Regulation of MMP-9 Expression in Salivary Gland Acinar Cells and A Mechanism Involved in the Induction of Aquaporin-5 Expression in Ductal Cells —Regeneration of Functional Fluid Secretion from Sjögren’s Syndrome Salivary Glands—

Yuki ASHIDA

Abstract: Our previous in vitro study suggested that the suppression by cepharanthin of tumor necrosis factor (TNF)-α-induced matrix metalloproteinase (MMP)-9 could prevent the destruction of the acinar structure in Sjögren’s syndrome (SS) salivary glands. In this study, we demonstrated that the in vivo administration of cepharanthin resulted in the prevention of severe damage to acinar tissues in the murine model of human SS. Cepharanthin was intraperitoneally administered five times a week at a dose of 0, 10, or 100 μg/mouse to 4 to 10 week-old thymectomized female NFS/sid mice. Mononuclear cell infiltrates and the destruction of acinar tissue in the salivary and lacrimal glands were extensively observed in the control mice; however, in the mice treated with cepharanthin for 6 weeks, both a significant decrease in the mononuclear cell infiltrates and an improvement of the severe damage to the acinar tissues were evident in the salivary and lacrimal glands. Immunohistochemical analysis revealed that phosphorylated IκB-α and MMP-9 were more strongly stained in the acinar cells of the control mice than in those of the cepharanthin-treated mice. In addition, although the lack of staining for type IV collagen was partially observed in the acinar tissues of the control mice, the continuity of type IV collagen was detected in the acinar tissues of the cepharanthin-treated mice. According to the results of a TUNEL analysis, the destruction of acinar tissues was attributed to the induction of apoptosis, suggesting that cepharanthin inhibits apoptosis by suppressing phosphorylation of IκB-α, followed by the prevention of MMP-9 activation. Our findings suggest that cepharanthin may be a promising agent for use in preventing the destruction of acinar tissues in murine SS. Moreover, to investigate the possibility that salivary gland cells, especially ductal cells, surviving in the salivary gland tissues of SS could acquire the functional expression of membrane water channel aquaporin-5 (AQP5), because ductal cells, but not acinar cells, preferentially survive and/or proliferate in SS salivary glands. Thus, in this study, we demonstrate that an immortalized normal human salivary gland ductal cell (NS-SV-DC) line, lacking the expression of AQP5, acquires AQP5 gene expression in response to treatment with 5-aza-2'-deoxycytidine (5-Aza-CdR), a DNA demethylating agent.
結言

シェーグレン症候群（Sjögren's syndrome：以下 SS と略記する）は原因不明の難治性の自己免疫疾患であり、その標的臓器は唾液腺や涙腺、気管支、脈管、汗腺、腺様組織などの外分泌腺である。本疾患はこれら外分泌腺からの分泌障害によって引き起こされる乾燥症状を主症状として、中年以降の女性に好発し、現在その患者数は約50万人と推定されている。SS 患者の最も一般的な症状は、上記のごくと唾液分泌不全と涙液分泌不全に起因する口腔乾燥とドライアイである。とりわけ口腔内乾燥症状を主症状とする SS 患者においては、他に口腔の乾燥感や喉下障害、味覚異常、嘔気などの諸症状を呈するため、日常生活において数多くの支障をきたしている場合がある。したがって、SS 患者のこれら乾燥症を改善するためには少なくとも SS の発症機序の解明とその薬物療法における治療法の開発が必要不可欠であると考えられる。

SS 患者の唾液腺組織や涙腺組織の組織学的特徴として、唾液腺、涙腺組織には著しい炎症性細胞浸潤とそれによる発酵構造の破壊、また導管構造の種類の変化、すなわち導管の散化や過形成、導管細胞のオノサイド様変化、あるいは導管細胞の増殖によっておこる筋上皮島の形成などが観察される。すなわち、腺細胞の選択的破壊と導管細胞の生存あるいは増殖が SS 患者唾液腺、涙腺組織での特徴的病理組織像であることが理解される。現在までのところ SS 唾液腺病変におい
tumor necrosis factor (TNF)-α や interleukin (IL)-1β, IL-2, IL-6, interferon (IFN)-γ などの炎症性サイトカインが mRNA レベルで強く発現していることが知られているから、SS 唾液腺病変の発症に腺組織に浸潤した単核細胞から分泌されるサイトカインが重要な役割を担っていることが示唆されている。

一般に、成熟した臓器の構築には基底膜を含めた細胞外基質の存在が不可欠であることが知られており、上皮細胞層を周囲の間質から隔離し、三次元的構造の形成に関与している。唾液腺組織においても腺構造や導管構造の構築に基底膜が重要である役割を果たしている。この基底膜は正常唾液組織においては、唾液腺細胞によって生成される蛋白分解酵素とその抑制因子の両者によって厳密に調節されている。たとえば、通過の蛋白分解酵素などによる腺構造細胞－基底膜相互関係あるいは導管細胞－基底膜相互関係の破壊は、腺構造形成や導管構造の破壊につながるとされている。すでに TNF-α や IL-1β などのサイトカインは、基底膜分解にたななるコラゲナーゼの合成と産生を促進することを報告されていることから、サイトカインが唾液腺組織構造や導管構造の破壊につながる基底膜の分解に寄与している可能性が示唆される。事実、SS 患者唾液腺においては基底膜の破壊の変化がおこっていることや、SS 患者唾液中には基底膜を分解する蛋白分解酵素である不活型と活性型 matrix metalloproteinase (MMP)-9 の増強がみられることが報告されている。MMP-9 は基底膜の分解に関与する重要な決定因子の一つであり、TNF-α の刺激によって細胞から分泌されることが知られている。

MMP-9 遺伝子の転写調節領域には核内転写因子である activator protein-1 (AP-1) や specificity protein 1 (Sp1) などが結合部位があることから、MMP-9 遺伝子の活性化がみられることが報告されている。NF-κB は免疫グロブリンの転写（Igκ）遺伝子のプロモーター領域に結合する蛋白として発見された転写因子であり、通常 p65 と p50 の 2 つが構成分子をなすヘテロ二量体として存在している。これに 2 種類の構成分子にその N 端にプロトンオンコジェニクである c-rel 遺伝子産物と同様性の認められる遺伝子が存在しており、Rel ホモジゲンインドミと呼ばれている。この領域は 300 個ほどのアミノ酸配列を有しており、ホモあるいはヘテロ二量体の形成や DNA 結合に必要であることが報告されている。
われている。さらに核移行シグナルもこの領域に存在していることが明らかにされている。通常NF-kBは刺激がない状態ではNF-kBの抑制因子の一つであるinhibitor of nuclear factor κB（IκB）-α蛋白と複合体を形成して細胞質に留まり不活性化状態となっている。しかしTNF-α等の細胞外からの刺激により、IκB-αはリン酸化とエピキユチル化を経て26Sプロテアーゼシステムにより分解される。そしてIκB-αから分離したNF-kBは核に移行し、遺伝子上のκBモチーフに結合することにより種々の標的遺伝子の転写調節が行われる。したがってNF-kBの活性化の制御は主としてNF-kBとIκB系の解離によって調節されていると理解されている。

アクアポリン（AQP）は細胞膜に存在する水輸送に関与する蛋白であり、浸透圧／静水圧勾配や反応性水を細胞内外に急速に移動させる機能を有しており、全身のほとんどすべての臓器に存在することが知られている。現在までにAQPはAQP0からAQP12まで13種類のアイソフォームが報告されている。これからAQPのうち、AQP5はラット輸卵管からクローンされたものであり、水輸送上皮や肺、気管、喉頭、眼および唾液腺細胞に存在する。なお、ヒト唾液腺においてはAQP5は細胞局在学的解析により唾液腺細胞の分泌細胞に存在していることが報告されている。導管細胞での発現は認められていない。このAQP5の機能は唾液細胞から腺腔内の水の移行に関与している。事実、変異型AQP5を発現しているマウスにおいては唾液腺での水分分泌の低下が報告されている。一方、AQP3は唾液細胞の基底側と側壁に局在しており、腺細胞への水分の流入に寄与している。したがって、腺細胞において機能を有するAQP5とAQP3の両者の存在が正常粘膜に重要な役割を果たすと考えられる。そこでこれらの所見から導管細胞におけるAQP5とAQP3の発現が認められた場合、導管細胞は水分分泌機能を獲得することが可能になるという作業仮説が提案される。

近年の研究により、遺伝子のプロモーター領域内に存在するCpGアイランドでのメチル化は遺伝子発現を抑制する重要なエピジェネティックな修飾であることが示されている。CpGアイランドでのメチル化はDNAの二次構造を変えて、またメチル基結合蛋白とヒストン脱アセチル化酵素を介して染色体のリモデリングを惹起させることにより、直接的または遺伝子の転写機構に影響を及ぼし、その結果転写抑制がつながると考えられている。したがって、細胞にDNAのメチル化修飾である5-aza-2'-deoxycytidine（アクシタン）にて処理をした場合、高メチル化により不活性化されている遺伝子の再活性化につながることが示唆されている。現在まで、AQP5遺伝子プロモーター内には3つのSp1結合部位の存在が知られているが、AQP5遺伝子プロモーターのメチル化状態と遺伝子発現との関連性についてはヒト唾液腺細胞においてはまだ解明されていない。

