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The concepts of immediate predecessor and of immediate successor in
the lattice of uniformities and consequently that of adjacent uniformities
were introduced by N. Levine and L. Nachman in [3]. In the same paper,
the authors have also shown that every uniformity whose topology is not
discrete has an immediate successor and that every non trivial uniformity
has an immediate predecessor.

In this paper we introduce similar concepts of immediate predecessor
and immediate successor in the lattice of topologies and consequently that
of adjacent topologies. It is then a natural question to ask what types
of topologies have immediate predecessors or immediate successors or
both. We have attempted to give a soluticn to this problem.

§ I deals with immediate successors and § II deals with immediate pre-
decessors. In §III we discuss some properties of adjacent topologies.

§1 Immediate Successors

1.1 Introduction

Throughout this paper T(X) will denote the lattice of topologies on the
set X. Elements of T(X) will be represented by 7, #, v etec. Also, we
make the assumption that | X| >1 where | X| denotes the cardinal number
of X.

I.1.1 Dermnition. Let €T (X) and suppose that A&7, AcX.
Then T (A) s the collection of sets of the form 0,U(0,N A4), 0,7, and is
called the simple extension of 7 determined by A (see[ 4]).

I.1.2 Tueorem. Let 7 T(X) and suppose that 7 (A) is a simple
extension of 7. Then

1) gUAeTX) and

(2) T(A)=T Vv« where =4, A, X} and v/ denotes supremum.
See [ 4] for elementary properties of 7 (A4).
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1. 1.3 DeriNiTioN. Let 7, % be elements of T(X). Then T imp U 14
WYTgcu, 7+« and ) 1f T<v CU and v €T{X) then T =¥ or ¥ =4%.
We call % and v~ adjacent iff % imp v or ¢ vmp %. Also vf % vmp ¥ we
say that % s an 1mmediate predecessor of v and ¥ is an tmmediate suc-
cessor of U.

We shall make frequent use of the following important lemma.

I.1.4 Lemma. Let 7 vmp % in T{(X). Then % is a simple extension
of 7.

Proor: Let Aec#—9. Then gcI(A)ycu, T+5(A) and hence
T(A)=%.
The converse of the above lemma is false as is seen in

I1.1.5 Exampre. Let X={a,b,c}and 7 = ,
({6}) is false since T {9, {a}, {a, b}, X} =7 ({b}), the inclusions being
proper.

The next theorem is simple but useful.

I.1.6 Taeorem. If |7 | is finite, then T has both an immediate pre-
decessor and an vmmediate successor 1ff 7 is non trivial (in this paper non
trivial means both non indiscrete and non discrete).

We use the following lemma many times in this paper.

1.1.7 Lemma. Let g, #eT(X) and AcT, T cU<T(A). Then %
=T (A)1ff Acu.

Proor: If #=7(A),then A= since A7 (A). Conversely, suppose
Aea. Then 7 Vv{¢, A, X} and thus 7 (4)c%. Hence T (A)=%.

In this section we will first show that “almost” every non-T, topology
has an immediate successor (Theorem 1. 2. 3). In 1. 8, we give a necessary
condition on 4 for J imp 7 (A) whenever 7 is a T, topology. In 1.4, we
show that no metric topology has an immediate successor.

I. 2 Non-T, spaces

I. 2.1 DeriNiTION. A set AC X is said to be generalized closed (written
henceforth as g-closed) iff ¢cACO whenever A0 and O is open (see [27]).
(c demotes the closure operator relative to I)

Throughout the rest of the paper c{x} denotes closure of the singleton
set {x}.
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I.2.2 LemMa. Let (X, 7)beaspace and x=X. Then {x}1s g-closed
1 yec{x} vmplies that x € c{ y} (see [2]).

I. 2.3 Tneorem. Let {x} be g-closed, but not closed relative to 7.
Then T vmp T (F{x}).

Proor: Clearly #{x}«¢.9. Thus, 7<9(%4{x}), T+T (%Jx;) Sup-
pose T CUCT(€{x}), T+U. Let U=0,0(0,N%{x})ecu%—T where O;,
0,e9. If x&0,0rif x€0,, then U=0,00,€9, a contradlctlon. Thus
x€0,and x0,. Butthen c{x}c0,and (1) c{x}NF{x}cO,NE{x}cU.
Also, we have (2) U %{«x}. It follows then that

Il
~~

F{x}ncix})U(E{x}NFci{x})
cUuIntg{x} by (1)
CE{x by (2).

