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In 1949 K. Gddel [ 27" proposed a new type of space-time as a solution
for Einstein’s field equations. It was generalized and discussed by J. L. Synge
[6 ] from the physical viewpoint.

The space of Gddel type is, according to Synge, a 4-dimensional Rieman-
nian space defined by the metric form

o1 = B g o S 07 0287
where g.4’s are functions of variables (x°, x*) and g,;’s are constants. Since a
metric form defining a solution for Einstein’s equations must be of signature
+2, one of the two quadratic forms on the right hand side of (0.1) should be
of signature 0 and the other of sighature +2.

It is well known that an n-dimensional Riemannian space 7, can be im-
bedded in a flat space of at most n(n+1)/2 dimensions. If the lowest di-
mension of the flat space in which the ¥V, can be imbedded is n -+ p, the 7, is
said to be of class p. The purpose of the present paper is to examine a special
case of the space of Gddel type under what conditions it is of class 1. The
following theorems are essential for this purpose.

Turorem 1. An n-dimensional Riemannian space is of class 1 tf and
only if its curvature tensor does not vanish and there can be found a value of
e and a set of functions b;; on V, satisfying the Gauss’ equations

(0.2) eRiju=0birbji—bibjr, (], k, 1=1,2, ., n),
and the Codazzi’s equations
(03) bij,k_bik,j:Oa (l> j: kzl: 27"'7 n’))

where R;j.’s are the components of the curvature tensor and ¢ takes the value
of +1 or —1 so that b;;’s are reals. In equation (0.3) comma denotes covariant

1) Numbers in brackets refer to the references at the end of the paper.
2) Throughout the paper, Greek suffixes @ and j take the values 1, 2, and 7 and 0 the values 3, 4.
Roman suffixes take the values 1, 2 and 4 unless otherwise stated.
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differentiation.

When the given ¥, is of class 1, we can find b;; as a set of solutions for
(0.2) and (0.3). If the rank of the matrix (&;;) is 0 or 1, the V, is said to be of
type 1 and if the rank is r =2, of type r.

Turorem 2. If the V, of class 1 is of type r =3, it is uniquely tmbedded
wn an (n+ 1)-dimensional flat space within a motion.

In the following sections we consider a special case of the space of Godel
type due to Godel. The calculation in this paper was suggested by Prof. M.
Matsumoto. The author expresses here his gratitude.

§1. Preliminaries

1. Assumptions

Since it is too complicated to consider the space of Godel type in the
most general case, we choose as a special case a V, defined by the following
metric tensor:

a be 1 0
(1.1 (ga/?):< >, (g78>:< >,
be! ce? 0 1

ce

where a, b and ¢ are constants and £ is a function of x* only. Putting ¢=5%—
ac, the signature requirement demands us to assume ¢ >0.

It is obvious that in calculating quantities such as the Christoffel’s sym-
bols, the components of the curvature tensor etc., the variable x* does not
concern. So the x3-direction may be neglected for the present and we may
consider the V; defined by the metric

(1.1) ds?=a(dx')?+2be’ dxdx’+ ce™ (dx®)*+(dxb)>.

If the 7; is of class 1, so is the V7, defined by (1.1) and vice versa.
The differentiability of the function f is, of course, assumed in sufficient
order. And its derivatives will be denoted by primes as f”, f” and so on.

2. Fundamental quantities for the V; defined by (1.1")
Direct calculation gives us the following:
(i) The contravariant components of the metric tensor.

—c be '
(1.2) (g*®)=0"" , g44:1.
b -f -2f
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(ii) The Christoffel’s symbols.

(1.3)

(1.4)

[14, 2]=[24, 1= —[12, 4]:%f’ef
[42, 2= —[22, 4]=cf"e¥,
[ij, k]=0, otherwise.

Wlal=r loaf=%re

(Bid=srret =0-g)r

Wol=—g 7o {oaf=—ere®

{.i }:O, otherwise.
jk

(iii) The components of the curvature tensor.
Only four components of the curvature tensor are non-vanishing and

independent.

(1.5)

(iv) The components of the Ricci tensor and the scalar curvature.

(1.6)

RIZIZZ% be/Zer’
1 ab?®
R1414=——4—a—0-‘f2,
1 7/ bz /2 f
Ruszs=— 5 b( 1"+ 95 1),
. 7 _bi 72 2f
Rog24= Cf+1+46 e

ab?
Ru=—5; 13,

Ryy=—% (f”—l— >

Rzzzc{f” <1+ g(j)f }ew,
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R44:f”+<1—‘§%>f/2,
R14:R24:O-
(L.7) R:2{f”+(1—%)f’2}_

These last results show that the 7, defined by (1.1) is not an Einstein space.
This is reasonable since, according to E. Kasner [ 4], a 4-dimensional Einstein
space cannot be imbedded in a 5-dimensional flat space.