現在までにわれわれは、不死化正常ヒト唾液腺腺房細胞株であるNS-SV-AC細胞を用いて、in vitroにおいて植物アルカロイド製剤であるセファランチン（CE）にて処理することによりTNF-αによって誘導されるNF-kB活性とMMP-9産生を低下させる結果、NS-SV-AC細胞がIV型可溶化にて囊腫化した腫瘍移植にアポトーシスの一種であるアノイキスを誘導、正常な形態形成を維持することを報告した。なお、アノイキスは細胞外基質との接触を失うことによって引き起こされるアポトーシスのことを指す。そこで本研究においては2つの作業仮説、すなわち1）ヒトSSモデルマウスを用いて、CEがin vivoにおいてもNF-kB活性とMMP-9産生を低下させることにより、基底膜の安定化と腺房構造の破壊阻止に寄与する、2）AQP5を発現するAQP5を発現していない不死化正常ヒト唾液腺腺房細胞株であるNS-SV-DC細胞を用いて、in vitroにおいてデシタピニにて処理することによりAQP5の発現が誘導され、発現したAQP5は水分分泌機能を有すること、そしてAQP5発現誘導の分子機構を明らかにする、につき検討を行った。

実験材料ならびに実験方法

1. 細胞および培養法

本研究においては、SV40 DNAをトランスフェクションすることによりin vitroにおいて不死化化した正常ヒト唾液腺腺房細胞株（NS-SV-AC）と導管細胞株（NS-SV-DC）および筋上皮細胞株（NS-SV-MC）を使用した。すなわちNS-SV-AC細胞とNS-SV-DC細胞およびNS-SV-MC細胞は、術時に得られた明らかに腫瘍を有さないヒト顔面競を無差別に細切し、Serum-Free Keratinocyte Medium（Invitrogen, Carlsbad, CA, USA）以下SFMと略記する）を用いたコラーゲンゲル（新田ゼラチン社、大阪）培養法で初代培養することにより得られた単層培養ヒト唾液腺細胞にSV40 DNAをリポソームトランスフェクション法を用いてトランスフェクションすることにより樹立された。NS-SV-AC細胞はプラスチック培養びびり（Becton-Dickinson Labware, Franklin Lakes, NJ, USA）上で培養することにより腺円形で数数十の増殖を示した。この細胞クローンの超微構造学的特徴として、細胞質内に多数の分泌顆粒が認められた。また細胞が保有する異形細胞マーカーの検査では、アミラーゼの発現が認められた。上記の様な超微構造学的特徴と細胞が保有する異形細胞マーカーの発現している細胞は腺房細胞であることがすでに報告されている。よって、NS-SV-AC細胞は腺房細胞に近似した細胞であると考えられる。一方、NS-SV-DC細胞は多角形で数数十の増殖を示した。この細胞クローンの超微構造学的特徴として、核200-300μmに核小体が1-2個に偏

73
在する像が認められた。また、細胞が保有する特異的細胞マークの検索では、secretory component の発現が認められた。すでに上記の様々な非微視構造学的特徴と細胞が保有する特異的細胞マーカーの発現している細胞は導管細胞であることが報告されている。それに従い、NS-SV-DC 細胞は導管細胞に近似した細胞であると考えられる。さらに、NS-SV-DC-MC 細胞は鋭縮形で典型的な増殖様式を示し、非微視構造学的に細胞質の長軸に沿って走行する微細線維と細胞膜に粘着胞が認められ、また、細胞が保有する特異的細胞マーカーの検索ではミオシンの発現を認めた。一般に、上記のような非微視構造学的特徴と細胞が保有する特異的細胞マーカーの発現している細胞は筋上皮細胞であることが明らかにされていることから、NS-SV-DC-MC 細胞は筋上皮細胞に近似した細胞であることが明らかにされた。なお、NS-SV-AC 細胞と NS-SV-DC 細胞および NS-SV-MC 細胞は軟骨天培地中でのコロニー形成能が認められず、さらにヌードマウス背部皮下での増殖能も認められていないことから、正常細胞としての表現形態を保有していることが明らかにされており、NS-SV-AC 細胞と NS-SV-DC 細胞および NS-SV-MC 細胞は SDF を増殖促進マーカーとして用いて、空気中に 5%（容量/容量（volume/volume）；以下 V/V と略記する）の割合に炭酸ガスを含む培養器内で 37℃にて培養した。

2. 蛋白分解酵素（MMP-2 と MMP-9）活性の測定法

血清無添加培地中での SDF にて培養した各細胞から分泌される MMP-2 と MMP-9 の測定をゼラチンを基質としたライラマフィーにより行った。すなわち、NS-SV-AC 細胞と NS-SV-DC 細胞および NS-SV-MC 細胞を 100 mm プラスチック培養皿（Becton-Dickinson Labware）に植え込み、TNF-α（Genzyme/Technne、Cambridge, MA, USA）、サファランチン（化研生物、東京）（10 μg/ml）にて処理または未処理で 3 日間培養した。得られた培養上清を 1,700×g で遠心し、細胞残渣を除去した後、Spectra・Por3（Spectrum、Houston, TX, USA）を用いて約20倍の濃縮を行った。得られたサンプルは Bradford の方法に従った Bio-Rad laboratories（Richmond, CA, USA）の蛋白定量キットを用いて蛋白定量を行い、最終蛋白濃度が 1 mg/ml になるよう調製した。このようにして得られた培養液中に興った蛋白標品 20 μg を、β-メルカプトエタノールを含有しないサンプルバッファー（最終濃度 50 mM トリス塩酸緩衝液（pH 6.8）、2%（重量/容量（weight/volume）（V/V））sodium dodecyl sulfate （SDS）（和光純薬、大阪）、0.1%（V/V）プロモフェノールプルール（片山化学、大阪）、10%（V/V）グリセロール（和光純薬））からなる標品緩衝液に混和した。この標品を 1 mg/ml の割合でゼラチンを含む最終濃度 0.1%（V/V）N-Ν, メチレンビス含有（10%（V/V）ドデシル硫酸ナトリウム-ポリアクリルアミドゲルを用い、Laemmli の方法に従って電気泳動（SDS-PAGE）を行った。SDS-PAGE 後、SDS を取り除くためにゲルを 0.25%（V/V）Triton-X100（和光純薬）を含む 50 mM トリス塩酸緩衝液（pH 7.6）で 30 分間洗浄した。次に 50 mM トリス塩酸緩衝液（pH 7.6）、0.2 M 塩化ナトリウム、5 mM 塩化カルシウム（和光純薬）、0.02%（V/V）Brij-35（和光純薬）からなる反応用緩衝液を用いてゲルを 37℃にて 16 時間反応させた。反応後、Comassie blue R250（和光純薬）を含む 30%（V/V）メチルアルコールと 10%（V/V）酢酸溶液にて脱色した。ゼラチンナーゼ活性はゲル上にて透明のバンドとして検出した。バンドが MMP であることは、Ethylendiamine tetraacetetic acid（EDTA）（和光純薬）でゲルを処理することによりそのバンドが消失することによって確認した。

3. Western blot 法

前述した培養液より調製した蛋白標品 20 μg を β-メルカプトエタノール（Sigma-Aldrich corporation, St. Louis, MO, USA）を含むサンプルバッファーに混和した後、最終濃度 0.1%（V/V）N-Ν, メチレンビス含有（10%（V/V）SDS ポリアクリルアミドゲルを用い、Laemmli の方法に従って電気泳動（SDS-PAGE）を行った。その後、Towbin らの方法に準じて硝酸テロール溶液（Bio-Rad）で脱乾した。次に、脱乾した硝酸テロール溶液を 5%（V/V）脱脂粉乳（和光純薬）-Tween 20-トリス塩酸緩衝液（pH 7.6）（以下、T-TBS と略記する）にて処理することにより、非特異的反応を阻止した後、1,000 倍希釈液の抗 MMP-9 抗体（Oncogene Research Products, Cambridge, MA, USA）または抗 IκB-α 抗体（Rockland, Gilbertsville, PA, USA）を室温で 3 時間反応させた。T-TBS で洗浄後、horseradish-peroxidase（HRP）標識 ウサギ IgG 抗体（Amersham Pharmacia Biotech, Uppsala, Sweden）にて室温で 1 時間反応させた。T-TBS にて洗浄後、Enhanced Chemiluminescence（ECL）kit（Amersham Pharmacia Biotech）で反応させ、オートラジオグラフィーを行った。

4. RNA の抽出、Reverse transcriptase-polymerase chain reaction（RT-PCR）法および Real-time RT-PCR 法

培養細胞より 5 μg の全 RNA を抽出し、これを鋸状としてランダムプライマー（Invitrogen, CA, USA）を用い、逆転写酵素（Moloney murine leukemia virus reverse transcriptase）（Life Technologies Inc.）を用い、37℃にて 60 分間反応させし、cDNA を作製した。PRC 反応は 1 μl の cDNA と MMP-9 やおよび Glyceraldehyde-3-P-dehydrogenase（GAPDH）のプライマー（最終濃度 1 μM）（下記に示す）、Taq ポリマーゼ（最終濃度 0.05 U/μl）（宝酒造、阜溝），dNTPs mixture（宝酒造）、および PCR
唾液腺組織における matrix metalloproteinase-9 抑制と
導管細胞における aquaporin-5 誘導機構（芦田）

