a unique ¢ €' (U, £o"*?) such
that f=2(¢), Namely, we have the exact sequence

00— (U E)—— " (U E)—L>g’(iS*M-U°; E),
2) I'(V,Egr® 8)——TI'(U,E /" %) is an isomorphism.

Definition 9.16. We say uc %°(2;E) to be micro-analytic at (x, in) in
iS*M if (x, in°) &S.S.u. This is equivalent to being represented as

u=j;z<soj>, ¢, e P(UsE), (x, ine)&US.

10. Partial and modified Fourier microfunctions

10.1. Partial and modified Fourier hyperfunctions. In this subsection we

recall the notion of partial and modified Fourier hyperfunctions following Ito
(2],

Let n=(n,, n,) be a pair of nonnegative integers with |n|[=n,+n,# 0.
We denote the product spaces C” '« C™ and R"xR" by C*" and RtJ "
respectively. Also put C!"'=C"xC", X=C"" and M=R"", Then M is the
closure of R"'=R"xR" in X, We denote z = (2", ) €C""! so that z’= (z,,

Za)y 2= (200, 2 )

Let ~% be the sheaf of partially slowly increasing and holomorphic
functions on X following Ito[ 2], Definition 9. 1. 1. Put o =¢#"|s. Then "
is the sheaf of partially slowly increasing and real-analytic functions on M,
Then we have '=:¢"12", where c:Mc__. X is the canonical injection,

As in Ito[2], we define the sheaf of partial and modified Fourier
hyperfunctions on M :

Definition 10.1. The sheaf %' is, by definition,
FB'=11 () =Dist" (M, 7,

where the notation in the right hand side of the above equality is due to Sato
[16], p. 405, A section of %' is called a partial and modified Fourier hyper-

function,

As stated in Ito[ 2], #%(Z°) =0 for k+#|n| and #* constitutes a flabby
sheaf on M.

Now we apply Lemma 1.1 of Ito[ 4] to this case where %, X and Y
correspond to #°, X and M respectively, Then we obtain the sheaf homo-
morphism

Mh—)ﬁhi
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which will be proved to be injective later, This injection allows us to consider
partial and modified Fourier hyperfunctions as a generalization of partially
slowly increasing and real-analytic functions, The one purpose of this section

is to analyse the structure of the quotient sheaf %#°/¥* by a similar way to
S.K.K. [21].

10.2. Definition of partial and modified Fourier microfunctions. Suppose
that M=R*" and X=C""  We denote by #" the sheaf of partially slowly
increasing and holomorphic functions defined on X, The (co-)sphere bundle
1SM (resp, iS*M) are defined similarly to subsection 2. 2 of Ito[ 4 ]. We also use
a similar notation to subsection 2.2 of Ito[ 4], Then we have the following
diagram ;

X+ <o DM

X <0 M

Theorem 10.2. We have Ftu(t~ &%) =0 for k#1, where t:*X— > X is
the canonical projection.
The following theorem is the most essential one in the theory of partial

and modified Fourier microfunctions, This is deeply connected with the “Edge
of the Wedge” Theorem,

Theorem 10.3. We have % m(n 1) =0 for k#|n|, where 7:"X* — X
LS the canonical projection.
In the proof of the above theorem, the following theorem is essential,

Theorem 10.4 (the “Edge of the Wedge” Theorem). Put G={z=x+iy&
C":y,200=72InD)'.  Then we have, for each x€M,

H D=0 for k*|n|.
Definition 10.5. We define the sheaf #" on iS*M by the relation
&=ty one,

where we denote by a the antipodal map iS*M———siS*M, and by .#° the
inverse image under a of a sheaf # on iS*M, A section of #" is called a
partial and modified Fourier microfunction,

Now we define the sheaves 2°, #"* and "* by the relations
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Qq:%}.w(f_lﬂm),
ﬂb’ﬁ:j*(ﬂ”X—M):
=% s,

where j: X-Mc_, M¥ gMX*——X and 7:“X——X are canonical maps,
By Proposition 1.3 of Ito[ 4] and Theorems 10.2 and 10.3, we have the
following,

Proposition 10.6. We have

e, (k=|n|- 1),
o= {70 QTN
Theorem 10.7. We have
Rz, g'=R* "1z, 9= 0 for k+0,
and we have the exact sequence

0 e B* T " 0.