Thus, ¢{x}=UuInt¢{x}e and I(¥{x})=% by Lemma I.1.7.

- Hence 7 imp 7(%{x}) and the proof is complete.

_ The following example indicates that the converse of Theorem I. 2. 3
is false.

I.2.4 ExamprLe. Let x=~y inaset X. Define s ={0cX|x<0 im-
plies ye0}. Then 7 €T(X)and {y} is neither closed nor g-closed. We
prove that 7 imp (¥ {y}). Suppse T c¥CT(¥{y}); T+u. LetUcu
—9. ThenxeUand y&U. Butthen®@{y}=(@{y}—{2s}H)U{{x, y}nU)
e#%. Thus #=7(¢{y})and T imp T (¥{y}).

I. 2.5 Remark. J(%{y}) in Example I. 2. 4 is the discrete topology
on X,

I.2.6 Remarx. 7 (%{x}) in Theorem I. 2. 3is not T,. Let y+ux
and yec{x}. Byl.2.2¢{y}¢7. Weclaimthatc{y} &7 (¢{x}). Sosup-
pose ¢{y}=I(¥{x}). Then ¢{y}=0,U(0,Nn¥{x}) for some 0,, 0, €5
Then x=%{y} implies x=0,. Therefore c¢{x}<0, and yEOIC‘K{yf,
which is not true. Hence (% {«x}) is not T,.

We can say even more (Theorem I. 2. 7 below), namely, that any other
immediate successor of .7 in I. 2. 3 must be a non-T, topology.

[. 2.7 Tueorem. Ina space X let {x} be g-closed, but mot closed with
respect to 7. If T imp %, then % s not T.
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Proor: Assume #isT,. Then ¢{x}, ¢{y} =« where yec{x}, y+#=x
and thus, 7(¢{x})c#. But a similar argument as in the Remark I. 2. 6
would prove that ¥ { y} €9 (¢{*}). Hence I 7 (¥{x})C, the inclusions
being proper, a contradiction.

The subsequent lemma will be helpful in general.

I.2.8 LemmA. Let X bearegular space. Then singletons are g-closed.

Proor: Let x=X. We show that {x} is g-closed as follows: Sup-
pose xe0.7. QSince J is regular, there exists 0, €. such that x=0, <
c0,<0. Butthen c{x}<c0,c0 and thus {x} is g-closed.

1.2.9 Tueorem. Let I be a regular, but a non-T, topology. Then T
has an immediate successor.

Proor: The result will be an immediate consequence of I. 2. 3, if we
show that there exists {x} such that {x}is g-closed, but not closed. Since
J is not T, there exists {«x} such that {x} is not closed. But by Lemma
I.2. 8 {x} is also g-closed.

Since a completely regular space is regular we have the following co-
rollary:

1. 2.10 CororLArRY. Let  be a completely regular, but a non-T, topo-
logy. Then I has an tmmediate successor.

The result that follows indicates that unlike the metric topologies,
pseudometric topologies which are not metric topologies always possess
immediate successors.

I. 2. 11 Tueorem. FEwvery pseudometric topology which is not a metric
topology has an vmmediate successor.

Proor: A pseudometric topology is regular, and since it is not a metric
topology, it is not T;. Hence the theorem follows from Theorem I. 2. 9.

I. 3 T, spaces

[.3.1 Tueorem. Let 7€T(X)and AeT. If T imp T (A), then a,
be A —Intd implies c{a}=c{b}, c, Int denoting the closure and the inte-
rior operators respectively, relative to 7.

Proor: If we show that acc{b} and b c{a}, it will automatically fol-
low that c{a}=c{b}. Suppose acc{b}. If acInt(4—c{b}), then a=Int4,
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a contradiction. Thus a&Int(4—c{b}) and 4—c{b}¢.7. Hence,
(D) T(A—c{b}), TF+IT{A—c{b}).

Also, since 4—c{b} T (A4), T(A—c{b})=T(4). We assert that 4«
T (A—c{b}). So suppose that 45 (A4—c{b}). Then we can write 4
=0, U(0;Nn(4d—cqb})), 0,, 0,€5. Now, be 4 and b& A—c{b}. Hence
be0,. Butthen b0, 4, which means b<IntA, a contradiction. Hence
A& T (A—cf{b}) and

(2) T(A=clb))cT(4), T(A—c{b})#+T (A).