検査液（宝酒造）を混合し、DNA Thermal Cycler TP
3000（宝酒造）を用いて下記の条件で PCR 反応を行っ
た。すなわち 94℃にて 5 分間の熱変性後、94℃にて 1
分、68℃にて 1 分、72℃にて 1 分のアニーリングを 1
サイクルとし、計 35サイクルを行った。PCR 産物は 2％
(W/V) アガロースゲルにて電気泳動し、エチジウムプ
ロマイド（1μg/ml）にて染色した。プライマーの塩基配列：MMP-9 5'S（センス）：
5'-GGTCCCAACCTGCTGAGCCCATCTCACGCC-3'
MMP-9 AS（アンチセンス）：
5'-GCCCCACCTACCTCCTTTCTCCAGA-3'
GAPDH S：
5'-AGCCTTTGCTGCTATTTGGG-3'
GAPDH AS：
5'-TGAATTTGAGGGATCTGCC-3'
また、NS-SV-DC 細胞を 2μM のアミノ酸を含む DMEM にて 0, 48, 72, 96, 120 時間処理した後、TRizol reagent (Invitrogen, Carlabad, CA, USA) を用いて全 RNA を抽出した。AQP5 の選択的分子を RTPCR 用に選択した。RT 反応に
て 10μg の全 RNA より cDNA を作製し、下記の条件で
DNA Thermal Cycler TP 3000（宝酒造）を用いて PCR
反応を行った。94℃ 1 分間の熱変性後、94℃にて 30秒,
68℃にて 2 分のアニーリングを 1 番サイクルとしこれより 35
サイクル行い、72℃で 3 分間の延伸反応を行った。
AQP3 S：5'-TTTGGCTTCTGCTACACT-3'
AQP3 AS：5'-ACCGGTTTGGAGGGTTCA-3'
AQP5 S：5'-CAGGCCGCTTGCGAGTATGGT-3'
AQP5 AS：5'-TTCATTCCCTCCGGCTGCTCC-3'
また、作製した cDNA に、下記に示すプライマーと TaqMan プローブ、ユーバーサルマスターミックスを反
応させ、ABI PRISM 7000（Applied Biosystems Japan Ltd,
Tokyo）を用いて PCR 反応を行った。
AQP5 プライマー：
S：5'-CTCGCTGCTGCTATCCATG-3'
AS：5'-TTCATGATGGCCACACGCT-3'
TaqMan プローブ：
5'-FAM-CCTACCCAGAGAAAAACGTTGAGCGG-MGB-3'
5. Chloramphenicol acetyltransferase（CAT） assay
各細胞を 60 mm プラスチック培養皿（Becton-Dickinson Labware）に 5 x 104 個植え込み、24時
間培養した。次にレポーター遺伝子として CAT をコード
させ遺伝子を含んだ MMP-9 プロモーター-コンストラクト
プラスマド (5 μg) を SuperfectTM (QIAGEN,
Hilden, Germany) にて各細胞にトランスフェクションを行った。なお、本プラスマドは清水元秀博士（東京
大学・医科学研究科・癌細胞）より供与された。トランスフェクション開始 8 時間後、TNF-α (10 ng/ml) 単独,
或いは TNF-α (10 ng/ml) とセファランチン（10 μg/ml）
を添加し 12 時間培養した。細胞を回収後、CAT ELISA
kit（Roche Molecular Biochemicals, Mannheim, Germany）
を用い、Microplate reader（Bio-Rad laboratories）にて
490 nm の波長を基準値として 405 nm で吸光度を測定し、
MMP-9 プロモーターの転写活性を算定した。
6. 核抽出物と細胞質抽出物の採取方法
NS-SV-AC 細胞を 100 mm プラスチック培養皿
（Becton-Dickinson Labware）にて植え込み培養した後、10
ng/ml の濃度の TNF-α 単独あるいは 10μg/ml のセファ
ランチンにて前処理したのち、10 ng/ml の TNF-α と 10
μg/ml のセファランチンにて処理した。ついで Chan と
Aggarwal の方法40 に従って核抽出物および細胞質抽出
物を回収した。すなわち、二液冷した PBS（-）にて細胞
を 3 回洗浄した後、400 μl の lysis buffer（10 mM N-2-
hydroxyethylpiperazine-N'-2-ethanesulfonic acid (HEPES)
（pH 7.9）, 400 mM NaCl（和光純薬）, 10 mM KCl, 0.1
mM EDTA, 0.1 mM Ethylen Glycol-bis (β-aminoethyl
ether) (EGTA), 1 mM Dithiobitol (DTT), 0.5 mM
Phenylenediamine fluoride (PMSF), 2 μg/ml Aprotinin）
を加えて 15 分間室温にて静置し、ラバーポリスマンにて
細胞を回収した。最終濃度が 0.3%（W/V）となるよう
に Nonidet-P40（NP）（Sigma-Aldrich）を加え 700 x g
にて 15 分間遠心した後、上清を回収し細胞質抽出物とし
た。次に、得られた沈殿を 50 μl の extraction buffer（10
mM HEPES, 10 mM KCl, 0.1 mM EDTA, 0.1 mM EGTA, 1
mM DTT, 0.5 mM PMSF, 0.5 mM mg benzamidine, 2 μg/ml
Aprotinin）を加え氷上で 30 分間室温にて静置した後、
700 x g にて 15 分間遠心して得られた上清を回収して核
抽出物とした。核抽出物と細胞質抽出物中に含まれている
塩基量は Bio-Rad laboratories の蛋白定量キットを用いて
測定した。
7. Electrophoretic mobility shift assay (EMSA)
B 細胞由来の kB エンハンサー内の kB binding site を
含むオリゴヌクレオチド（5’-AGTTGAGGGGACCTTTCCAGGC-3’）（Promega Corporation, Madison, WI, USA) を
ポリヌクレオチドキナーゼ（Promega Corporation）と
[γ-32P] ATP（Amersham Pharmacia Biotech）を用いて標
識し、Sephadex G-25 スピナカラム（Amersham Pharmacia
Biotech）にて精製した後、プローブとした。プローブと
TNF-α 处理あるいは未処理の核抽出物と反応させた。
EMSA は Immob End blotting の方法47 に準じて行なった。すなわち、10μg の核抽出物に標識されたプローブと緩衝液（10
mM HEPES, pH 7.9, 50 mM KCl, 0.2 mM EDTA, 2.5 mM
DTT, 10% glycerol, 0.05% Nonidet P-40）を加え、20μlの
標品とした。標品を最終濃度 0.1%（W/V）N-メチレンプシ
ン含有 5%（W/V）ポリアクリルアミドゲルにて
電気泳動後、ゲルドライヤー（Bio Rad）を用いて 80℃
で 2 時間乾燥し、Kodak X-Omat AR-5（Eastman Kodak,
CO, Rochester, NY）を用いてオートラジオグラフィーを
行った。なお、NF-κBと標識κBブロープとの結合が特異的であることを確認するため、過剰の非標識κBブロープを添加することにより結合を阻害反応を行った。

8. 実験動物
NSF/sldミーヤータマウスは本学口腔病理学教室にて繁殖育成したものを供与された。生後2日目の雛NSF/sldミーヤータマウスに胸腔挿入（以下3t-Tx NSF/sldと略）をし、5日目の雛NSF/sldミーヤータマウスに胸腔挿入（以下3t-Tx NSF/sldと略）をした。8日目的雛NSF/sldマウスは、4週齢から唾液腺、腺腫に観察した自己免疫疾患を発症し、原発性ヒトジェンヌル症候群に極めて類似した疾患を呈するモデルマウスである。なお、動物実験は本学医学部動物実験委員会により承認された動物実験計画書に基づいて行った。

9. セファランチン投与実験群
3t-Tx NSF/sldマウスに生後4週齢から、10μg/10μl/mouse/dayのセファランチンを腹腔内投与（5匹）、あるいは100μg/10μl/mouse/dayのセファランチンを腹腔内投与（11匹）をそれぞれ週5日行い、8～10週齢まで行った。対照として、100μl/mouse/dayの生理食塩水の腹腔内投与群（9匹）を用いた。

10. 病理組織学的検討
実験群のマウスを2～4週齢で屠殺し、唾液腺および腺腫組織を採取した。各組織は10％中性緩衝ホルマリンにて固定し、軟パラフィン包埋後、4 µmの組織切片を作成し、ヘマトキシリン・エオジン（H-E）染色を施した。唾液腺および腺腫における炎症性反応の組織学的評価は以下に示す如く、Whiteらの分類50）に準じて行った。すなわち、Grade 0：浸潤巢を認めず。Grade 1：倍率150倍で、20個以上の単核細胞よりなる浸潤巢が1視野野中に1～5個認められる。Grade 2：倍率150倍で、20個以上の単核細胞よりなる浸潤巢が5個以上認められ、実質の破壊を伴わない。Grade 3：浸潤巢は多数認められ、実質の中等度の変性破壊を伴う。Grade 4：多数の浸潤巢により著しい実質の破壊を伴う。

11. Terminal deoxynucleotidyltransferase dUTP nick end labeling (TUNEL)法によるアポトーシスの検出
唾液腺、腺腫組織におけるアポトーシス細胞の検出を行うために、TUNEL法による検索を行った。TUNEL法はKLENOW-FragEL™DNA FRAGMENTATION DETECTION KIT（OncoGene Research Products）を用いて行った。すなわち、脱パラフィン後切片標本をProtinaseKにて蛋白分解処理後、非固定性ペルオキシダーゼを不活化するため、3 % H2O2にて30分間処理した。ビオチン化したdeoxynucleotidyltransferaseをKlenow enzymeを用いてDNA断片にラベルし、HRP標識streptavidinと反応させ、diaminobenzidineを用いて発色させた。Methyl green染色液にて対照染色し、アポトーシス細胞のカウント（倍率150倍で一視野中のアポトーシス細胞数の平均）を行った。すべての操作の洗浄にはtris-buffered saline（1×TBS）（1 M Tris-HCl pH 7.6, 5 M NaCl）を用い、また、陽性対照にはDNaseⅠで処理し同様の操作を行い検索を行った。