This is the required decomposition of singularity of partial and modified
Fourier hyperfunctions,

Corollary 10.8. We have the exact sequence
00— (D 7 )L (S M) —— 0.
Definition 10.9. Let ue #'(M). We call sp(u)EZ’(S*M) a spectrum of
u. We denote by S.S.u the support supp sp(w) of sp(z) and call it a singular-ity

spectrum of u, 7 (S.S.u) is evidently the subset where u is not partially slowly
increasing nor real-analytic and is called the singular support of u,

Corollary 10.10. Let us #°*(M). Then u is a partially slowly increasing
and real-analytic function on M if and only if S.S.u=4.

Since w=o"|r", #=%"|r" and ¥=&"|is'r" hold in the notation of
S. K. K. [21], we have the following Corollary by restricting the exact sequence
in Theorem 10. 7.

Corollary 10.11. Let 7:iS*R""'——R!"!, Then we have the exact sequence

0 54 Z & 0.

10.3. Fundamental diagram on #%°. We apply the arguments in the
subsection 1.2 of Ito[ 4] to a special case, At first we apply Proposition 1. 10
of Ito[ 4] to the situation & =(2°, X=M, S=iSM. Then we have ¥ =¢"
and £ =7.%". We obtain the following,
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Proposition 10.12. We have
Rzt '@'=0 fork+0

and we have the exact sequence

0 9° g, ', —— 0.

Now we apply the same proposition to the case where =% '# Thus we
obtain a homomorphism

(10. ].) Mq"s—)r‘lRlnl’lT*Mh.ﬁ’
MLBsz*(ﬁ”X*M)’iSM,

wherej:X—MC_) #X is the canonical injection, which implies that
RI" 1z, o P =R (0)), (O | x-m).
Hence we can define the canonical map
R" e, o "

It yields, together with (10.1), a homomorphism ' ——17" 1 %% Sum-
ming up, we have obtained the following,

Theorem 10.13. We have the following diagram of exact sequences of
sheaves on iSM

0 0
0— W' — ' —— 9" ——
| ﬂ
(10.2) 0—— 7w —— 71g' —— - ¥ —— 0
Tt ' —— 01 E"
0 0

Let us transform the diagram (10.2) of the sheaves on iSM to a diagram
of the sheaves on iS*M by the functor Rz{z’~!, where 7, 7" are projections IM
——1S*M and IM——iSM, respectively,

For a sheaf # on M, we have

Rr/n 't ' g =Re|t' '\n ' F=n1 #[1-|n|].
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By Proposition 1. 7 of Ito[ 4],
er’n"‘n*r“g"’éR‘c!’n"1Rn*f‘1ghzg”[ 1—|nl].
By operating Rz{z’~! on exact columns in (10. 2), we obtain

er;n'-lg":o for k=|n|— 1,
Ret/n~ ' =0 fork#|n|— 1.

We define the sheaves o7%" and 2°" on iS*M by the relations

Mb‘V:Rl"‘flf.'ﬁ"luq/""g,
9*V=RI""lgip 190

Then, in this way, we obtain the following theorem,

Theorem 10.14. We have the diagram of exact sequences of sheaves on
1S*M

0— 71w —s 'Y ——s 9" —

(10. 3) 0—— 1w —s 771F —— 717, &' —— 0
sp
gh gh
0 0

and the diagram (10.2) and the diagram (10.3) are mutually transformed by
the functors Rt{z’~' [[n|— 1] and Rzt~ .

We give a direct application of Theorem 10.13, which gives a relation
between singularity spectrum and the domain of the defining function of a
partial and modified Fourier hyperfunction,

By using similar notions as in subsection 2. 3 of Ito[ 4], we can state the
following proposition,

Proposition 10.15. Let U be an open subset of iSM with convex fiber, and
V a convex hull of U. Then we have

1) If oel'(U, o&**), then S.S.(A(@))cU°, Conversely, if f(x)el'(zU,
F") satisfies S.S.(f )CU°®, then there exists a unique ¢ I'(U, o7**°) such that
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f=2(¢). Namely, we have the exact sequence

0 —— (D) ——F (V)L @ (iS*M—U°).
2) I'(V, o%%) ——T (U, o"*) is anisomorphism.