From (1) and (2) we get, 7 €7 (4—c{b}) =7 (A), the inclusions being
proper. Thisis a contradlctlon since we assumed 7 imp I (A4). Thusaee
c{b}. Similarly we can prove that b<c{a} and the proof is complete.

As promised earlier, we now present a necessary condition on a set 4
for 7 imp 7(A4), whenever 7 is T,.

I. 3.2 Turorem. Let.7 bea T, topology and A& 7. If 7 imp T (A)
then A—IntA={a}, Int being the interior operator relative to

Proor: Let a, b A—Int4. Using Theorem I. 3. 1 and the fact 7
is T), we have {a} =c{a}=c{b}=4{b}. Thus 4—Int4={al.

To see that the converse of 1. 3. 2 is not true, the reader is referred to
Example 1. 4. 2 below.

I. 4 Topologies without Immediate Successors

I.4.1 Treorem. Let (X, 7)beatopological space. Suppose for every
set A&7, we have € A=0,U0, where AUO;&T and 0,7 ,i=1,2. Then
7 dose not have an immediate successor.

Proor: To prove that 7 does not have an immediate successor it
suffices to prove that for any 4¢ .9, 7(4) is not an immediate successor of
J . Sosuppose A¢.7 and let x € 4—IntA, where Int denotes the interior
operator with respect to 7. Then x€c¥A4=c0,Uc0,. Assume xec0,.
It is obvious that

(1) T T (AU0,), TF+T(AU0,)

and that 7(4U0,)c7(4). We show that 4¢7(4U0,) by denial. Sup-
pose then that 4€9(4U0,). We can write 4=0,U(0,n(4U0,)) for
some O3, 0,7 . But then x &0, for otherwise x=0,< 4, implying that
x €Int4, a contradiction. Thus, x=0, and 0,n 0,5¢, since x =c0,. But
this not true, for we have 0,n0,=4n0,=¢. Hence 4&7(4AU0,) and
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(2) T(AVO0NC T (A, T(AUO0)ET(A).

From (1) and (2) we have 9 €9 (4U0,)c5(A), the inclusions being
proper, and thus 7 (4) is not an immediate successor of 7.
The case x €c0, is treated similarly.

I1.4.2 Exampre. Let X=[1,2]andlet y7={0cX|1<0or 10 and
%0 is finite}. Then (X, ) is a compact Hausdorff space and hence com-
pletely regular. In[37], Norman Levine and Louis Nachman have proved
that if # is completely regular topology such that s c %, 9 ¢ %, then there
exists a completely regular topology ¥~ such that 7 ¥ <%, inclusions
being proper. In fact, their argument proves even more, namely, that
dees not have an immediate successor. But we shall illustrate this by using
Theorem I. 4. 1.

It suffices to show that, if 47, then we can write ¥ 4=0, U0, such
that AU0;¢7 and 0,7, i=1, 2. Butif A¢ 7, thenlc 4and ¥ 4isnot
finite. Hence we can write ¥ 4=0,U0,, where 0,n0,=¢ and O, and O,
are both infinite. Clearly 0,, 0,7 . Also, since 1€ 4U0,, AU0, and
since O, O, are infinite AUO0,;, AUO0,& 7.

Now we turn to a slightly different and perhaps a larger class of topo-
logies which do not possess immediate successors.

I.4.3 Tureorem. LetJ bea'T,, completely normal topology satisfying
the first axiom of countability. Then I does not have an immediate succes-
sor.

Proor: We prove the result by showing that for any 4¢.7, 7(4) is
not an immediate successor of 7. Let then 447 and choose acc¥ 4
—# 4. There exists a sequence {«,} of distinct elements in ¥ 4 such that
{x,}—a. Let B;={x;|icdd} and B,={x,|jeven}. Clearly B,, B,C%A.
Also ByncB,=¢ and ¢B,nB,=¢. But then because of complete norma-
lity, there exist 0,, 0,7 such that B,<0,, B,C0, and O0,n0,=¢. We
assert that 7 €7 (4U0,)c7(4), the inclusions being proper, or that (1)
Auv0,&7 and (2) A€ T (4AU0,).