12. 免疫組織化学的染色
唾液腺および腺腫組織をホルマリンにて固定後、パラフィン包埋を行い、4 μmの組織標本を作製した。標本はキシレンを用いて脱パラフィンとエタノールを用いて脱水を行った。Antigen retrieval（抗日原回復操作）は標本をDAKO® TARGET RETRIEVAL SOLUTION（DAKO CORPORATION, Carpinten, CA, USA）の中にてマイクロウェーブ（600 W）を用いて5分間、2回処理することにより行った。また、免疫オキシダーゼを不活化するため、3 % H2O2にて30分間処理した。至適濃度に希釈した各種一抗体制剤に4℃にて12時間反応後、ABC（Avidin-Biotinylated enzyme Complex）kit（Vector Laboratories, Inc., Buring, CA, USA）と、3, 3'-diaminobenzidine（DAB）試薬にて発色させ、リン酸化IkB-α, MMP-9およびⅣ型コラーゲンの発現および局在について解析した。すべての操作の洗浄にはPBS（-）を用い、また、陰性対照には一次抗体のかわりにPBS（-）を使い、同様の操作を行い検索した。各種の抗癌剤ポリクローナル抗体は抗リン酸化IkB-α（Ser32）（Santa Cruz Biotechnology, Inc., CA, USA）、抗MMP-9（Sigm-Aldrich）、抗Ⅳ型コラーゲン（CHEMICON® International, Temecula, CA, USA）を使用した。

13. MTT assay
NS-SV-DC細胞を1×10^4個/wellとなるように96穴マイクロタイプレート（Becton-Dickinson）に植え込み、24時間培養した。その後、0、0.5、1、2 μMの濃度の5-aza-2-deoxycytidine（デサチビン）（Sigm-Aldrich）にて処理し、1～7日間培養した。各時間培養後、10μl/wellの3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT)試薬（Sigm-Aldrich）（5 mg/ml）を添加後さらに3時間培養し、形成されたMTTホルマリンをジメチルホルムアミド（DMSO）にて溶解塩化水素させ、Microplate reader（Bio-Rad laboratories）を用い波長540 nmにて吸光度を測定した。

14. 脱髄角キチン体ならびに角質体レーザー顕微鏡像による解析法
35 mmカーチャーディッシュ（Becton-Dickinson）にカバーガラスを入れ、NS-SV-DC細胞を植え込み、24時
間後よりデシタピン2μMを添加し、72時間培養した。4％パラホルムアルデヒドにて細胞を固定し、一次抗体として抗AQP5抗体（Santa Cruz）と室温にて2時間反応させ、洗浄後さらにFluorescein isothiocyanate（FITC）標識2次抗体（1：50 dilution, Rockland, Gilbertsville, PA, USA）と室温にて2時間反応させた。蛍光顕微鏡および共焦点レーザー顕微鏡（Leica Microsystems AG, Wetzlar, Germany）にてAQP5の局在を観察した。なお、細胞は蛍光顕微鏡においてはxy面にて、また共焦点レーザー顕微鏡においてはxz面にて解析した。

15. 培養細胞の水分分泌の測定

デシタピン処理および未処理NS-SV-DC細胞からの水分分泌の測定はすでに報告されている原法に基づいて行った58)。すなわち、トランスウェルボルン培養チャンバー(Coster, Cambridge, MA, USA)にNS-SV-DC細胞を1×10^4個となるように植え込み、24時間後よりデシタピン2μMを添加して2時間培養した。その後、細胞膜の分泌側に0.4mlの高張培養液（400mOsm）を培養液中に100mOのスクロールを添加することにより調製を、また細胞膜の基底側と側壁に等張培養液（300mOsm）にて置き換え、さらに4時間培養した。4時間後、分泌側の培養液を回収し、測定用ビペットを用いて容量を計測することにより水分分泌を算出した。

16. Bisulfite sequence法

デシタピン処理および未処理NS-SV-DC細胞からPromega's Wizard DNA isolation kit (Madison, WI, USA)を用いてDNAを抽出した。抽出した2μgDNAを2M NaOHにて10分間処理後、50℃にて16時間CpGenome™DNA Modification Kit (Promega)の3M塩化ビスマルフィット（Promega）にて処理処理により非メチル化シトシンのチメチル化を行った59）。これをテンプレートとしてPCR反応を行った（S:5'-GGGAATTCGTTGTTGGGAGA-G3; AS:5'-CCCGTCGACACGTAAC-3）。PCR反応は94℃1分間の熟変性後、94℃にて30秒、68℃で2分のアニリングを1サイクルとしを35サイクル行い、72℃で3分間の伸長反応を行った。PCR産物をゲルより抽出後（Qiagen, Valencia, CA, USA）、TA cloning kit (Invitrogen)を用いてプラスミドベクターpCR2.1-TOPOに組込み加えた。このベクターをバクテリアTPO10Pに組込み培養後、プラスミドDNAを抽出（Qiagen）した。デシタピン処理および未処理細胞からそれぞれ5個のサブクローンを用いてシークエンスの解析を行った。

17. ルシフェラーゼアッセイ

脱メチル化部位の検索にてシークエンス解析したプラスミドベクターより、挿入したフラグメントを切り出し、ルシフェラーゼレポーターベクター(pCR-Luc)に組み換え、4種類のベクターを作製した。すなわち、未処理1は24番目と31番目のCpGが両方ともメチル化されたものであり、デシタピン1は24番目のCpGが、デシタピン3は24番目と31番目の両方のCpGデシタピン4は31番目のCpGが脱メチル化されたものである。作製した4種類のベクターをNS-SV-DC細胞にトランスフェクションし、48時間細胞を培養した。細胞を溶解率パッファー（PicaGene, 東洋インキ, 東京）にて溶解して回収した後、ルシフェラーゼ発光基質（PicaGene）と反応させルミノメーター（Lumat LB 9507; PerkinElmer Life Sciences, Berthold Technologies, Bad Wildbad, Germany）にて蛍光量を測定し、転写活性を調べた。

18. 統計的解析法

得られたデータは平均値±SDで表現し、Analysis of variance（ANOVA）あるいはMann-WhitneyのU検定を用いて有意差検定を行い、p<0.05を有意差ありとした。

結果

1. 唾液腺細胞株のMMP-2, -9活性におよぼすTNF-αの影響

NS-SV-AC細胞、NS-SV-DC細胞及びNS-SV-MC細胞においてTNF-α処理によるMMP-2とMMP-9活性の誘導をGelatin zymographyにより解析した。その結果、NS-SV-AC細胞において、TNF-α処理によりMMP-9の著しい活性増強とMMP-2のわずかな活性増強が認められた（図1, レーン2と3）。しかし、NS-SV-DC細胞においては、MMP-9とMMP-2の明らかな活性増強は認めなかった。NS-SV-MC細胞においても、NS-SV-AC細胞において認められるような著しい活性増強は見られなかった。

2. TNF-αによって誘導されるMMP-9発現上昇に対するセファランチンの抑制効果

TNF-αによって誘導されるMMP-9産生をセファランチンが抑制するか否かについて解析を行うために、NS-SV-AC細胞の培養上清におけるMMP-9活性をゼラチンイモグラフィー（図2A）にて、またMMP-9蛋白の発現をWestern blotting（図2B）にて解析した。TNF-α未処理細胞においてはMMP-9蛋白の発現と活性はほとんど認められなかったが（レーン1），TNF-α処理によってMMP-9の発現と活性は著しく増強した（レーン2）。一方、セファランチンにて24時間前処理後、セファランチンとTNF-αにて処理した場合、MMP-9の発現と活性は著しく抑制された（レーン3）。セファランチンによるMMP-9蛋白の産生抑制がmRNAの発現にも影響を及ぼしているか否かを検索するために、RT-PCR法を用いて解析した（図3）。その結果、NS-SV-AC細胞においてTNF-α未処理ではMMP-9 mRNAの発現は
図1 唾液腺細胞株のMMP-2, -9活性におけるmRNAの影響
NS-SV-AC細胞、NS-SV-DC細胞およびNS-SV-MC細胞のTNF-α処理によるMMP-9とMMP-2活性の誘導をGelatinzymographyにより解析した。レーン1：未処理、レーン2: TNF-α(10ng/ml)にて48時間処理、レーン3: TNF-α(10ng/ml)にて50時間処理、レーン4: CE(10μg/ml)にて24時間処理、レーン5: CE(10μg/ml)にて48時間処理、レーン6: TNF-α(10ng/ml)とCE(10μg/ml)にて24時間処理、レーン7: TNF-α(10ng/ml)とCE(10μg/ml)にて50時間処理、レーン8: TNF-α(10ng/ml)とCE(10μg/ml)にて72時間処理。レーン1とレーン2ではMMP-2の発現が観察されなかったが、レーン3では明らかに活性増強が認められた。なお、内部コントロールとしてGAPDHmRNAを使用した。