Definition 10.16. We say uc #°(2) to be micro-analytic at (x, ine) in
iS*M if (x, in°)& S.S.u. This is equivalent to being represented as

u=§/.{(§0,), <)0j Eyq,ﬁ(Uj)s (x, iT]OO)QEU?.

11. Vector-valued, partial and modified Fourier microfunctions

11.1. Vector-valued, partial and modified Fourier hyperfunctions. In this
subsection we recall the notion of vector-valued, partial and modified Fourier
hyperfunctions following Ito[ 2 ],

We use a similar notation to section 10.1. Let E be a Fréchet space over
the complex number field,

Let £2% be the sheaf of E-valued,.partially slowly increasing, and holo-
morphic functions on X following Ito[ 2], Definition 10.1.1, and put for'=
£0°%u. Then £o7" is the sheaf of E-valued, partially slowly increasing, and
real-analytic functions on M. Then we have £/ =¢"122° where ¢ : Mc__, X
is the canonical injection,

As in Ito[ 2], we define the sheaf of E-valued, partial and modified
Fourier hyperfunctions on M : '

Definition 11.1. The sheaf 24" is, by definition,
tg'=y o) =Dist" (M, o).

A section of ££% is called an E-valued, partial and modified Fourier hyper-
function,

As stated in Ito[ 2], #FE(E2%) =0 for k#|n| and £%° constitutes a flabby
sheaf on M,

Now we apply Lemma 1.1 of Ito[ 4] to this case where %, X and Y
correspond to £ X and M respectively, Then we obtain the sheaf
homomorphism

which will be proved to be injective later, This injection allows us to consider
E-valued, partial and modified Fourier hyperfunctions as a generalization of
E-valued, partially slowly increasing, and real-analytic functions, The one

purpose of this section is to analyse the structure of the quotient sheaf
Eg® /Eor® by a similar way to S, K. K, [21],
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11.2. Definition of vector-valued, partial and modified Fourier micro-
functions. We use a similar notation to subsection 10. 2. Let E be a Fréchet
space over the complex number field. We denote by £/ the sheaf of E-valued,
partially slowly increasing, and holomorphic functions defined on X, We have
the following,

Theorem 11.2. We have Ftu(t 152" = 0 for k#1, where 7 : “X— X
S the canonical projection.

The following theorem is the most essential one in the theory of E-valued,
partial and modified Fourier microfunctions. This is deeply connected with
the “Edge of the Wedge” Theorem,

Theorem 11.3. We have Ftsmi(n " 122%)= 0 for k#|n|, wherer : "X*——
X is the canonical projection, '
In the proof of the above theorem, the following theorem is essential.

Theorem 11.4 (the “Edge of the Wedge” Theorem). Put G={z=x+iye
C'"l;y, 20 << |n|)} .,  Then we have, for each x€M,

FECEPD. =0 for k*|n|.
Definition 11.5. We define the sheaf £¢* in iS*M by the relation
Egt=g i (n1E o) .
A section of £%° is called an E-valued, partial and modified» Fourier

microfunctions,
Now we define the sheaves £9°% £2%# Eor%# by the relations

qu:%}SM(T—IE&’ﬁ) ,
Eﬂh .ﬂ:j*(a‘ﬁh , 8 ‘X—M),
EM‘J vﬁ:Eﬁh ;] l sty

wherej : X-Mc__,*X, 7 :"X"——X, 7 :"X——X are canonical maps,
By Proposition 1.3 of Ito[ 4] and Theorems 11.2 and 11.3, we have the
following,

Proposition 11.6. We have

CgHe, (k=|n|- 1),

3 -1Egh =
Riz,mg {o, (k#|n|—1).

Theorem 11.7. We have
Rkﬂ*EgbzRulni*lt*Egb: 0 for k0 ,

and we have the exact sequence
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0 E ot £ gt T EF" 0.
This is the required decomposition of singularity of E-valued, partial and
modified Fourier hyperfunctions,
Corollary 11.8. We have the exact sequence
0—— " (M B—2 5" (M; B2 (iS*M; E)—— 0.

Definition 11.9. Let ue #°*(M; E), We call sp(u) €%*(iS*M; E) a spec-
trum of u, We denote by S.S.u the support supp sp(u) of sp(u) and call it a
singularity spectrum of u, 7 (S.S.u) is evidently the subset where u is not
slowly increasing nor real-analytic, and it is called the singular support of u.