To prove (1) assume AUO, 7. There exists 0,5 suchthatec0,c
AU0,. BecauseaccB,, 0,nB,#¢. Choose x;,€0,n B,. But then x;e
AU Q,, which is not true and (1) is proved.

Likewise, to prove (2) assume A9 (A4U0,). Then we can write 4
=0,U(0,n(4U0,)), where 0,, 0,7 . If a=0,, then a=Int4, a contra-
diction. Therefore a=0,N(4U0,). Again, since a=cB,;, 0,N B,5¢.
Let x%;€0,n B,. This implies that x;€0,N(4U0,)< 4, meaning x;c 4,
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which cannot be true. Thus (2) is proved and the proof is complete.

I.4.4 Exampre. Let X=[0, £), the space of all ordinals less than
the first uncountable ordinal £ and let 7 be the order topology on [0, 2).
We know that 7 is T,, completely normal and also satisfies the first axiom
of countability. Hence by 1. 4. 3 it does not have an immediate successor.

I.4.5 ExamprLe. Let (X, 7)be the real line with the half-open inter-
val topology. Again it is known that (X, 97) is T, completely normal and
first countable, and thus does not have an immediate successor.

We return to Example I. 4. 2 to see that first axiom is not a necessary
condition for a T,, completely normal topology not to have an immediate
successor. The topology in this example is T;, completely normal, but not
first countable and it does not have an immediate successor.

Since T,, completely normal and first axiom are hereditary properties,
as a direct consequence of 1. 4. 3 we have the ensuing corollary.

I.4.6 CororLLARY. Let (X, ) be a T, completely normal and first
countable topological space. If YC X, then (Y, Y NT) hasno immediate suc-
cessor, where Y NI denotes the subspace topology induced by 7.

Finally, as mentioned earlier in the introduction, we obtain the follow-
ing:

I. 4.7 Tueorem. No metric topology has an immediate successor.

Proor: A metric topology is T,, completely normal and saitisfies the
first axiom of countability and thus does not have an immediate successor
by L. 4. 3.

§II Immediate Predecessors

In this section we shall study the immediate predecessors of a topology
7. First we shall show that “almost” every non D-topology (see Defini-
tion II. 1. 1) has an immediate predecessor (Theorem II. 1. 6). Conse-
quently, we can conclude that every T, topolegy which is not a D-topology
and every non indiscrete regular topology have immediate predecessors.

II. 1 Non D-topologies

IT. 1. 1 DeriNiTION. A topology for a set X 1s called a D-topology (and
(X, 9) a D-space) whenever every non empty open set is dense in X (see [17]).
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We borrow the following theorem from [17].

II1. 1. 2 Tueorem. Inatopological space (X, T), the following are equi-
valent: (i) (X, ) is a D-space, (i1) every pair of non empty open sets has a
non empty intersection, and (iii) every open set in X is connected.

The next three lemmas will be quite useful.

I1. 1.3 Lemma. Let (X, 7) be a topological space and x=~vy. Define
U={0€T |x€0—->yc0}. Then T (X)and 4T .

II.1. 4 Lemma. Let {7 ,|acs 4} be a chain of topologies for a set X
and Oc X. Also, let T =V{T a4} where Vv denotes the supremum.
Then O=.7 1ff for each x <0, there exists an 0,7 , for some a4 such
that x=0,<0.

Proor: Thesufficiency follows from the definitionof 7. Toshow the
necessity, let x€0e7. There exist ay,..., a, in 4 and 0,7, such that
xe0,n--Nn0,=0. Suppose that the notation is chosen so that v, c 7,
c-cJ,,. Thenclearly O,n---n0,isin 7 ,,.

II.1. 5 Lemma. Let x~yin X. Let {7 ,|lacd} be a chain of topo-
logies for X such that x, y cannot be separated by the open sets in 7, for
every ac 4. Then x, y cannot be separated by the open sets in T =\ {7 ,|a
e4d}.

Proor: Suppose there exist 0,, 0,7 such that x€0,, y=0, and
0,n0,=¢. Butthen by Lemma II. 1. 4 there exist 0,€7, and 0,7
for some «, £ in 4 such that x0,<0,and ye0,20,. Suppose the nota-
tion is chosenso that 7,29, Then0,, 0,9 5 Also,0,n0z=¢. This
means x, y can be separated by the open sets in 7,4, a contradiction.
Hence the result follows.