図2 TNF-αによって誘導されるMMP-9産生のセファランチン（CE）処理による抑制
TNF-αにてNS-SV-AC細胞を処理し、培養上清中のMMP-9をGelatinzymography（A）とWestern blotting（B）にて解析した。レーン1：未処理、レーン2：TNF-α（10ng/ml）にて24時間処理、レーン3：CE（10μg/ml）にて24時間処理後、TNF-α（10ng/ml）とCE（10μg/ml）にて24時間処理。レーン1ではMMP-9の発現と活性はほとんど認められなかったが、レーン2においては著しく増強した。そして、レーン3ではMMP-9の発現と活性は著しく抑制された。

図3 TNF-αによって誘導されるMMP-9mRNAのセファランチン（CE）処理による抑制
MMP-9の産生抑制につきRT-PCR法を用いてmRNAレベルで解析した。レーン1：未処理、レーン2：TNF-α（10ng/ml）にて6時間処理、レーン3：TNF-α（10ng/ml）とCE（10μg/ml）にて6時間処理、レーン4：CE（10μg/ml）にて24時間処理、TNF-α（10ng/ml）とCE（10μg/ml）にて24時間処理、レーン5とレーン6ではMMP-9mRNAの発現は検出されなかったが、レーン2とレーン3では明らかに発現誘導が認められた。なお、内部コントロールとしてGAPDHmRNAを使用した。

図4 TNF-αによって誘導されるMMP-9遺伝子転写活性のセファランチン（CE）処理による抑制
MMP-9遺伝子の転写調節に及ぼすCEの影響につきCAT assayにて解析した。レーン1：未処理、レーン2：TNF-α（10ng/ml）にて12時間処理、レーン3：TNF-α（10ng/ml）とCE（10μg/ml）にて12時間処理、レーン4：CE（10μg/ml）にて12時間処理、レーン5：TNF-α（10ng/ml）とCE（10μg/ml）にて24時間前処理、レーン6：TNF-α（10ng/ml）とCE（10μg/ml）にて24時間前処理。レーン2とレーン3ではCAT活性の上昇が認められたが、レーン4ではCAT活性の著しい低下が認められた。

検出されなかった（レーン1）が、TNF-α処理によりMMP-9mRNAの明らかな発現誘導が認められた（レーン2）。TNF-αとセファランチンで同時に処理した際はMMP-9mRNAの発現には変化が認められなかった（レーン3）。しかし、セファランチンにて24時間前処理した後、TNF-αとセファランチンで処理することによりMMP-9mRNAの発現は抑制された。さらに、MMP-9遺伝子の転写活性に及ぼすセファランチンの影響をCAT assayを用いて解析した（図4）。その結果、TNF-α未処理（レーン1）と比較してTNF-α処理（レーン2）あるいはTNF-αとセファランチン（レーン3）による処理ではCAT活性の上昇が認められた。しかし、セファランチン
3. TNF-αによって誘導されるNF-κB結合能の増強に対するセファランチンによる抑制効果

転写因子NF-κBがMMP-9のプロモーター領域内にその结合部位が存在し、MMP-9の転写調節に深く関与していると考えられている。そこで、セファランチンがTNF-αによって誘導されるNF-κB活性に影響をおよぼすかどうかについてEMSA法を用いて解析した。その結果、図5において示すようにNS-SV-AC細胞にてTNF-αにて処理した後、30分後にNF-κBのκBプロモール結合能は増強したが、セファランチンにて24時間前処理することによりTNF-αによって誘導されるNF-κB結合能の増強は抑制された。

4. セファランチンがIkB-α蛋白分解とIkB-αmRNAの発現に及ぼす影響

セファランチンのTNF-αによって誘導されるNF-κB活性の抑制効果がどのような分子機構を介して行われるかを明らかにするために、まずNF-κBの抑制因子の一つであるIkB-α蛋白の発現をWestern blotting（図6a、b）とIkB-αmRNAの発現をRT-PCR（図6c）を用いて解析を行った。その結果、TNF-α単独で処理した場合、IkB-α蛋白は30分で完全に分解されているのに対し（図6a）、セファランチンにて24時間前処理後、TNF-αとセファランチンにて処理した場合、IkB-α蛋白の分解は抑制された（図6b）。次いで、セファランチンによるIkB-α蛋白の分解の抑制が、IkB-αmRNAの分解抑制を介しているか検討するために、RT-PCR法により解析を行った（図6c）。その結果、セファランチンでの前処理はIkB-αmRNAの発現に影響を与えないことが分かった。すなわち、セファランチンはTNF-αによって誘導されるIkB-α蛋白の分解を抑制することにより、NF-κB活性を抑制していることが示唆された。以上のin vitroの結果より、唾液腺癌細胞においてセファランチンはTNF-αによって誘導されるNF-κB活性の抑制を介してMMP-9産生を抑制することにより、腺癌細胞周囲の基底膜の破壊を阻止する可能性が示唆された。

図5 のa、b、cの図1、2、4の図の説明書きを補足する。

5. シューグレン症候群疾患モデルマウスへのセファランチン投与による治療効果

3D-Tx NFS/1を用いたセファランチンがin vivoにおいて、ヒトシューグレン症候群に類似した疾患を呈する唾液腺、涙腺組織のどのような影響を及ぼすかを調べたところ、セファランチン処置マウスにおける
図7 SS病患モデルマウスへのセファランチン（CE）投与による治療効果
CE未処置マウスにおける顔下腺のHE染色像（a:倍率100倍, c:倍率200倍）においては、著しい炎症性变化が認められたが、CE（100μg）投与マウスの顔下腺（b:倍率100倍, d:倍率200倍）においては、aとcでみられた炎症性細胞浸潤は、ほとんど認められなかった。涙腺組織においても同様に、CE未処置マウスのHE染色像（e:倍率100倍, g:倍率200倍）においては、著しい炎症性変化が認められたが、CE（100μg）投与マウス（f:倍率100倍, h:倍率200倍）においては、CE投与による炎症性変病の改善が認められた。

顔下腺（図7a, c）と涙腺（図7e, g）の組織像においては、著しい炎症性細胞浸潤やその浸潤巣による腺実質の破壊および導管の拡張などの炎症性変化が認められたが、100μgのセファランチン投与マウスの顔下腺（図7b, d）と涙腺（図7f, h）においては、未処置マウスでみられた炎症性細胞浸潤やその浸潤巣による腺実質の破壊の程度は減少していた。他の唾液腺組織（耳下腺と舌下腺）においても同様に、セファランチン投与により炎症性変病の改善が認められた。唾液腺および涙腺における炎症性変病を組織学的評価するためにWhiteらの分類を用いて検討を行った。その結果、図8において示すように唾液腺および涙腺のいずれの臓器においても、未処置マウスと比較しセファランチン100μg投与したマウスでは有意に低値を示しており、唾液腺および涙腺の炎症性変病が著しく抑制されることが示された。なお、セファランチン10μg投与したマウスでは、涙腺組織において炎症性変病が有意に抑制された（p<0.05）が、唾液腺組織以外の臓器においては有意な差は認められなかった。

6. 唾液腺と涙腺組織におけるリン酸化IκB-α、MMP-9およびⅣ型コラーゲンの発現および局在
セファランチン未処置と処置マウスにおけるリン酸化IκB-α、MMP-9およびⅣ型コラーゲンの発現および局在を免疫組織化学的染色法を用いて解析したところ、セファランチン未処置マウスの唾液腺組織では炎症性細胞浸潤の近傍に存在する腺房細胞の細胞質にリン酸化IκB-αの発現が強く認められた（図9a, c）。一方、100μgのセファランチン投与マウスにおいては、セファランチン未処置マウスにみられる腺房細胞内でのリン酸化IκB-αの発現は減弱していた（図9h, d）。これらの染色像は唾液腺組織においても同様に観察された。MMP-9の発現においても（図9e, f, g, h）、セファランチン未処
図9 唾液腺、涙腺組織におけるリン酸化IKB-αとMMP-9およびIV型コラーゲンの発現および局在
a, b, c, dは涙腺組織におけるリン酸化IKB-αの染色像を示す。CE未処置マウス（a：倍率100倍、b：倍率200倍）では炎症性細胞浸潤の近傍に存在する腺房細胞の細胞質にリン酸化IKB-αの発現が強く認められた。CE100μg投与マウス（c：倍率100倍、d：倍率200倍）においては、腺房細胞内でのリン酸化IKB-αは検出されなかった。
e, f, g, hは顔下腺におけるMMP-9の発現を示す。
CE未処置マウス（e：倍率100倍、f：倍率200倍）においては、炎症性細胞浸潤の近傍に存在する腺房細胞にMMP-9の発現が認められた。
CE100μg投与マウス（g：倍率100倍、h：倍率200倍）においては、腺房細胞のMMP-9の染色像はほとんど認められてなかった。
i, jは涙腺組織におけるIV型コラーゲンの染色像（倍率400倍）を示す。
CE未処置マウス（i）においては、炎症性細胞浸潤の認められる近傍の腺房細胞において、IV型コラーゲンの染色の断続と認められた。
CE100μg投与マウス（j）においては、IV型コラーゲンの連続性を示す染色像が認められた。