Corollary 11.10. Let ue . %° (M; E). Then u is an E-valued, partially
slowly increasing, and real-analytic function on M if and only if S.S.u=4,

Put £y =Eg/% |pin1, EF=EF"|pn1 and F@=FF"|s.ri»1. Then we have the
following Corollary by restricting the exact sequence in Theorem 11. 7.

Corollary 11.11. Let 7:iS*R!"——R!"!| Then we have the exact sequence

0 Lo Ew TG 0.

11.3. Fundamental diagram on £%*®. We apply the arguments in the
subsection 1. 2 of Ito[ 4] to a special case, At first we apply Proposition 1. 10
of Ito[ 4] to the situation . #=(£92")%, X=M, S=iSM. Then we have ="
and &= 7 ,f%¢" We obtain the following,

Proposition 11.12. We have
Rzt 1Eg'=0 for k#+0

and we have the exact sequence

0 E9h T g Bt —— Tt Egt—— ().

Now we apply the same proposition to the case where ¥ =%o/%#  Thus
we obtain a homomorphism

(11. ].) Eyﬁ’ﬁ—>T*IR‘"|‘IT*EJ{#v5’
P =R (O ) | ism,

where j: X—Mc__, X is the canonical injection, which implies that
R|”\'1T*EM‘?:5:RM\_1(Toj)*(Eﬂ”XvM)_
Hence we can define the canonical map

R'”|‘1T*EMQ,5___)E‘@b.
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It yields, together with (11.1), a homomorphism £ % f——>7"1£ %% Sum-
ming up, we have obtained the following,

Theorem 11.13. We have the following diagram of exact sequences of
sheaves on iSM :

0 0
O_>Z'_1E,,q/q - EMh.ﬁ — Egh — 50
‘ 2
(11.2) 0 —— 7 15yt —— 77 1Egt — -l fpt —
Tt V@ —=g 7 1Eg"
0 0

Let us transform the diagram (11. 2) of the sheaves on iSM to a diagram of
the sheaves on iS*M by the functor Rtiz’~!, where t’, 7’ are projections IM
——1S*M and IM——iSM, respectively,

For a sheaf 4 on M, we have

C Rtin it g =Rt izl =l [1—|n]].
By Proposition 1. 7 of Ito[ 4 ],
Rtim 'n,c ' E@g' =Rtin’ '\Rr,t VP =E" [1— |n|].
By operating R7iz’~! on exact columns in (11. 2), we obtain

R*tin’-129'=0 for k#|n| - 1,
Rizim’ - 1Egr% 6= for k+*|n|— 1.

We define the sheaves Z.o7"¥ and &% ¥ on iS*M by

EMN,VzR‘”‘_IT’!ﬂ-/—lEMb.B,
E_Qb‘v:R\ﬂlﬁlz.in./—lEgﬂ,B.

Then, in this way, we obtain the following theorem:,
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Theorem 11.14. We have the diagram of exact sequences of sheaves on
1S*M -

0 —— g lEy? — Egri oy E_Qh.v — 0

(1.3) 00— iyt —— g gt — g g Pt —
Sp
Egﬁ N Egh
0 0

and the diagram (11.2) and the diagram (11.3) are mutually transformed by
the functors Rtiz’~'[|n|— 1] and Rzt !,

We give a direct application of Theorem 11.13, which gives a relation
between singularity spectrum and the domain of the defining function of an
E-valued, partial and modified Fourier hyperfunction,

Proposition 11.15. Let U be an open subset of iSM with convex fiber, and
V a convex hull of U. Then we have

1) If oer'(U, Eor**?), then S.S.(A(@))CU°, Conversely, if f(x)el'(zU,
E %) satisfies S.S. (f)CU°, then there exists a unique PEI' (U, Eort#) such
that f=A(¢). Namely, we have the exact sequence

0 (U; B2 s 5 2 U; B)—"Pa g (iS* M~ U°; D).
2) I'(V, Egr®#)—TI'(U, £/ %) is an isomorphism.

Definition 11.16. We say ue #°(Q;E) to be micro-analytic at (x, in) in
iS*M if (x, in)& S.S.u. This is equivalent to being represented as

u:)jJ(soj), o, et (UG E), (x, ineo)&US.

