Direct Limits of Finitary Relation Spaces

By

Bohdan Zelinka

(Received May 25, 1972)

In [1] the direct limit of a sequence of semigroups is defined as follows: Consider a sequence \(\{D_i: i=1, 2, \cdots \} \) of semigroups with isomorphisms \(\varphi_{ji} \) of \(D_i \) into \(D_j \), \(i \leq j \), such that for \(i \leq j \leq k \), \(\varphi_{ki}(x) = \varphi_{kj} \cdot \varphi_{ji}(x) \) and \(\varphi_{ii}(x) = x \). The semigroup \(D \) of the set union \(\bigcup_{i=1}^{\infty} D_i \) which, for every \(i, j \) and \(x \) such that \(i \leq j \) and \(x \in D_i \), identifies \(x \) with \(\varphi_{ji}(x) \) is called the direct limit of \(\{D_i: i=1, 2, \cdots \} \) with respect to the isomorphism family \(F = \{\varphi_{ji}: i=1, 2, \cdots, j=1, 2, \cdots; i \leq j\} \) and is denoted by \(D = \lim_{i \to \infty} (D_i; F) \).

Further in [1] the problem is asked to describe the isomorphism condition for \(S \) and \(S' \) in terms of \(S_i, S'_i, \varphi_{ji}, \varphi'_{ji} \), if \(S_i \) and \(S'_i \) are positive integer semigroups and \(S = \lim_{i \to \infty} (S_i; \varphi_{ji}), S' = \lim_{i \to \infty} (S'_i; \varphi'_{ji}) \).

In this paper this concrete problem is not solved, but some conditions are given for a more general case.

The definition of the direct limit of the sequence of semigroups given in [1] can be generalized to the sequence of finitary relation spaces, if the word “semigroup” in it is substituted by the words “finitary relation space”. The relation space is a set on which some relations are given. If all of those relations are finitary, this relation space is called finitary.

We may adapt this definition by such a way that \(S \) is defined as such a set that for any \(i \) an isomorphism \(\varphi_i \) of \(S_i \) into \(S \) exists and any element of \(S \) is an image of some element of \(S_i \) in \(\varphi_i \) for some \(i \) and \(\varphi_j \varphi_{ji} = \varphi_i \) for \(j \geq i \).

Now we shall prove a lemma.

Lemma. Let \(M \) and \(M' \) be two finitary relation spaces. Let \(\alpha_i \) for each positive integer \(i \) be an isomorphism from \(M \) into \(M' \). For \(i \leq j \) let the definition domain of \(\alpha_i \) be included in the definition domain of \(\alpha_j \). Let \(\alpha_i(x) = \alpha_j(x) \) for any \(x \) from the intersection of definition domains of \(\alpha_i \) and \(\alpha_j \). Let any element of \(M \) be in the definition domain of some \(\alpha_i \). Then there exists an isomorphism of \(M \) into \(M' \).

Proof. Let us define the mapping \(\alpha \) so that \(\alpha(x) = \alpha_i(x) \) for such an \(i \) that \(x \) is in the definition domain of \(\alpha_i \). The element \(\alpha(x) \) is determined uniquely,
because $\alpha_i(x) = \alpha_j(x)$ for x from the intersection of definition domains of α_i and α_j. Let some elements x_1, \ldots, x_n be in an n-ary relation on the relation space M. Let $x_i (i = 1, \ldots, n)$ be in the definition domain of $\alpha_{k(i)}$. Let $N = \max \{k(i) : i = 1, \ldots, n\}$. Then x_i is in the definition domain of α_N for $i = 1, \ldots, n$ and the elements $\alpha_N(x_1), \ldots, \alpha_N(x_n)$ are in the corresponding relation, because α_N is an isomorphism. But $\alpha(x_i) = \alpha_N(x_i)$ for $i = 1, \ldots, n$ and so $\alpha(x_1), \ldots, \alpha(x_n)$ are in the corresponding relation. This can be made for any n-tuple which is in some relation on M and so we have proved that α is an isomorphism.

The assumption that M is a finitary relation space was made, because in the contrary case N should not always have to exist.

All groups, semigroups, lattices, rings, fields, graphs etc. are finitary relation spaces.

Now we shall prove a theorem.