7. 唾液腺及び涙腺組織におけるアポトーシス細胞の検索
セファランチン処置と未処置マウスの唾液腺及び涙腺組織において、TUNEL法によるアポトーシス細胞の検出にあたって解析を行った。その結果、唾液腺及び涙腺組織のいずれの臓器においても、未処置マウス（図10a；褐色の核染色がアポトーシス細胞を示す）と比較して、投与マウス（図10b）ではアポトーシスの抑制が認められた。
この結果を数値的に解析したところ、図10cにおいて示すように、顔下腺、舌下腺、耳下腺、涙腺の各組織におけるアポトーシス細胞はセファランチンを投与することにより有意に（p<0.05）抑制された。

8. NS-SV-AC細胞とNS-SV-DC細胞におけるAQP5の発現
唾液腺導管上皮細胞NS-SV-DCと腺房細胞NS-SV-ACにおいてAQP3とAQP5の発現をRT-PCR法にて検索した（図11）。その結果、AQP5mRNAの発現はNS-SV-AC細胞においては認められたが、NS-SV-DC細胞にはその
発現は認められなかった。なお、AQ53 mRNAの発現はNS-SV-AC細胞とNS-SV-DC細胞の両方に認められた。

9. 5-aza-2'-deoxycytidine（デシタバン）処理によるNS-SV-DCにおけるAQ55の発現誘導

AQ55 mRNAが発現していなかったNS-SV-DC細胞をDNA結膜実験を誘導するデシタバンにて処理することにより、AQ55の発現を誘導することが可能か否かにつき検討を行った。これに先立ち、デシタバン処理を行うための適度度を決定するために、デシタバンがNS-SV-DC細胞の細胞増殖に及ぼす影響をMTT assayにて検査した（図12）。その結果、デシタバン未処理細胞と比較して、デシタバンにて処理した細胞はいずれの濃度、処理時間においても有意な細胞増殖抑制効果は認められなかった。このMTT assayの結果より、以後の実験においてはNS-SV-DC細胞を処理する場合の濃度を2μMとした。次いでデシタバンによるNS-SV-DC細胞でのAQ55 mRNAの発現誘導につき検査した。すなわち、NS-SV-DC細胞を2μMデシタバンにて処理し、AQ55 mRNAの発現をRT-PCR法にて解析を行った。その結果、デシタバン未処理NS-SV-DC細胞において認められなかったAQ55 mRNAの発現は処理開始後48時間より認められるようになり、120時間まで発現は持続した（図13）。さらに、デシタバンによるAQ55 mRNAの発現量を定量的に測定するため、Real-time RT-PCRを行った。デシタバン未処理細胞においては、AQ55 mRNAの発現はほとんど検出されなかったが、デシタバン処理によりAQ55 mRNAの発現は経時的に上昇した。ヒト唾液腺組織での発現を100％とした場合、処理後48時間で3.75％、72時間で8.75％、96時間で8.5％、120時間で21％に上昇した（図14）。よって、AQ55 mRNAの発現が認められなかったNS-SV-DC細胞において、デシタバンがAQ55 mRNAの発現を誘導することが明らかになった。次に、NS-SV-DC細胞におけるAQ55蛋白の発現をWestern blottingにて調べたところ、デシタバン未処理NS-SV-DC細胞においては認められなかったAQ55蛋白の発現は、デシタバン処理により経時的に発現誘導が認められた（図15）。デシタバン処理により誘導されたAQ55蛋白の局在を調べるために、間接蛻光抗体法によって染色し、共焦点レーザー顕微鏡にて観察を行った。デシタバン未処理NS-SV-DC細胞においてはAQ55の発現は認められなかったが（図16a）、デシタバンにて72時間処理したNS-SV-DC細胞においては、AQ55の発現が検出された（図16b）。共焦点レーザー顕微鏡による解析ではAQ55は細胞の基底側以外の細胞膜に発現していることが確認された（図16c）。

10. デシタバン処理による水分分泌の増加

NS-SV-DC細胞においてデシタバン処理により発現誘導の認められたAQ55蛋白が水輸送の機能を有している。
図12 デンタビジョンのNS-SV-DC細胞の増殖に及ぼす影響 デンタビジョンの細胞増殖に及ぼす影響をMTT assayにて検査した。デンタビジョン未処理細胞と処理細胞を比較して、有意な細胞増殖への影響は認められなかった。

図14 Real-time RT-PCRによるNS-SV-DC細胞におけるAQP5 mRNAの発現調節 AQP5 mRNAの発現量を定量的に測定するため、Real-time RT-PCRを行った。各発現量の表示は、正常ヒト唾液腺組織における発現量を100として表示した。デンタビジョン未処理細胞においては、AQP5 mRNAの発現は検出されなかったが、デンタビジョン処理によりAQP5 mRNAの発現は経時的に上昇し、処理後48時間で3.75倍、72時間で8.75倍、96時間で8.5倍、120時間で2.1倍に上昇した。

図13 デンタビジョン処理によるNS-SV-DC細胞におけるAQP5 mRNAの発現誘導の検索 デンタビジョン処理によるAQP5 mRNAの発現誘導をRT-PCRにて解析した。SG：正常ヒト唾液腺組織、AC：NS-SV-AC細胞、デンタビジョン未処理NS-SV-DC細胞において認められなかったAQP5 mRNAの発現は処理開始後48時間より認められることになり、検査をおこなった120時間まで発現は持続した。

図15 デンタビジョン処理によるNS-SV-DC細胞におけるAQP5蛋白の発現 Western blottingにてデンタビジョン処理によるAQP5蛋白の発現につき解析した。デンタビジョン未処理NS-SV-DC細胞ではAQP5蛋白の発現は認められなかったが、デンタビジョン処理によりAQP5蛋白の発現誘導が認められるようになった。

11. AQP5遺伝子プロモーター領域の転写因子結合部位 メチル化の検索 デンタビジョン処理にて誘導されたAQP5の遺伝子発現誘導機構を解析するため、AQP5遺伝子プロモーター領域内の発現調節機構につき解析した。図18にて示すように、AQP5遺伝子A様転写開始領域より上流-406bpまでの塩基配列中には43個のCpG-ジヌクレオチドが存在しており、この領域には3個のSp1結合領域と1個のAP-2結合領域が存在している。1番目のSp1結合領域のCpG、2番目のSp1結合領域の23番目
図16 蛍光抗体法ならびに共焦点レーザー顯微鏡によるNS-SV-DC細胞におけるAQP5の局在

デシタピンにより誘導されたAQP5の細胞内局在を検索するため、間接蛍光抗体法による解析を行った。デシタピン未処理NS-SV-DC細胞（a）においてはAQP5の発現は認められなかったが、デシタピン72時間処理NS-SV-DC細胞（b）においては、AQP5の発現が検出された。cは、共焦点レーザー顕微鏡による解析結果を示す。1から12の番号で示す各写真は、細胞の分泌側から0.7μmごとの深さでの顕微鏡像を示している。AQP5は細胞の基底側以外の細胞膜に発現していることが確認された。

図17 デシタピン処理によるNS-SV-DC細胞からの水分分泌の増加

デシタピン処理により発現誘導の認められたAQP5が水分分泌を有しているか否かにつき解析するため、浸透圧勾配法を用いて水分分泌を測定した。デシタピン未処理NS-SV-DC細胞においては、1cm²あたり3.8μlの水が1時間で移動したが、デシタピン72時間処理NS-SV-DC細胞においては、70μlの水が1時間で移動した。※未処理対照に比較して有意（p < 0.05）に増強した。

図18 AQP5遺伝子プロモーター領域内のCpGアイランドでのメチル化の検索

AQP5遺伝子の転写開始領域より上流-406bpまでの塩基配列とCpG部位および転写因子結合部を示している。転写開始点の上流-406塩基の間に43個のCpG-ジヌクレオチドが存在し、この領域には3個のSp1結合領域と1個のAP-2結合領域が存在する。1番目のSp1結合領域に1番目のCpGが存在し、2番目のSp1結合領域に23番目と24番目のCpGが存在し、3番目のSp1結合領域に33番目のCpGが存在する。AP-2結合領域には、20番目と21番目で22番目のCpGが存在する。
図19 デサリン処理によるCpGアイラ
ンドの脱メチル化部位の検索
ビサフルサイド・シークエンス法に
より、CpGアイランドの脱メチル
化部位を検索した結果を示す。2番
目のSp1結合部位に存在する24番
目的CpGと3番目のSp1結合部位
近傍の31番目のCpGおよび15番目
のCpGに脱メチル化が高頻度に観
察された。

図20 ルシフェラーゼアセシによる転写活性の測定
ルシフェラーゼアセシにて、どのCpGの脱メチル化がAQP5遺伝子の発現に深く関与しているかを検
索した。aは作製した4種類のベクターの模式図を示す。非処理1：24番目と31番目のCpGを両方ともメ
チル化されたもの、デサリン1：24番目のCpGを脱メチル化されたもの、デサリン3：24番目と31
番目のCpGが両方ともメチル化されたもの、デサリン4：31番目のCpGを脱メチル化されたもの。
bは、それぞれのベクターのルシフェラーゼ活性を示す。ルシフェラーゼ活性は、デサリン1、デサ
リン3、デサリン4の順に高かった。