§2. The Gauss’ equations

The Jacobi’s theorem in the theory of determinants enables us to express
b:;/’s in the Gauss’ equations (0.2) in terms of R;./’s.
If we denote

eRy124  €Rou1  eRau12

(2-1) 4= eRy12s eRunn eRunr

eR1224 €Riz11 €Ri212

and regard the right hand side of (0.2) as the minor of order 2 of the matrix
(b;;), the Jacobi’s theorem assures that

1
(2.2) bij=4 2B,

where B;; denotes the cofactor of the element in 4 corresponding to b;; in the
matrix (b;;), provided that 4=~0.
Using the results in the previous section, we obtain

— & gapn uff GC 42 p2
2.3) N R s

>

7% bz /2 7/ bZ 12
where A= +<1+E>f and B=/"+5 f".

This shows that the Gauss’ equations can be solved for b4;’s uniquely ex-
cept for the cases 6=0, /=0 andaT_c Af"?— B*=0. So the imbedding of the 7

defined by (1.1) in a 4-dimensional flat space is unique within a motion if it
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exists.

In consequence of (2.2) and (2.3) we obtain the set of solutions for 4,/’s in
the Gauss’ equations.

bi=— abzfls i
|
biy— — bBf'e’ ’
T )
J _ Af’
o |57 {a(%—c;ffz(iBz)}é ’
b — acAf"*—oB*
o
b1a=b2=0

§3. The Codazzi’s equations

Next we determine the conditions for the function f so that the ;s
obtained in the previous section satisfy the Codazzi’s equations (0.3).

Putting bj.="06i;, s —bi1 j, (0.3) can be written in the form b4,;,=0. Substi-
tuting (1.4) and (2.4) into (0.3), we have the following four equations which
are independent:

0611

bris= 2511{114}20,

buas= ot~ Dby g+ Dufy of =0
(8.1) T { l }4_26‘{ l }_0

224 ="p i2Y9 4 1019 9f =U;

by1z=— sz1{4 2}+Zl;bzz{4i1}=0.

The equation b4,,=0 is written in the form
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abef'te!
(% 4

(3.2) =0.

Since we have assumed 40, f'5=0 and %9— Af’*—B*+0, (3.2) means ac

=0. So we should consider the following three different cases: (i) e=0 and
¢==0, (i1) a0 and ¢ = 0, (iii) a=c=0.

(i) The case where a=0 and ¢ 0.
In this case the non-vanishing Christoffel’s symbols are as follows:

=t =% = are el =—gre o=

1 1
{a(fzizéif"z—BZ)}? in the denominators of the &;’s reduces to {a<—32>}§

=B, if we choose ¢=—1 so that the 4;’s to be real. Then the b;/’s can be
written in the form,

’ A 7 _2f
,fef’ bzzZ—C—fB—ef, byy=—

B

511:0, 512:_ 7,

b
2
1t 5 /2 /) 1 72 3 :
where A=f"+-,~ f* and B=f"+-5- f in accordance with (2.3).
If we substitute these results into (3.1), the equations 6,,,=0 and b,,,=0

are satisfied identically and b.,,=0 becomes

3f/262f

(33) b224 E_@_z___ (ff//f/_4f//2_ 3f//f/2 —f/4):0-

(i1) The case where a=~0 and ¢=0.
In this case the non-vanishing Christoffel’s symbols and the b;;’s are as
follows:

{114}:{224}:1;" {124}2 AR {142}: _%f <

BA

a /3
b= f bw:__b_f’ef, b2 =0, b44:—7, >

4B 2

where B:f"’+%f’2 as in the case (i).
Then the equations b;,,=0 and b,,,=0 of (3.1) are satisfied identically
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and b;,4,=0 becomes

— aflz 111 ff /7 17 £12N
(3.4) blM:W(f f~4f Z—ff )=0.

(iii) The case where a=c=0.
In this case the non-vanishing Christoffel’s symbols and the 4;;’s are as
follows:

, 1 .
where B=f"+—5- f as in the former two cases.
The Codazzi’s equations are satisfied identically by these{ji k}’s and 5;;’s.
Now we have obtained the conclusion.