12. Partial and mixed Fourier microfunctions

12.1. Partial and mixed Fourier hyperfunctions. In this section we recall
the notion of partial and mixed Fourier hyperfunctions following Ito[ 2 ].

Let n=(n,, ny, ng)=(n,, n’) be a triplet of nonnegative integers with |7|
=n;+n,+n3#0. We denote the product spaces C" x " x O™ and R" xR™
X R by C* " and R* " respectively, Also put C'"'=C"xC"”xC", X=C* "

’
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and M=R* ", Then M is the closure of R'"=R" xR xR" in X, We denote
z=(z, 27, 27)eC" so that z’=(zy, =, 2,), 2'=(2,,1, ", Znjsn,) and 27’ =
Zapengets Z|n|).

Let #* be the sheaf of partially slowly increasing and holomorphic
functions on X following Ito [ 2], Definition 11.1.1. Put o *=¢#*|uw. Then
o7 * is the sheaf of partially slowly increasing and real-analytic functions on
M., Then we have o/* =¢~!'¢#7*, where (:MC___, X i1s the canonical injection,

As in Tto[2], we define the sheaf of partial and mixed Fourier
hyperfunctions on M :

Definition 12.1. The sheaf #* is, by definition,
F*=54 (0" =Dist" (M, ),

where the notation in the right hand side of the above equality is due to Sato
[16], p. 405, A section of #* is called a partial and mixed Fourier hyperfunc-
tion,

As stated in Ito [2], F&(2*)= 0 for k#|n| and Z* constitutes a flabby
sheaf on M,

Now we apply Lemma 1.1 of Ito[ 4] to this case where ¥, X and Y
correspond to #*, X and M respectively, Then we obtain the sheaf homo-
morphism

A F*,
which will be proved to be injective later, This injection allows us to consider
partial and mixed Fourier hyperfunctions as a generalization of partially
slowly increasing and real-analytic functions, The one purpose of this section

is to analyse the structure of the quotient sheaf %*/ o * by a similar way to
S.K. K, [21].

12.2. Definition of partial and mixed Fourier microfunctions. Suppose
that M=R* " and X=C*'"*, We denote by Z* the sheaf of partially slowly
increasing and holomorphic functions defined on X, The (co-)sphere bundle
iSM (resp. iS*M) are defined similarly to subsection 2.2 of Ito[ 4], We also
use a similar notation to subsection 2. 2 of Ito[ 4 ], Then we have the following
diagram : '
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“X+ <O DM
T v/ ot X m N1
vX o iSM uX* O iS*M
TN T X 7T /o7

X oM

Theorem 12.2. We have # (7717 = 0 for k#1, where 7 - *X——>X is
the canonical projection.

The following theorem is the most essential one in the theory of partial
and mixed Fourier microfunctions. This is deeply connected with the “Edge
of the Wedge” Theorem,

Theorem 12.3. We have # 'su(n'7*)= 0 for k# |n|, where 7 - ¥X*—
X ts the canonical projection.
In the proof of the above theorem, the following theorem is essential,

Theorem 12.4 (the “Edge of the Wedge” Theorem). Put G= {z=x+iyc
C"y,; 20012 |nD}. Then we have, for each x€M,

FE(O*).= 0 for k# |n|.
Definition 12.5. We define the sheaf @* on iS*M by the relation
G =F (T 09",

where we denote by a the antipodal map iS*M——iS*M, and by # ¢ the
inverse image under a of a sheaf % on iS*M, A section of #* is called a
partial and mixed Fourier microfunction,

Now we define the sheaves 2*, #*# and .o/ * # by the relations

9*=F 'z '0*),
y*’ﬁ:]‘*(ﬂ* |X—M)1
L FE=0" s,

where j: X-Mc__, X, 7:X*— X and t:X—X are canonical maps,
By Proposition 1.3 of Ito[ 4] and Theorems 12.2 and 12.3, we have the
following,

Proposition 12.6. We have

(9, (k=In|-1),

Rir.al 2t = [o, (ko |nl— 1),
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Theorem 12.7. We have
Rkn*g*:Ranl‘lz_*g*:O fOf’ k#O,

and we have the exact sequence

0 7 z* TyE*—0.

This is the required decomposition of singularity of partial and mixed
Fourier hyperfunctions,

Corollary 12.8. We have the exact sequence
S
0 —— 7 MD— s ) —L & (iS*M)—— 0.