と24番目のCpGが、また3番目のSp1結合部位に33番
目のCpGが存在する。さらにAP-2結合部位には、20番
目と21番目、22番目のCpGが存在する。デサリンは
DNA脱メチル化剤であり、メチル化シトシンを脱メチ
ル化する。そこで、CpG-ジメチルシトシンの脱メチル化
によるAQP5の発現誘導が起きているかどうか調べるた
めに、ビサフルサイド・シークエンス法によるCpGアイ
ランドの脱メチル化部位を検索した（図19）。その結
果、2番目のSp1結合部位に存在する24番目のCpGと
3番目のSp1結合部位近傍の31番目のCpGおよび15番
目のCpGに脱メチル化が高頻度に認められた。なお、
15番目のCpGについては転写因子結合部位から離れて
いるため、今回は解析の対象としなかった。そこで、24
番目および31番目のCpGの脱メチル化に注目し、どのCpG
の脱メチル化がAQP5遺伝子の発現に深く関与しているかを調べるためルシフェラーゼアセシを行った。すな
わち、4種類のプロモーター領域の配列を含むベクター
を作製し比較検討した（図20a）。非処理1は、24番目と
31番目のCpGが両方ともメチル化されたプロモーター
配列、デサリン1は24番目のCpGが脱メチル化され
たプロモーター配列、デサリン3は24番目と31番目
のCpGが両方とも脱メチル化されたプロモーター配列、
デシタビニ431番目のCpgが脱メチル化されたプロモーター配列である。上記のベクターをNS-SV-DC細胞にトランスフェクションすることにより得られたリシュフェラーゼ活性は、24番目と31番目のCpgが脱メチル化されたデシタビニ3が一番高く、ついて24番目のCpgが脱メチル化されたデシタビニ1、31番目のCpgが脱メチル化されたデシタビニ4の順であった（図20b）。したがって、以上の結果よりAQP5プロモーター領域に存在するCpgのうち上流から24番目と31番目の両Cpgの脱メチル化が、AQP5の遺伝子発現誘導に深く関与している可能性が示唆された。

考察

SSにおける唾液腺病変および涎腺病変は、病理組織学的に炎症性細胞浸潤と腺房構造の破壊および導管構造の残存に特徴づけられるが、本疾患の発症・進展に関する正常な分子機構は明らかにされていない。従来より我々は、SS唾液腺における腺房構造破壊の分子機構に注目し、以下のような作業仮説を想定して研究を行ってきた。すなわち、SS患者の唾液腺において浸潤した炎症性細胞から分泌されたTNF-αが腺房細胞においてのみNF-κB活性の増強を介して基底膜の分解に関与するMMP-9の産生を誘導し、この結果腺房細胞－基底膜相互関係が消失して腺房構造はアポトーシスの一種であるアノイケスに陥り、腺房構造の破壊が起こるというものである。そしてこの作業仮説に沿って現在まで我々は、SS唾液腺組織において炎症性細胞浸潤近傍の腺房細胞においてMMP-9とNF-κBの構成因子の一つであるp65の発現が、炎症性細胞浸潤から離れた腺房細胞や正常唾液腺における腺房細胞に比較して著しく増強していることを報告した3)。さらに我々は、腺房細胞株であるNS-SV-AC細胞を基底膜成分の一つであるIV型コレラーゲンに取り寄せる培養皿上でTNF-αとプラスミン共存下で培養した時の、NS-SV-AC細胞は基底膜から遊離しアポトーシス（アノイケス）をおこしたが、NF-κBの構成的抑制子である変異型IkB-αcDNAを遺伝子導入したNS-SV-AC細胞においては、上記と同じ条件下において培養してもアポトーシス（アノイケス）をおきず良好な増殖様式を示した4)。この基底膜と細胞との接触による相互関係の維持は細胞の生存において重要であるとされる。正常血管内皮細胞や前立腺細胞についても報告されている5)、6)。したがって、上記の実験結果より、SS患者唾液腺における腺房構造破壊においてMMP-9は原因因子の一つであることが示唆されるとともに、腺房細胞においてMMP-9誘導の抑制はSS唾液腺病変や涎腺病変の改善にとって治療的戦略として得られる可能性が推測される。このような見解に基づいて我々は最近、in vitroにおいてNS-SV-AC細胞をセファランチンにて処理した後、Ⅳ型コレラーゲンに取り寄せる培養皿上でTNF-αとプラスミン、セファランチン共存下で培養した時、セファランチンがTNF-αによって活性化されるNF-κB活性を抑制する結果、MMP-9産生を低下させることによってSS-SV-AC細胞は良好な形態を維持し生存することを報告した7)。そこで本研究においては、セファランチンのSSに対する治療的有効性をより深く理解するため、ヒトSSに対するモデルマウスを用いて、本マウスの唾液腺と腺房組織における腺房構造破壊に対するセファランチンの治療効果につき解析した。その結果、セファランチンはSSモデルマウスにおいて腺房細胞のアポトーシスを抑制することにより、腺房構造の破壊を阻止することを明らかにした。

多くの疾患において新規治療法を開発するためには、ヒトと類似した疾患を発症する好発疾患モデル動物の樹立が要求される。ヒトSSに対する本マウスモデルシステムはNSF/oldミュータントマウスを生後3日目に胸腺摘除し、以後何ら免疫的機能を欠くことなく樹立することが可能なシステムである4)。本モデルマウスは例外なく唾液腺と腺房組織に限って自然発症型自己免疫病変を発症する特徴を有し、これら病変は最初4週齢から出現し、そして加齢に伴い徐々に症状の悪化を示す特性を有している。したがって、本マウスモデルシステムはSS患者に対する治療薬の効果を検証する上で非常に有用であると考えられる。

SS唾液腺病変や涎腺病変の発症に含まれている因子に関信関係がある我々の作業仮説と一致して、SSモデルマウス唾液腺組織と腺房組織におけるリン酸化IKB-αとMMP-9およびⅣ型コレラーゲンに対する免疫組織化学的染色、さらにアポトーシスによる細胞死検出のためのTUNEL解析は、炎症性細胞浸潤近傍の腺房組織においておこっている連続的過程を再現に表現している。すなわち、唾液腺組織や腺房組織に浸潤した炎症性細胞から分泌されたTNF-αやIL-1βなどのサイトカインは腺房細胞においてIKB-αをリン酸化し、その後NF-κBに依存したMMP-9遺伝子の活性化化に起因する。そして不活型として分泌されるMMP-9は生体内にユビキチンに存在する活性化因子であるプラスミンによって活性化され、活性型MMP-9はⅣ型コレラーゲンから成長基底膜を選択的に分解する。分解されたⅣ型コレラーゲンとの接触を介して発芽した腺房細胞はアポトーシス（アノイケス）に陥り7)、この結果腺房構造の破壊につながるという連続的過程である。したがって、サイトカインを介したシグナル伝達経路の阻害はSS患者の唾液腺病変や腺房病変の改善のために選択すべき確実な治療戦略となる可能性が示唆される。

セファランチンはStephania cephalanthu Hayataから抽出されたビスクファラリン型アミンアルコイドであり、現在白血球減少症8)や鼻アレルギー9)、哮発症10)患者の治療薬として広く使用されている。セファランチンの正確な作用メカニズムは明らかにされていないが、ナチュ
ラルキリンα受容体やマクロファージの殺細胞効果を増強させることにより免疫細胞の防御効果を発揮することから、セファラチンはサイトカインのシグナル伝達経路の制御に関わっている可能性が推察されている。以前の研究で、セファラチンが肺巣細胞においてTNF-αによって誘導されるNF-κB活性の抑制を介してMMP-9産生を低下させることを報告した。しかししながら、未だセファラチンによって誘導されるNF-κB活性の抑制の原因は含まれている詳細なメカニズムは、セファラチンがIKB-α蛋白の分解を抑制すること以外には明らかにされていないが、現在これらの可能性が示唆されている。さらに、IKB kinase活性の低下やIKB-αやIKB-β、IKB-eのエピジェネリシスの低下あるいはプロテアソームを介したIKB-αやIKB-β、IKB-εの分解の低下が多いと考えられている。実験において、肺巣や胸膜の肺巣細胞においてセファラチンがIKB-αのリン酸化の抑制を示したことから、上記の説明は生体内でのセファラチンの作用機構を明らかにする可能性が示唆されている。

SS呼吸器組織や肺巣組織の肺巣形成反応に対するサイトカインのシグナル伝達経路を標的とした治療法は、組織破壊の阻止を阻むことで非常に有効な治療法であるが、本治療法単独では減少した呼吸機能を増加させることが困難である。すでに述べたように、SS呼吸器組織および肺巣組織における病理組織学的特徴の一つとして、導管細胞の残存がある。そこで本研究において、SS呼吸器や肺巣組織において残存あるいは増殖する導管細胞に水輸送作用のあるAQPSを発現することにより水輸送作用を獲得させる可能性を示唆した。そして、AQPSを発現していない導管細胞株であるNS-SVDC細胞をDNA誘導細胞株としてシタピノにて処理することにより、AQPSの発現誘導が可能であり、発現したAQPSは水分分泌機能を有していることを明らかにした。

最近の研究により、SS呼吸器組織において水輸送能力の減少は、呼吸器組織の破壊の程度に伴い呼吸機能低下の程度の間に相関性が乏しいことから、炎症性細胞浸潤による肺巣破壊よりも呼吸器機能の抑制に起因していることが報告されている。確かに、炎症性細胞浸潤によって引き起こされた肺巣構造の消失は直接的に呼吸機能の減少に結びついていることが容易に理解されるが、炎症性細胞から分泌されるTNF-αやIL-1βなどのサイトカインが、NF-κB活性を増強させることによりAQPS発現を抑制することも報告されている。したがって、このことはTNF-αやIL-1βなどのサイトカインは、炎症性細胞浸潤によって惹起されるSS呼吸器変病の進行において中心的役割を果たしていることを示唆している。さらに、抗サイトカイン療法はSS呼吸器肺巣細胞のAQPS発現の維持のためにも有用な治療法である可能性が推察される。