Theorem 1. Let $\{S_i : i = 1, 2, \cdots\}$, $\{S'_i : i = 1, 2, \cdots\}$ be two infinite sequences of finitary relation spaces, let $S = \lim \rightarrow (S_i ; \varphi_{ji})$, $S' = \lim \rightarrow (S'_i ; \varphi'_{ji})$, where φ_{ji}, φ'_{ji} are corresponding isomorphisms (see the definition of the direct limit). The relation spaces S and S' are isomorphic to each other, if and only if there exists an infinite sequence $\{T_i : i = 1, 2, \cdots\}$, whose terms are finitary relation spaces or empty sets, and the isomorphisms ψ_i, ψ'_i, τ_{ji} for $i \leq j$ so that ψ_i is an isomorphism of T_i into S_i, ψ'_i is an isomorphism of T_i into S'_i and τ_{ji} is an isomorphism of T_i into T_j so that the following conditions are satisfied:

(A) $\tau_{kj}(x) = \tau_{kj}(x) \cdot \tau_{ji}(x)$, $\tau_{ij}(x) = x$ for $i \leq j \leq k$,

(B) $\psi_j \tau_{ji}(x) = \varphi_{ji} \psi_i(x)$

(C) $\psi'_j \tau_{ji}(x) = \varphi'_{ji} \psi'_i(x)$

for any i.

Remark. The conjunction of the conditions (B) and (C) is equivalent to the following condition:

$$\bigcap_{i=1}^{\infty} (S_i - \psi_i(T_i)) = \bigcap_{i=1}^{\infty} (S'_i - \psi'_i(T_i)) = \emptyset.$$

Proof. Let there exist the sequence $\{T_i : i = 1, 2, \cdots\}$ and the isomorphisms ψ_i, ψ'_i and τ_{ji} with the above described properties. For each i consider the isomorphism $\eta_i = \varphi_i \psi_i$ of T_i into S and the isomorphism $\eta'_i = \varphi'_i \psi'_i$ of T_i into S'. Let $y \in S$. We have $y = \varphi_i(x)$ for some positive integer k and some
According to (B) there exists such a positive integer \(N \) that for \(n > N \) we have \(\psi_{n}(x) \in \psi_{n}(T_{n}) \). But \(\psi_{n}(x) = \psi_{n}^{-1}(y) \). Thus \(\psi_{n}^{-1}(y) \in \psi_{n}(T_{n}) \) and this means that there exists \(z \in T_{n} \) such that \(\psi_{n}(z) = \psi_{n}^{-1}(y) \), which implies \(z = \psi_{n}^{-1}(y) = \eta_{n}^{-1}(y) \). We have proved that for any \(y \in S \) there exists a positive integer \(N \) such that for \(n > N \) the element \(y \) is in the definition domain of \(\eta_{n}^{-1} \). Analogously we can prove that for any \(y' \in S' \) there exists a positive integer \(N' \) such that for \(n > N' \) the element \(y' \) is in the definition domain of \(\eta_{n}^{-1} \).

Now let us consider the mappings \(\omega_{n} = \eta_{n} \eta_{n}^{-1} = \psi_{n} \psi_{n}^{-1} \psi_{n} \psi_{n}^{-1} \) for positive integers \(n \); they are isomorphisms from \(S \) into \(S' \) and they can be eventually empty, i.e. defined for no element (if \(T_{n} = 0 \)). Let us study interrelations between \(\omega_{n} \) for \(m < n \). We have \(\psi_{m}(x) = \psi_{n}(\psi_{nm}(x)) \), \(\psi_{m}(x) = \psi_{n}^{-1}(\psi_{nm}(x)) \) for any \(x \) for which it is defined, therefore

\[
\omega_{m} = \psi_{m} \psi_{n}^{-1} \psi_{m} \psi_{n}^{-1} = \psi_{n} \psi_{nm} \psi_{m} \psi_{n}^{-1} \psi_{n}^{-1} \psi_{n}.
\]

