Mappings of Bounded Dilatation

By

S. I. Goldberg, T. Ishihara and N. C. Petridis

(Received May 1, 1974)

§ 1. Introduction

Let M and N be Riemannian manifolds of dimensions m and n, respectively. Recently, two of the authors introduced the concept of a quasiconformal mapping $f: M \to N$ and applied it to obtain distance and (intermediate) volume decreasing properties of harmonic mappings between Riemannian manifolds of different dimensions [1]. In this paper the concept of a mapping $f: M \to N$ of bounded dilatation is introduced which is more general and natural than that of a K-quasiconformal mapping when m and n are greater than 2. An example of such a mapping which is not K-quasiconformal is given which is even harmonic. The main results in [1], viz., generalizations of the Schwarz-Ahlfors lemma as well as Liouville's theorem and the little Picard theorem are valid for this class of mappings. This is due to the fact that $\|f_\ast \|^2 / \|\Lambda f_\ast\|$ is bounded if f is K-quasiconformal or if f is of bounded dilatation.

Let $f: M \to N$ be a harmonic mapping of bounded dilatation of Riemannian manifolds. If the ratio function $\|f_\ast \|^2$ of distances attains its maximum at $x \in M$, then under suitable conditions on the bounds of the sectional curvatures at x and $f(x)$, f is distance decreasing.

If M is a complete connected Riemannian manifold of constant negative curvature $-A$, in particular, if M is the unit open m-ball with the hyperbolic metric of constant curvature $-A$, the condition on $\|f_\ast \|$ may be dropped. Indeed, let N be a Riemannian manifold with sectional curvatures bounded above by a negative con-

1 The research of this author was partially supported by the National Science Foundation.
stant depending on A. Then, if $f: M \to N$ is a harmonic mapping of bounded dilatation, it is distance decreasing.

The technique employed to prove this statement also yields the following fact.

Let M be a complete connected locally flat Riemannian manifold and let N be an n-dimensional Riemannian manifold with negative sectional curvature bounded away from zero. Then, if $f: M \to N$ is a harmonic mapping of bounded dilatation, it is a constant mapping.

§ 2. Mappings of bounded dilatation

Let V be an Euclidean vector space of dimension m and let V^\ast be its dual space. Let $\{e_1, \ldots, e_m\}$ be an orthonormal basis of V with dual basis $\{\omega_1, \ldots, \omega_m\}$. A quadratic function on V is an element of $(V \otimes V)^\ast$, so since $(V \otimes V)^\ast$ is canonically isomorphic to $V^\ast \otimes V^\ast$, a quadratic function on V may be written as

$$f = \sum f_{ij} \omega_i \otimes \omega_j.$$

If f is positive semidefinite an orthonormal basis $\{e_i\}$ can be chosen so that $f_{ii} = 0$ for $i \neq j$ and $f_{ii} = \gamma_i^2 > 0$ for $i = 1, \ldots, k \leq m$, where $k = \text{rank } f$.

Let W be an Euclidean vector space of dimension n with inner product h, and let $F: V \to W$ be a linear mapping of rank $k \leq \min(m, n)$. We choose an orthonormal basis $\{e_i\}$ of V so that

$$F^\ast h = \sum \gamma_i^2 \omega_i \otimes \omega_i.$$

The vectors $\eta_i = (1/\gamma_i) F e_i$, $i = 1, \ldots, k$, therefore form part of an orthonormal basis of W. (If all of the γ_i vanish, $F = 0$.) Let $X = \sum x^i e_i$, be a vector of unit length and assume $F \neq 0$, then $FX = \sum y^i \eta_i$, where $x^i = y^i / \gamma_i$. Consequently, if F is of rank k, it maps a unit $(k-1)$-dimensional sphere of V to a $(k-1)$-dimensional ellipsoid of W with semiaxes of lengths $\gamma_1 \geq \gamma_2 \geq \cdots \geq \gamma_k > 0$, where $\lambda_i = \gamma_i$, $i = 1, \ldots, k$ are the eigenvalues of $F^\ast F: V \to V$.

Definition 1. The ratio

$$l_s = \frac{\gamma_s}{\gamma_{s+1}}, \quad s = 1, \ldots, k-1$$

will be called the s-th dilatation of F.

The mapping $F: V \to W$ induces a mapping

$$\wedge^p F: \wedge^p V \to \wedge^p W, \quad p \leq \min(m, n)$$

given by
\[\wedge^p F(e_{i_1} \wedge \cdots \wedge e_{i_p}) = Fe_{i_1} \wedge \cdots \wedge Fe_{i_p}, \]

where \(1 \leq i_1 < i_2 < \cdots < i_p \leq m \). \(\wedge^p F \) may be regarded as an element of \(\wedge^p V^* \otimes \wedge^t W \). A norm \(\| \cdot \| \) can be defined on this space in terms of inner products on \(V \) and \(W \) so that

\[\| \wedge^t F \| = \sum_{i_1 < \cdots < i_s} \lambda_{i_1} \cdots \lambda_{i_s}. \]

If \(1 \leq p \leq q \leq s \leq k \) and \(l_i \leq K \), the following fact is easily established.