I1. 1. 6 Tueorem. Suppose that 7 s not a D-topology and that the
singletons are g-closed. Then I has an 1mmediate predecessor.

Proor: Let 0,, O, be the non empty disjoint open sets in 7 (see
Theorem II. 1. 2). Suppose x0,. Choose ye0, Then xsy. Define
%={0c7 |x€0—yc0}. Then, by Lemmall. 1.3, #T(X) and #c 7.
Also, x, y cannot be separated by the open sets in . Let ¥ ={7 €T(X)]
%<7 7 and x, ycannot be separated by the open sets in 7'}, F=¢,
since #c¥. Let{v , Jacsd}beachainin¥. Then V{¥ ,|asd}2% and
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by Lemma II. 1. 5 x, y cannot be separated by the open sets in v {¥ ", |ac
4}. Hence, V{7 ,|las4} is an upper bound for the chain {v",|aec 4}.
Therefore, by the Zorn’s lemma & has a maximal element, say v~. We
have #cv <9, v +9. To complete the preoof it suffices to show that
v imp . Soletv cw g, v=+~=w. Then, because of the maximality of
¥", x, y can be separated by the open sets in 7", e.g., by W,, W,. Now we
show that » =9 as follows: Let O . If either x&0 or x, y=0, then
Ocu<w. Assume therefore that x=0 and that y¢ 0. Then,

O=0nc{x}))UONFc{x})
cONW)IUONEc{x}) since {x} is g-closed
=(OuUW)nW,)uOn%c{x}) since W,NW,=¢
cO

which means O=((QUW )N W, )u(ONnFc{x}). But,0nGc{x},OUW, e
c# . Hence, Ocw and # =2. This completes the proof.
If 7 is a T, topology, then the singletons are necessarily g-closed.
Therefore, the next theorem results directly from II. 1. 6.

II. 1.7 Taeorem. If 7 is a T, but a non D-topology, then I has an
immediate predecessor.

II. 1. 8 Turorem. Let 9 be Hausdorff. Then I has an immediate
predecessor.

Proor: Let xs~y. Then thereexist0,, 0,5 suchthat x=0,, y=0,
and 0,n0,=¢. Thus 7 is not a D-topology and the result follows from
II. 1. 7.

As an immediate consequence of II. 1. 8 we obtain the following:

II.1.9 Turorem. FEwvery metrictopology hasan immediate predecessor.

II.1.10 Taeorem. Let 9 be regular and not indiscrete. Then I has
an immediate predecessor.

Proor: By Lemma I. 2. 8 the singletons are g-closed. Hence, tocom-
plete the proof it suffices to show that .7 is not a D-topology (see Theorem
II.1.6). Let¢s-0c< X,0+<XandO<cs. Pick x=0. By regularity there
exists 0,9 such that x=0,2¢0,20. But then ¥c0,2%0-+*¢. Thus,
0,, ¢c0, are non empty disjoint open subsets and 7 is not a D-topology.
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The subsequent corollary and the theorem after it follow directly from
I1I.1.10.

II. 1. 11 CoroLrLaRrY. If I 1s a non indiscrete completely regular
topology, then 7 has an immediate predecessor.

II. 1. 12 Tuarorem. Let 7 be a non indiscrete pseudometric topology.
Then 7 has an immediate predecessor.

Before we go to § 111, let us pause for a moment to compare and contrast
our results on the immediate successorsin § I and our results on the imme-
diate predecessors discussed so far in this section. We may combine The-
orern I. 2. 3 and Theorem II. 1. 6 into the following theorem.

II. 1. 13 Tueorem. Suppose that I is not a D-topology and that the
singletons are g-closed. If further, 7 is not T,, then I has both an imme-
diate predecessor and an immediate successor.

Every non trivial, non T, regular or completely regular topology has
both an immediate predecessor and an immediate successor (see Theorem
1.2.9 and Theorem 11.1.10, Corollary I.2.10 and Corollary 11.1.11). Also,
every non trivial pseudometric topology which is not a metrie topology has
both an immediate predecessor and an immediate successor (Theorem 1.2.11
and Theorem 11.1.12); but strangely enough a metric topology always has
an immediate predecessor (Theorem II. 1. 9) and never has an immediate
successor {Theorem 1.4.7).