Definition 12.9. Let ue #*(M). We call sp(u)e@*(@S*M)a spectrum of
u, We denote by S.S.u the support supp sp(u) of sp(z) and call it a singularity
spectrum of u, 7 (S.S.u) is evidently the subset where u is not partially slowly
increasing nor real-analytic and is called the singular support of u«,

Corollary 12.10. Let us *(M), Then u is a partially slowly increasing
and real-analytic function on M if and only if S.S.u=¢.

Since = *|ginl, F=F*| gnm and ¥=%*| sgin hold in the notation of
S. K. K. [21], we have the following Corollary by restricting the exact sequence
in Theorem 12. 7.

Corollary 12.11. Let 7:S*R!"—R!"! Then we have the exact sequence

0 B4 874 & 0.

12.3. Fundamental diagram on #*. We apply the arguments in the
subsection 1. 2 of Ito [ 4] to a special case, At first we apply Proposition 1. 10
of Ito [ 4] to the situation F=(9*)*, X=M, S=iSM. Then we have =¢*
and =7,%Z*  We obtain the following,

Proposition 12.12. We have
R, 7 '@*=0 for k#(

and we have the exact sequence

0 2* T, r——r, 7 l¥g*——0.

Now we apply the same proposition to the case where # = _o*'4 Thus
we obtain a homomorphism ‘ '

1z.1 st IR, R,
K P=Rj (O*x-1) | ism,

where j: X—-Mc__, M¥ is the canonical injection, which implies that
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R'"‘_'T*y*'5:R|"“1(toj)*(ﬂ’*lx_M),
Hence we can define the canonical map
R|"f*1f*y*.ﬁ_—)g*.

It yields, together with (12.1), a homomorphism * #———-7"! #* Summing
up, we have obtained the following,

Theorem 12.13. We have the following diagram of exact sequences of
sheaves on iSM

0 0
00— 7™ ——— w*f —— 2 —0
\
(12.2) 0—— 77w —— 71g* —— it —— 0
TWT \FY =—— 7, 7 1*
0 0

Let us transform the diagram (12.2) of the sheaves on iSM to a diagram
of the sheaves on iS*M by the functor Rtiz’~!, where 7, n’ are projections IM
—1S*M, IM————>iSM, respectively.

For a sheaf # on M, we have

Rtz 't g =Rtit’ z- g =n"19[1-|n|].
By Proposition 1. 7 of Ito[ 4 ],
Rtin’ 'z, o 'g*=Rtin’ 'Rr,t 'g*=g*[1— |n]|].
By operating R7iz’~! on exact columns in (12. 2), we obtain

Ritin’-' 9*=0 for k#|n|—1,
Reitim’~ 1 or*#=0 for k#|n|— 1.

We define the sheaves .o* ¥ and 2*'¥ on iS*M by the relations

M*'Vle"’_lrin"‘y*-ﬁ,
g*.V:RMI*IﬁE/—l‘Q*.

Then, in this way, we obtain the following theorem:.
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Theorem 12.14. We have the diagram of exact sequences of sheaves on
IS*M

0 ﬂ_]M* M*,V 5 Q*,V 5 0

|

(12. 3) 0—— rly* —— 71 'g*

|

7 ln,g* —— 0
sp

g* J— g*

0 0
and the diagram (12.2) and the diagram (12.3) are mutually transformed by
the functors Rtiz’"'[|n|— 1] and Rz,t7!.

We give a direct application of Theorem 12.13, which gives a relation
between singularity spectrum and the domain of the defining function of a
partial and mixed Fourier hyperfunction,

By using a similar notion to subsection 2.3 of Ito[ 4], we can state the
following proposition,

Proposition 12.15. Let U be an open subset of iSM with convex fiber, and
V a convex hull of U. Then we have
1) If oel'(U, o **), then S.8.(2(¢)) C U°, Conversery, if f(x)E[(tU,
F*) satisfies S.S.(f) T U°, then there exists a unique ¢ €['(U, o7*'#) such
that f=A(¢). Namely, we have the exact sequence

0—— o () — F* () —s @™ (iS*M~UP).
2) I'(V, or* 8)——=I' (U, o*?) is an isomorphism.