Further \(\psi_{nm} \psi_{m} = \psi_{n} \psi_{nm} \), according to (A), and thus \(\psi_{n} \psi_{nm}^{-1} = \tau_{nm} \psi_{n}^{-1} \). According to (A) also \(\psi_{nm} \psi_{m} = \psi_{n} \tau_{nm} \). Thus we have \(\omega_{m}(y) = \psi_{n} \psi_{nm}^{-1} \psi_{n}^{-1} \psi_{n} \psi_{nm} \psi_{m} \psi_{n}^{-1} \psi_{n}^{-1} \psi_{n}^{-1}(y) = \psi_{n} \psi_{nm} \psi_{m} \psi_{n}^{-1} \psi_{n}^{-1} \psi_{n}^{-1}(y) = \omega_{n}(y) \) for all \(y \) for which \(\omega_{m}(y) \) is defined; therefore \(\omega_{n} \) is an extension of \(\omega_{m} \) for \(n > m \). To each \(y \in S \) there exists a positive integer \(N \) such that for \(n > N \) the mapping \(\eta_{n}^{-1} \) is defined in \(y \); therefore also \(\omega_{n} = \eta_{n} \eta_{n}^{-1} \) is defined in \(y \), because \(\eta_{n}^{-1}(y) \in T_{n} \) and \(\eta_{n}^{-1} \) is the mapping of \(T_{n} \) into \(S' \). Therefore let us define the mapping \(\omega \) of \(S \) into \(S' \) so that \(\omega(y) = \omega_{n}(y) \) for such a positive integer \(n \) that \(\omega_{n} \) is defined in \(y \); according to the above proved \(\omega(y) \) is determined uniquely. The mapping \(\omega \) is an extension of \(\omega_{n} \) for any positive integer \(n \). According to Lemma \(\omega \) is an isomorphism of \(S \) into \(S' \). Now we shall prove that \(\omega \) is even an isomorphism of \(S \) onto \(S' \). We have \(\omega_{n}^{-1} = \eta_{n} \eta_{n}^{-1} \) for any \(n \). The mapping \(\omega_{n}^{-1} \) is defined in all elements of \(S' \) in which \(\eta_{n}^{-1} \) is defined. We have proved that for each \(y' \in S' \) there exists a positive integer \(N \) such that for \(n > N \) the element \(y' \) is in the definition domain of \(\eta_{n}^{-1} \). We define the mapping \(\omega' \) of \(S' \) into \(S \) so that \(\omega'(y') = \omega_{n}^{-1}(y') \) for such a positive integer \(n \) that \(\omega_{n}^{-1} \) is defined in \(y' \); the mapping \(\omega' \) is determined uniquely. Now let \(y = \omega'(y') \), \(y \in S \), \(y' \in S' \). Therefore there exists a positive integer \(m \) such that \(y = \omega_{m}^{-1}(y') \); thus \(y' = \omega_{m}(y) \) and \(y' = \omega(y) \). So \(\omega' = \omega^{-1} \); as \(\omega' \) is defined in all elements of \(S' \), \(\omega \) must be an isomorphism onto \(S' \). Therefore \(S \) and \(S' \) are isomorphic.

Now suppose that \(S \) and \(S' \) are isomorphic. Let \(\eta \) be an isomorphism of \(S \) onto \(S' \). Put \(T_{n} = \eta \psi_{n}(S_{n}) \cap \psi_{n}^{-1}(S_{n}) \) for each positive integer \(n \). Further put \(\psi_{n} = \phi_{n}^{-1} \eta_{n}^{-1} \), \(\psi_{n} = \phi_{n}^{-1} \) for every positive integer \(n \), \(\tau_{nm}(x) = x \) for \(x \in T_{m} \), \(m \) and \(n \) positive integers, \(m < n \). The condition (A) is fulfilled, because \(\psi_{n} \tau_{ji}(x) = \phi_{ji}^{-1} \eta_{n}^{-1}(x) \) for \(x \in T_{i} \), \(\phi_{ji} \psi_{n}(x) = \phi_{ji} \phi_{n}^{-1} \eta_{n}^{-1}(x) \). Thus \(\phi_{ji} \phi_{n}^{-1} \eta_{n}^{-1}(x) \) for \(x \in T_{i} \), therefore \(\psi_{i} \tau_{ji}(x) = \psi_{ji}(x) \). Further \(\psi_{i} \tau_{ji}(x) = \psi_{ji}^{-1}(x) \) for \(x \in T_{i} \), \(\phi_{ji} \phi_{i}^{-1}(x) = \phi_{ji} \phi_{i}^{-1}(x) \).
for \(x \in T_i \), therefore \(\psi_{i}^j \tau_{ji} = q_{ji}^i \psi_{i}^j \). We shall verify the condition (B). Let \(x \in S_k \) and consider the element \(q_{ab}(x) \in S \). As \(\eta \) is an isomorphism of \(S \) onto \(S' \), there exists an element \(z = \eta q_{ab}(x) \in S' \). This element is equal to \(\phi_{ab}^m(y) \) for some \(m \) and some \(y \in S_m \). Let \(N = \max \{k, m\} \). For \(n > N \) we have \(z = \eta q_{ab}^n q_{ab}(x) = \eta q_{ab}^n q_{ab}(y) \), therefore \(z = \eta q_{ab}^n(S) \cap q_{ab}^n(S') = T_n \). Then \(x = q_{ab}^{-1}(z) \) and \(q_{ab}^n(x) = q_{ab}^n q_{ab}^{-1}(z) = q_{ab}^{-1}(z) = \phi_{ab}^n(x) \in S_n(T_n) \). Analogously we verify the condition (C). The proof is ready.