§III Properties of Adjacent Topologies

So far we concerned ourselves with the existence of adjacent topologies.
Now, assuming the existence of adjacent topologies we will further inves-
tigate the properties of adjacent topologies. Weak and quotient topologies
induced by adjacent topologies are explored inII1. 1. III. 2 treats the carte-
sian products of adjacent topologies and III. 3 treats the topological sums
of adjacent topologies.

III. 1 Weak and Quotient Topologies

III. 1.1 NoraTtion. If f: X—Y is an onto function and e T(X), we
let /7 denote the quotient topology for Y, thatis, f7 ={Uc Y|f [ UJes}
is the largest topology on Y such that f is continuous.

If f: X>Yand #<T(Y),we let f~'% denote the weak topology on X,
that is, /' ={fLUJ| U=} is the smallest topology on X such that f is
continuous.
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We first examine the quotient topologies.

III.1.2 LemMA. Let f: X—Y beonto and 7, 7' €T(X). If 777,
then fT < fT”.

The reader can readily produce an example to see that 7 vmp 7' need
not imply .7 imp f7'.

We now turn to weak topologies. We first give an example to show
that  vmp %’ where %, ' =T(Y) need not imply f~*% tvmp [ %'

III.1.3 Exampre. Let X=Y={a,b, ¢}, =19, {a}, {b}, {a, b}, Y} and
U =19, {a}, 1b}, {a, b}, {a, ¢}, Y}. Then # imp %’. Define f: X—7Y as fol-
lows: fla)=f(b)=a, f(c)=c. Then fw=f1u"={¢, {a, b}, X}.

II1.1.4 Lemma. Letf: X—Yand %, %' €T(Y). If w<u then f~‘u
cfta.

Proor: Let f-[U]ef'«. Then Uexc#’ implies that [ U]
ef'«’. Hence, flaucfta.

III. 1.5 Tueorem. Let f: X—Y and #, %' €T(Y). If & imp ¥, then
erther f~1U=f"tU" or U vmp U’ .

Proor: By Lemma Ill. 1.4 f~'% cf~'%’. Suppose f&=+f"%". We
assert f'a imp f~'a’. So let v €T(X) such that flocy cfia, v
#f'«’'. To prove f1a imp f~*a’ it suffices to show that » =/ ‘ta. If
Uca, then f~[U]Jef*acy. This means Usfy" and thus, #cfv .
Now, choose f[UiJef %' —v . But then U,«f7", otherwise, /[ U{]
€7", a contradiction. Thus, Uj&f7 n#' and we have wcfyv nu' <,
fraa's+u'. This implies #=f7 n#'. Now we show ¥ =f"'# as fol-
lows: Let V=f"'[U,]ev for some U,c@’. Then U,efy na’ which
means U,e%. This implies that /[ U,]Jef ' or that Vef~'%. Hence,
¥" =f"1% and the proof is complete.

As a direct consequence of III. 1.5 we have the following.

ITI.1.6 CororLLArY. Let YS X and 7, 7' €T(X). If T imp T/, then
either I NY=9'nYorIgnYwmpI'nY.

II. 2 Cartesian Products

Let {X,|ae 4} be a non empty family of non empty sets and 7, %,
eT(X,) for all aed. Let X=x{X,|laced}, T=x{T,/acd} and %=
xX{# e d}. Then 7, #T(X).
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III. 2.1 Taeorem. Let (X, 7)=x{(X,, T)|acd} and (X, %)=
X{(Xy, ) |asd}y. Then T imp % v [f (i) there exists 0 € 4 such that 7 5 imp
U5 and (11) T ,=U, 18 the indiscrete topology on X, for all = 4 such that

a=-0.