Definition 12.16. We say uc #*(Q) to be micro-analytic at (x, i7>) in
1S*M if (x, in)&S.S.u. This is equivalent to being represented as

u':]ZA((PJ), @j e 'B(Uj>y (x, lnoo)EUS
13. Vector-valued, partial and mixed Fourier microfunctions

13.1. Vector-valued, partial and mixed Fourier hyperfunctions. In this
subsection we recall the notion of vector-valued, partial and mixed Fourier
hyperfunctions following Ito[ 2], This is equivalent to the notion of Fourier
hyperfunctions of general type called in my Thesis[ 3 ].
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We use a similar notation to subsection 12.1. Let E be a Fréchet space
over the complex number field,

Let ®2* be the sheaf of E-valued, partially slowly increasing, and
holomorphic functions on X following Ito[ 2 ], Definition 12.1.1, and put Z&*
=Z£0*|u. Then £%* is the sheaf of E-valued, partially slowly increasing, and
real-analytic functions on M, Then we have Zy/*=("1£/* where t:MC X
is the canonical injection,

As in Ito [ 2 ], we define the sheaf of E-valued, partial and mixed Fourier
hyperfunctions on M

Definition 13.1. The sheaf £4* is, by definition,
Eg*:%l‘;‘(lfﬂ*) =Dist!"! (M, Ep*).

A section of £%* is called an E-valued, partial and mixed Fourier hyper-
function,

As stated in Ito[ 2], #E(*?*)= 0 for k#|n| and £&* constitutes a flabby
sheaf on M,

Now we apply Lemma 1.1 of Ito[ 4] to this case where %, X and Y
correspond to £2*, X and M respectively, Then we obtain the sheaf homo-
morphism

EM*_—)EL@*,
which will be proved to be injective later, This injection allows us to consider
E-valued, partial and mixed Fourier hyperfunctions as a generalization of
E-valued, partially slowly increasing, and real-analytic functions, Then one

purpose of this section is to analyse the structure of the quotient sheaf 2% *~
Eo* by a similar way to S, K. K, [21].

13.2. Definition of vector-valued, partial and mixed Fourier microfunctions.
We use a similar notation to subsection 12.2. Let E be a Fréchet space over
the complex number field, We denote by 7 * the sheaf of E-valued, partially
slowly increasing, and holomorphic functions defined on X. We have the
following, |

Theorem 13.2. We have #'su(z-122*) =0 for k+#1, where T:¥X——X is
the canonical projection.

The following theorem is the most essential one in the theory of E-valued,
partial and mixed Fourier microfunctions, This is deeply connected with the
“Edge of the Wedge” Theorem,

Theorem 13.3. We have St~ 1222*)=0 for k#|n|, where 7 : *X—X
1s the canonical projection.
In the proof of the above theorem, the following theorem is essential,
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Theorem 13.4 (the “Edge of the Wedge” Theorem). Put G= {z=x+iye
C“";y, 20(1<j<|n)}®.  Then we have, for each x€M,

HECo*) =0 for k#|n|.
Definition 13.5. We define the sheaf £&* in iS*M by the relation
Eg*=%L’§LM(7T_1Eﬁ*) @

A section of f@* is called an E-valued, partial and mixed Fourier micro-
functions,
Now we define the sheaves £9* £2*:# Egr*8 by the relations

EQ*=Flou(z 1 E0"),
Eﬂ*”g:]'*(Eﬁﬂx—M),
EM*'B:Eﬁ*'ﬁliSM,

where j: X-Mc__, ¥X* z:X*——X and 7:¥X—X are canonical maps,
By Proposition 1.3 of Ito[ 4] and Theorems 13.2 and 13.3, we have the
following,

Proposition 13.6. We have

Ce*)°*, (k=|n|—1),
k -1E g*=—
Rtz [o, (k#|n|—1).

Theorem 13.7. We have
Rin Eg*=R* I""17 Eg9*—=( for k+0

and we have the exact sequence

0 Eor™ Eg* T ——0.
This is the required decomposition of singularity of E-valued, partial and
mixed Fourier hyperfunctions,
Corollary 13.8. We have the exact sequence
0" (M; B)—2 5 (M B P+ (1S M; E)——0,

Definition 13.9. Let ue @*(M; E). We call sp(u) =e@*(iS*M; E) a spec-
trum of u, We denote by S.S.u the support supp sp(u) of sp(u) and call it a
singularity spectrum of u, =z (S.S.u) is evidently the subset where u is not
slowly increasing nor real-analytic, and it is called the singular support of u,

Corollary 13.10. Let ue @*(M; E), Then u is an E-valued, partially
slowly increasing, and real-analytic function on M if and only if S.S.u=¢.
Put Eor=Eg/*|pinl, Eg=Eg*|pini, and = E@*| ssgin!. Then we have the
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following Corollary by restricting the exact sequence in Theorem 13. 7.