現在までの研究結果より、ラット肺巣肺においてはAQPSの細胞内局在は肺巣肺組織の分泌型の細胞器と介在部導管細胞の近位部分に限局することが示されています。しかしながら、本研究においてはAQPSの発現は導管細胞株であるNS-SVDC肺巣細胞には検出されず、肺巣肺細胞株であるNS-SVAC肺巣細胞においてのみ認められた。このことは、NS-SVDC肺巣が遠位細胞株あるいは肺葉枝、排出導管管に由来していることを表現している可能性がある。最近、高解析度X線焦点レーザー顕微鏡および電子顕微鏡解析法を用いた研究により、ヒト肺巣肺組織においてはAQPSの発現が肺巣肺細胞においてのみ認められている。したがって、AQPSの細胞内局在は腫瘍異性である可能性が示唆される。

遺伝子プロモーター内でのメチル化と遺伝子発現抑制との強い相関性は広く認められているが、このメチル化によって修飾される遺伝子の不活性化の機機制については未だ明らかにされていない。遺伝子プロモーター内メチル化に起因した遺伝子転写活性の不活性化に関する現在までに提出されている仮説のうち、遺伝子発現抑制は転写因子結合部位におけるメチル化が直接的な影響を発揮するという一つの仮説が本研究により得られた結果と合致するかもしれない。多くの哺乳類転写因子はそれらのDNA認識部位においてCGに富んだ結合部位を持っていることから、特定の転写因子の結合部位のCGでおこったメチル化は、DNAへの転写因子の結合を立体的に抑制し転写の抑制につながる可能性がある。たとえば、制限酵素HpaIIの切断部位（CCGG）は転写因子AP-2が結合する部位に位置している。そして、AP-2結合部位内に存在するHpaII切断部位でのメチル化（CCCG）はAP-2の結合を抑制し、AP-2によって制御されている遺伝子の転写を抑制することがC6グリオーマ細胞やCV-1細胞において報告されている。転写因子の結合においてメチル化のこの直接的効果は、cyclic AMP（cAMP）のcAMP-responsible element（TGACGTTCA）やレチノプラスタースCombine因子1認識部位（AGTCGGCGGCGGAAGT）に結合する他の転写因子においても同様に認められることが報告されている。しかしながら、転写因子Sp1が結合するSp1結合部位でのメチル化に関する報告においては未だ一致した見解は得られていない。たとえば、ある程度のSp1結合部位でのメチル化はSp1の結合を抑制することを報告している。一方、Sp1結合部位でのメチル化による遺伝子発現制御に関する見解2つの見解のうち、我々の本研究結果は後者の説を支持するものであった。すなわち、AQPS遺伝子プロモーターにおけるSp1結合部位でのメチル化（24番目のCG）はAQPS遺伝子の転写活性を部分的に制限した。したがって、メチル化による遺伝子発
現抑制においてどちらの経路がメインに機能するかは細胞種や転写因子の種類、外部刺激の種類による可能性が示唆された

また、本研究においてはAQP5遺伝子プロモーター内における3番目のSp1結合部位近傍での脱メチル化（31
番目のCG）がAQP5遺伝子の転写活性を有意に誘導す
ることを明らかにした。この転写因子結合部位以外での
のメチル化による遺伝子発現抑制に関してのメカニズ
ムは明らかではないが、同様の実験結果が最近他の研究者から報告されている。すなわち、ラット白血球細胞株の
cyclin D遺伝子の5端末増幅はcyclin D遺伝子プロモー
ター内において連続する2つのSp1結合部位の近傍で
のCGにおいてメチル化が認められている。そしてこの
プロモーター内での2つのSp1結合部位外でのメチル化は有意にcyclin D遺伝子の発現を抑制することが報告
されている。この研究は間接的であるが、Sp1結合
部位以外でのCGのメチル化が遺伝子発現の抑制におい
tて重要な役割を果たしているかもしれないことを示してい
る。さらに、Sp1結合部位以外でのCGにおけるメチル化はp21遺伝子プロモーターにおいてSp1の結合阻害
と遺伝子発現抑制につながることがEMSAを用いた実
験により直接的に証明されている。したがって、転写
因子認識部位の周辺でのメチル化は、転写因子のDNA
への結合に対して影響をおよぼし、またこの部位でのメチル化の抑制は対応する遺伝子の再発現と相関性を有す
る可能性が示唆された。

結論として、本研究において我々は大きく2つの研
究結果を明らかにした。すなわち、1番目として、ヒッ
トSSモデルマウスである3d-Tx NFS/sldマウスの唾液腺
と脳癌における腺房細胞においてはリン酸化IkB-αと
MMP-9両者が増強を誘導するI型コラーゲン関連の欠損が
みられ、この結果腺房細胞はアポトーシス（アノイキ
ス）に陥ることである。また、3d-Tx NFS/sldマウスを
セファランチンにて処置した場合、唾液腺と脳癌組織に
おける腺房細胞はリン酸化IkB-αとMMP-9両者の著しい
発現低下とI型コラーゲン関連の欠損がみられ、こ
のため腺房構造破壊の阻止につながったという結果であ
る。したがって、本研究結果よりセファランチンはSS
唾液腺組織と脳癌組織における腺房構造破壊の発症と
進展を抑制するための有効な治療薬に成り得る可能性が
示唆された。そして2番目として、DNA脱メチル化剤
である5-aza-2-deoxycytidine（デシチビン）にて導管細
胞株であるNS-SV-DC細胞を処理することにより、水
分分泌機能を有する膜胞蛋白であるAQP5の発現誘導が可能
となり、NS-SV-DC細胞は水分泌機能を獲得したことが
ある。またNS-SV-DC細胞におけるこの機能発現には、
AQP5遺伝子プロモーター内における2ケ所のCGでの
脱メチル化が重要であることを示したことである。な
お、本結果はNS-SV-DC細胞が生理的外分泌機能を保持
していることへの明らかな証明には欠けるかもしれない
が、本研究から得られた多くの結果は導管細胞としての
表現型を有する細胞に機能的水輸送チャンネルを発現
させ、水分分泌を付与させることが可能であることを示
唆している。よって、SS唾液腺や脳癌へのデシチビン
の投与は、生存あるいは増殖している導管細胞に促進的
水輸送機能を付与するための有効な手段に成り得るもの
と考えられる。

謝辞

稿を終えるにあたり、本研究課題を与えられた指導者を
賜った佐藤光信教授、本研究の実施に際し発言を交わし
る御指導をいただいた口腔外科学二講座 東 雅之講師、口
腔病理学講座 石丸直悟助教授に心から謝意を表します。
また、御校閲を戴いた口腔病理学講座 林 良夫教授、
口腔内科学講座 石野隆文教授、ならびに研究の円滑な発
展のために特別の御配慮と戴いた口腔外科学二講座の教室
員の方々に厚く御礼申し上げます。

参考文献

1）Alspaugh MA, Whaley WW, Wohl MJ and Bunin JI:
Sjögren's syndrome. In: Kelley WN, Harris ED Jr.,
Ruddy S, Sledge CB, editors. Textbook of rheumatology.
2）Danel TE: Labial salivary gland biopsy in Sjögren's
syndrome: assessment as a diagnostic criterion in 362
3）Rosai J: Major and minor salivary glands. In: Rosai
j, editor. Ackerman's surgical pathology. New York: Mosby-
Year Book, 815-818 (1996)
4）Hamano H, Saito I, Haneji N, Mitsuhashi Y, Miyasaka
N and Hayashi Y: Expressions of cytokine genes during
development of autoimmune sialadenitis in MRL/lpr
5）Fox RI, Kang HI, Ando D, Abrams J and Pisa E:
Cytokine mRNA expression in salivary gland biopsies of
6）Dayer JM, Beutler B and Cerami A: Cachectin/tumor
necrosis factor stimulates collagenase and prostaglandin
E2 production by human synovial cells and dermal
7）Goldring MB, Birkenhead JR, Suen LF, Yamin R, Mizuno
S, Giovacci J, Arbiser JL and Apperley JF: Interleukin-1
beta-modulated gene expression in immortalized human
8）Kontinen YT, Kangaspyranta P, Lindy O, Takagi M, Sorsa
T, Segerberg M, Tschesche H and Eizen AZ: Collagenase
(1994)
9) Hanemaaijer R, Visser H, Kontinen YT, Koolwijk P and
Verheijen JH: A novel and simple immunocapture assay
for determination of gelatinase-B (MMP-9) activities in biological fluids: saliva from patients with Sjögren’s syndrome contain increased latent and active gelatinase-B levels. Matrix Biol 17, 657-665 (1998)

11) Sato H and Seiki M: Regulatory mechanism of 92 kDa type IV collagenase gene expression which is associated with invasiveness of tumor cells. Oncogene 8, 395-405 (1993)

18) Mellits KH, Hay RT and Goodbourn S: Proteolytic degradation of MAD3 (IκBα) and enhanced processing of the NF-κB precursor p105 are obligatory steps in the activation of NF-κB. Nucleic Acid Res 21, 5059-5066 (1993)

57) Hamburger AW and Salmon SE: Primary bioassay of human tumor stem cells. Science 197, 461-463 (1977)