TuroreM A. In order that the V4 defined by (1.1) 18 of class 1, only three
cases for the constants a, c and the function f in gi; are possible ©f we assume

&#Qf#Omﬁ%§4ﬁ—B%Hmem,

(D a=0, c=0 and f7f—4f"*=3ff*—f*=0,
(AD a==0, c¢=0 and f"f—4f"—f'F?=0,
(II) a=c=0 and [ isarbitrary.

§4. The excepted cases

In the former sections we assumed 60, "0 and %f Af"*— B*+-0.

Among these assumptions /0 is essential, because if f'=0, all the com-
ponents of g;; are constants and the V, is itself flat.

Now we consider the cases excepted in the former sections.

(i) The case where b=0.
In this case the non-vanishing Christoffel’s symbols are

Mzﬂ:—m&ﬂ:d%ﬂ{;ﬁzﬂ égknﬂﬁ%
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And only one component of the curvature tensor
Raogos= —C(f//+f/2)32f>

is non-vanishing. Obviously we can assume R445~0.
So the Gauss’ equations are expressed as follows:

biy boz— b7 =0,
biybus— bt =0,

b1z bas— brs bay =0,

| Bybag—bos?=—ec(f"+ e,
b1z bos— basbra=0,

(4.1)

b14b1z—b24b1:=0.

An easy calculation shows b,;=0,,=56,,=0, and (4.1) reduces to only one
equation

(41/) bzz 644—' 5242 = —E&cC (f” +f/2) ezf.
On the other hand the Codazzi’s equations lead us to the condition

0bsz _ 0bzy _ 0bu

oxl — 0x*  0xl =0,
4.2 0by,  0b , ,
(4.2) a96242 _a_;zfl__cf esz44—szz=0,
0by  0b
Dud gt TS bu=0.
11 ac "/ /! bz 4 /!
(i) The case where % Af— B*~0 and b0. (4= +<1+—47.>f2, B=f

b: .,
95 17)
In this case the Gauss’ equations take the following expressions:

5
b11 b2 — 5122:’-4_ bzfxzer,

eab?®

511644—17142:— Ao f/z,

. b
“3) | brobus—buubu=—-5-
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boobyy—bo®= —ec Ae¥,
b12b24—b14b22=0,
b14b12—b11024=0.
An elementary calculation shows b,,=b2,=5b4=0 and
(4.4) a=0, B=0and c4=0.

As in the former cases, a=0 means A=f”+%f’2, B:f”-{—%;f’z. But

in such a case 4=0 and B=0 cannot be compatible, so we can conclude ¢=0.
And the condition (4.4) is rewritten in the form

(4.4) a=c=0, and f”+% £2=0.

Integrating the last differential equation, we obtain for f

(4.5) f=2log(ax*+p),

where « and 8 are arbitrary constants.
The Codazzi’s equations become as follows:

by ok
0x%  0Oxt
0b1z  0byy —0
0x%  Oxt
(4.6) %%1'41"» — % b11=0,
b S,
oxt T 2 BT
Obyy S,
0xt 9 BT

From the last three equations of (4.6) we obtain

f
611:¢(x1: xz)eza

f
bzzzé(xl, xz)ez.

f
(4.7) 1612240(9513 x%)e?,
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Substituting (4.7) and (4.5) into the first equation of (4.3), we obtain
(4.8) o —E2—eabr.

Moreover if we put (4.7) into the first and the second equation of (4.6), we
obtain the condition for the functions ¢, ¢ and & in (4.7), that is,

4.9) 0p _ 0y 0y _ 0

0x2  0x'’ 0x? Oxl
Summing up these results, we have the

TaeoreM B. In order that the V4 defined by (1.1) may be of class 1, in the

: — =3 ﬂ /2 2__ ’ _prr b_z 12 _

cases (21) b=0 and (ii) -~ 4f*"—B°=0, b+0 where A=f +<1+ 1o >f , B=
f//+g—6 %, it is necessary and sufficient that the function f of x* and the b;’s

satisfy the following respective conditions:

@) c(f”+f’2}#0, b11=b12=01.=0,
baobas—ba’=—cc(f'+f7)e¥,

6622 _ 01)247_ 0644 _ 2@4_%4 ! —
axl = axl = axl —O, ax4 axz +fb24—0)
61)22 ab24

A4 —cf’esz“#f’bzz:(),

oxt 0x?

(i) f=2log(ax*+pB), bru=bu=0bu=0,
1 ot 1ot 1o L
bllzgp(x s X )82, 612:¢(x y X )629 622:5(27 » X )82,
where ¢, ¢ and & satisfy (4.8) and (4.9).
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