Corollary 13.11. Let m:iS*R!"'——R!"l. Then we have the exact sequence

0 Lo ty 1€ 0.

13.3. Fundamental diagram on f@*. We apply the arguments in the
subsection 1. 2 of Ito[ 4] to a special case. At first we apply Proposition 1. 10
of Ito[ 4] to the situation # =(£9*)¢, X=M, S=iSM. Then we have ¥= f@*
and & =n,f%&*. We obtain the following,

Proposition 13.12. We have
Rig o 1 E@g*=( for R#0(

and we have the exact sequence

0 Eg* Tl EfE—— g —— ().

Now we apply the same proposition to the case where # =£¢*# Thus
we obtain a homomorphism

(13. 1) EM*.3_>-[—1RI'¢1—1T*EM*,5’
EM*lﬂ:Rj*(Eﬂ”X—M)’iSMs

wherej : X—Mc__, X is the canonical injection, which implies that
RI" g, Egrxs=RI"N" (7 0j) o (E2* | ko).
Hence we can define the canonical map
RIMlg Egrxb  SEgpx

It yields, together with (13. 1), a homomorphism £o/* #—— 57" 1£®* Summing
up, we have obtained the following,

Theorem 13.13. We have the following diagram of exact sequences of
sheaves on 1SM
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0 0
00— >7-lEgrx — 5 Egrxb Egx
(13.2) 0 —— 1 1y * —— 7 lUgr —— g tfg* —— 0
TeT VEgp* 7,71 Eg
0 0

Let us transform the diagram (13.2) of the sheaves on iSM to a diagram
of the sheaves on iS*M by the functor Rziz’~!, where t’, 7’ are projections IM
——1S*M and IM——iSM, respectively.

For a sheaf & on M, we have

Rein' 't ' g =Reir’ Iz ' =g . F[1- |n]|].
By Proposition 1. 7 of Ito[ 4 ],
Rein’ - \m,t-E@g*=Rtin’ 'Rr, v Eg*=Fg*[1—|nl].
By operating Rz’z’~! on exact columns in (13.2), we obtain

Retin’~1E9*=( for k#|n|— 1,
Ritim~1Egr*s=0 for k*|n|— 1.

We define the sheaves £o7*'# and £2*'# on iS*M by the relations

E *,8 — n|-1pt7—1E s
o E=RIMT T T g,
Eg*,ﬁ:R|n|—lT/‘7[/—1E-9*.B

Then, in this way, we obtain the following theorem.

Theorem 13.14. We have the diagram of exact sequences of sheaves on
1S*M - ‘
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0 0
04)7[_“{}1/* I Egp* v E_Q*'v -
(18.3) 0 —— 1 iy* —— g Vg* —— gl feg* —— 0
sp
0 0

and the diagram (13.2) and the diagram (13.3) are mutually transformed by
the functors Rtiz"~'[|n|— 1]and Rzt !.

We give a direct application of Theorem 13.13, which gives a relation
between singularity spectrum and the domain of the defining function of an
E-valued, partial and mixed Fourier hyperfunction,

Proposition 13.15. Let U be an open subset of iSM with convex fiber, and
V a convex hull of U. Then we have

1) If oel'(U, Ey*#), then S.S.(A())cU°, Conversely, if f(x)el'(zU,
Eg*) satisfies S.S.(f)CU°®, then there exists a unique ¢ €'(U, Eo7*-#) such
that f=2(¢). Namely, we have the exact sequence

S
0 —— & **(U; E)—)L"X%_’*(TU; E)—p>g*(iS*M——U°; E).
2) I'(V, Egr*#)——I'(U, £o7*#) is an isomorphism.

Definition 13.16. We say ucs #*(2; E) to be micro-analytic at (x, i7) in
1S*M if (x, ine)&S.S.u, This is equivalent to being represented as

u =§Zl(¢j),¢jeﬂ*’3(Uj; E), (x, ino)&US.
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