Now if we put \(\xi_i = \psi_i^j \psi_{i}^{-1} \), the mapping \(\xi_i \) is an isomorphism from \(S_i \) into \(S_i' \). Further \(\xi_j q_{ji}(x) = \psi_j^i \psi_i^j q_{ji}(x) = \psi_j^i \psi_i^j \psi_{ji}^i \psi_i^j(x) = q_{ji}^i \psi_i^j(x) \) for any \(x \) for which both \(\xi_j q_{ji} \) and \(q_{ji}^i \) are defined; this follows from the conditions (A). From the conditions (B) and (C) we can obtain the result that for any positive integer \(k \) and \(x \in S_k \) there exists a positive integer \(N \) such that for \(n > N \) the element \(q_{ab}^n(x) \) is in the definition domain of \(\xi_n \) and for any positive integer \(k \) and \(x' \in S_k' \) there exists a positive integer \(n' \) such that for \(n > n' \) the element \(q_{ab}^n(x') \) is in the set of values of \(\xi_n \).

On the other hand, if such mappings \(\xi_i \) are defined, we may obtain the sets \(T_i \) and the mappings \(\psi_i, \psi_{i}^j, \tau_{ji} \). For each \(i \) we define \(T_i \) as the subset of \(S_i \) consisting of all elements \(x \) for which \(\xi_i(x) \) is defined. Then \(\psi_i(x) = x, \psi_{i}^j(x) = \xi_j(x), \tau_{ji}(x) = q_{ji}(x) \) for \(x \in T_i, j > i \). We can easily verify all the conditions for these sets and mappings.

Therefore we can express a theorem which is a simplification of Theorem 1; we do not need the sets \(T_i \) in it.

Theorem 2. Let \(\{S_i; i = 1, 2, \cdots\}, \{S_i'; i = 1, 2, \cdots\} \) be two infinite sequences of finitary relation spaces, let \(S = \lim (S_i; q_{ji}), S' = \lim (S_i'; q_{ji}) \), where \(q_{ji}, q_{ji}^i \) are corresponding isomorphisms. The relation spaces \(S \) and \(S' \) are isomorphic to each other, if and only if there exists a family \(\Xi = \{\xi_i; i = 1, 2, \cdots\} \) of isomorphisms such that \(\xi_i \) is an isomorphism from \(S_i \) into \(S_i' \) (some of these isomorphisms may be empty) so that the following conditions are satisfied:

(A) \(\xi_j q_{ji}(x) = q_{ji}^i(x) \xi_j(x) \)

for any \(x \) for which both \(\xi_j q_{ji} \) and \(q_{ji}^i \xi_j \) are defined.

(B) To each positive integer \(k \) and to each element \(x \in S_k \) there exists such a positive integer \(N \) that for each integer \(n > N \) the element \(q_{ab}^n(x) \) is contained in the definition domain of \(\xi_n \).

(C) To each positive integer \(k \) and to each element \(x' \in S_k' \) there exists such a positive integer \(N' \) that for each integer \(n > N' \) the element \(q_{ab}^n(x') \) is contained in the set of values of \(\xi_n \).

Katedra Matematiky Vysoké školy strojní a textilní, Studentská 5, Liberec I, Czechoslovakia.
Reference