Proor. Necessity: Suppose.J imp %. By Lemmalll. 1.2 .5 ,c %, for
acd. If 7,=u, for all «e 4, then I =%, acontradiction. Hence, there
exists 0 € 4 such that 7 ;=+%;. Let Uje#;—7 ;. Then P [ U, lewv—7.
To prove that 7 ,=%, is the indiscrete topology on X, for all a=~¢ it suffi-
ces to prove that #, is the indiscrete topology on X, for all a=~0. Suppose
we deny it. There exists 3+-0 such that #, is not indiscrete. Choose U,
a proper open set in %, If P,iL U, NP UsJe 7, then P[P [ U, ]nP;?
[Us1]=Use T, a contradiction. Hence Pz [ U, |nP;[U; &7 and we
have 7 c 7 (P U, InP; [ U; )<, the first inclusion being proper. We
assert that the second inclusion is also proper or that Py [ U, |7 (P;'[ U, ]
NP3LU;]). SupposeP; [ U; 1€ 7 (P U;JnP; U;]). Then wecanwrite
P; LU, 1=0,U(0, NP3 U InP; [ U;]) where 0,, 0,€7. Pick x;¢ U,
and x;= U;—Int, U;. Also, choose x,€ X, for all a==p5, §. Define x: 4
— U{X,lae 4} as follows:

xs fa=0
xla)y={ xg fa=p
1 x, if a=50, B.

Then xeP; [ Us]. Since xzUs 20, NP [ U ]NP; [ Us]. But then
x€0,cP;[U,]. This implies that x;&P, 0, ]c U; or that x,Int, Uj,
a contradiction. Hence, P;'[ U, &7 (P LUz NP [Us]) and 7 7 (Pgt
(U, |nP;' LU, ) c, the inclusions being proper. This contradicts the fact
that 7 imp %. Thus %, is the indiscrete topology on X, for all a-¢ and
(ii) is taken care of. To complete the proof of necessity we now show that
T s imp Us. Let v ;€T(X;) such that 7 ,cv";c%;, 7 ;%% 5. Choose V;
ev;—T;s. Let v =x{v,lacd} where v =75, if a0 and v =7, if
a=0. Then P; [V ]e¥ —7 and therefore, s c¥v cu, 5=v". Thus v
=4 which in turn implies that v";=%;. Hence 7 ; imp % and (i) is proved.

Sufficiency: Suppose there existsde 4 suchthat 7 ;imp #;and 7 ,=%,
is the indiserete topology on X, for all a=~0. Clearly s c%, =+%. Let
v eT(X)suchthat sy cy c#,5+». ByLemmalll.1l.2P 9 =75,cP. v
cu,=P,« for all ac 4. Then, by hypothesis 7 ,=P,» =, is the indis-
crete topology on X, for all a=~0. Let Ve¥ —7. Then P; P,V ]]|=V
sinee %, is the indiscrete topology on X, for all a=~0. Therefore, P;[ V]
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eP,v -7, Hence we have 7 ,cP,v c#,, 5 ,+P,7» which implies P,7"
=4;. Now,weshow #=v asfollows: LetUe%. ThenP; [P, [UT]=0.
But P,[U]Je#;=P,» implies that U=P; [P, U]]ev. Thus ¥ =%.
Therefore, 7 imp # and the proof is complete.

II1. 3 Topological Sums

In this section we will prove a theorem for topological sums (Theorem
IIL 3. 6) which is analogous to Theorem III. 2. 1. In this direction we list
a couple of lemmas.

II.8.1 Lemma. Let (X, 7)bea topological spaceand X= U {0, |as 4}
where 0,7 forall acd. Then OcT iff ON0, 9 N0, forall ac 4.

III.3.2 Lemma. Let 7, #<T(X)and X=U{0,|ac 4} where 0,7
% forallacd. Then g O"C%zfandonly@f T N0, CUNO, for all e 4.

Proor: If 7 c#, thenclearly 9 N0, c%n 0, forallas 4. Conversely,
suppose I N0, c«%nO0, forall acd. If 07, then by Lemma III. 8.1
0n0,e7 n0O, for all «= 4 which implies that On0, % n O, for all < 4.
Therefore, O # by Lemma III. 3. 1.

As a direct consequence of III. 3. 2 we get the following lemma.

III. 8.3 Lemma. Let 7, #€T(X) and X=U{0,|ac 4} where O, T
U forallocd. Then T %zfcmdonly@f NO,=«N0O, forall ae 4.

III. 8.4 TueoreM. Let 7, #€T(X) and X=U{0,|ac 4} where O,
€T, % for all e 4 and Os are pairwise disjoint. Then T imp U i ff there
emsts 0€ 4 such that 7 N0z imp N0z and T NO,=%N0, for all as~9.

Proor: Sufficiency: Soppose there exists < 4 such that 7 N0, imp
#AN0zand N0, =%n0,for all 0. Then, by Lemma I11.3.2 and I11.3.3
T U, TF%. We assert that 7 imp . Sosuppose T ¥ CcU, T=+¥".
By Lemma III.8.2 and by the hypotheses (1), 7 n0,=% n0,=%n 0, for all
a#0. Now, choose Vey —7. If V¥'n0O;€9 N0, then by (1) ¥nO, €7
N O, for all e 4 which in turn implies that '=.7, a contradiction. Hence
VnOs; €7 Nn0s. This together with II1. 3.2 1mp11es that 7 N0, <7 NO;
CS«N0;, T NO=*=Y N0, Since I NO; imp #N0O,;, we have (2) ¥ NO,
=%N0;. From (1) and (2) we can conclude that ¥ N0, =% n O, for all
acsdor that v =2. Thus, 7 imp %.

Necessity: Suppose 7 imp . By Lemma III. 3. 3 there exists 0= 4



34 Pushpa AcasHE and Norman LEVINE

such that 7 N0, c %N 0;, 7 NO;=#%N0;. But then by Corollary I111.1. 6
I N0 imp % N0;s. Because of the same corollary either s n0,=% N0, or
T N0, tmp % n 0, for all a=+0. We claim that 7 n0,=%n0, for all a=0.
Suppose not, that is, suppose there exists f=~0 such that 7 N0z imp %N
0z. Now, choose U;N0,e%n0;—7 N0; and U,N0,€%N0z—T N0
Then U,, U,e#—7 (Lemma III. 3.1). We consider two cases:

Casel: U;n0yse9 N0

We have s c 7 (U,)c%, 7+7(U,). We claim that U,& 7 (U,). Sup-
pose wedeny it. Then, U,=0,U(0,n U,) where0,,0,=7. Then, U,N0,4
=(0,U0,nU))N0;=(0,n0)U(0;nU;N0Og). Thisimplies that U, N0,
€7 N0, acontradiction. Hence, U,&.7 (U,). Therefore, 7 7 (U,) =%,
inclusions being proper, which contradicts the hypothesis 7 imp #.

Case2: U N0zET N0,

U,N0;&¢ 7, for otherwise U; N 0;€ .7 N0, a contradiction. Thus, we
have 79 (U,n0,) <%, 7+5(U;N0;). Weshow that U,n0z&7 (U, N
0;) as follows: If U;n0,e7 (U, N0O;), then U, N0z=0,U(0,NU,NO;)
where 0,, 0,€7. Since 0;N0;=¢, we have U N0z=0,N04 This in
turn implies that U, n0z,€.9 N0Og, a contradiction. Hence U;NO0z& T
(U;n0y). Thus, 7 <7 (U, N0O;)c%, inclusions being proper. But this
again contradicts the assumption 7 vmp #.

Thus, in any case we have a contradiction; therefore, 7 N0,=%n0,
for all a=~0 and the proof is complete.

In the above theorem we cannot replace ““open sets” by ‘“‘closed sets”
as may be seen from the ensuing example.

1I1. 8.5 ExamprLe. Let 7 be the cofinite topology on an infinite set X.
Then X= U{{x}|x€ X} where {x}'s are closed, pairwise disjoint sets. If
ye X, then 7 ({y})—7 ={{y}} which implies 7 imp T ({y}); but 7 N {x}
=7 {yH)n{x} forall x X.

The next theorem results directly from Theorem III. 3. 4.

I11.8.6 Tueorem. Let(X,7)=2{(X,,T ) lacd}and (X,%)=2{(X,,
@) acdr. Then T imp U iff there exists 0 4 such that 7 ; imp U, and
T u=U, for all a=0.

The Ohio State University



(1]
(2]

(3]

(4]

Adjacent Topologies 35

References

Levine N., Dense Topologies, Amer. Math. Monthly 75 (1968), 847-852.

Levine N, Generalized Closed Sets, Rend. Cire. Mat. Palermo, ser. 2, Vol. 19 (1970),
89-96.

Levine N.and Nachman L.,Adjacent Uniformities, J. Math. Tokushima Univ. Vol. 5
(1971), 29-36.

Levine N, Simple Extensions of Topologies, Amer. Math. Monthly 71 (1964), 22-25,