Lemma 2.1.

\[\left(\frac{\| \wedge^t F \|^2}{\binom{k}{p}} \right)^{1/p} \leq K \left(\frac{\| \wedge^t F \|^2}{\binom{s}{q}} \right)^{1/q}. \]

In the sequel, it is assumed that \(M \) and \(N \) are Riemannian manifolds of dimensions \(m \) and \(n \), respectively. Let \(f: M \to N \) be a \(C^r \) mapping and \((f_x)_*: T_x(M) \to T_{f(x)}(N) \) be the induced mapping of tangent spaces at \(x \).

Definition 2. If either \((f_x)_* = 0 \) at each point \(x \in M \) or if any one of the dilatations \(l_i(x), i = 1, \ldots, k-1 \) is bounded on \(M \), then \(f \) is said to be of \emph{bounded dilatation}.

For a nonconstant mapping of bounded dilatation, \(l_i(x) \) is always bounded. In this case, \(K \) will denote the l. u. b. of \(l_i(x) \) and \(f \) will be said to be of \emph{bounded dilatation of order} \(K \).

Remark. Since \(l_i(x) \leq l_j(x) \) for \(i \leq j \leq k \), a \(K \)-quasiconformal mapping in the sense of [1] and [3] is a mapping of bounded dilatation. If \(m = n = 2 \) the two notions are identical. However, for \(m \) and \(n \) greater than 2 a mapping of bounded dilatation is not necessarily quasiconformal as the following example shows.

Let \(U \) be the open submanifold of \(E^3 \) given by \(\{(x, y, z) \in E^3; \ x^2 + y^2 > 1/(a+1)^2, \ a \neq -1 \} \), and let \(f: U \to E^3 \) be defined by

\[f = \left(\frac{1}{3} (x^2-y^2), \ 3xy, \ \frac{1}{a+1}z \right). \]
Then, the eigenvalues of $\phi f \phi$ are $\lambda_1 = 9(x^2 + y^2)$, $\lambda_2 = x^2 + y^2$ and $\lambda_3 = 1/(a+1)^2$. Consequently, $l_1(x, y, z) = 3$ and $l_2(x, y, z) = 3(a+1)/(x^2 + y^2)^4$. Observe that f is also harmonic.

In the sequel, a mapping of bounded dilatation will be assumed to have the same rank k at each point of M.

Lemma 2.2. A C^∞ mapping $f : M \to N$ is of bounded dilatation of order K if and only if

$$\|f_*\|^2 \leq kK\|\wedge^2 f_*\|.$$

Proof. The necessity follows from Lemma 2.1. For the sufficiency suppose that $l_1 = (\lambda_1/\lambda_2)^k$ is unbounded. Then,

$$\|f_*\|^2 \leq \sum \frac{\lambda_i}{\lambda^2} = \frac{\sum \lambda_i}{\lambda^2} \leq \frac{\lambda_1}{\lambda_2} + \frac{\lambda_2}{\lambda_2} + \frac{\lambda_3}{\lambda_2} = l_1(\frac{k}{2})^k = \frac{l_1}{\lambda_2}(\frac{k}{2})^k,$$

so $\|f_*\|^2 / \|\wedge^2 f_*\|$ is unbounded.

§ 3. Harmonic mappings of bounded dilatation

The principal results in [1] may now be extended to mappings of bounded dilatation. Only statements of theorems are given. Details will be presented elsewhere.

Theorem 3.1. Let M and N be Riemannian manifolds of dimensions m and n, respectively and let $f : M \to N$ be a harmonic mapping with rank $f \geq 2$. If $\|f_*\|^2$ attains a maximum at a point $x \in M$, and if (a) the sectional curvatures of M at x are bounded below by a non-positive constant $-A$, or M is an Einstein manifold with the scalar curvature R at x satisfying $R \leq -m(m-1)A$, and (b) the sectional curvatures of N at $f(x)$ are bounded above by a nonpositive constant $-B$, then

$$B\|f_*\|^2 \leq \frac{m-1}{2} - k^2 l_1(x) A.$$
Corollary 3.1. Let $f: M \to N$ be a mapping of bounded dilatation. If M is locally flat and the sectional curvatures of N are bounded above by a negative constant $-B$ then either $\|f_*\|$ does not attain its maximum or f is a constant.

The following result generalizes Theorem 5.3 in [1].

Corollary 3.2. Let $f: M \to N$ be a harmonic mapping with rank $f \geq 2$. Suppose that the function $\|f_*\|^2$ attains its maximum at $x \in M$. If (a) the sectional curvatures of M at x are bounded below by a non-positive constant $-A$ or if M is an Einstein manifold with scalar curvature R at x satisfying $R \geq -m(m-1)A$, and (b) the sectional curvatures of N at $f(x)$ are bounded above by a negative constant $-B$, then

\[(3.1) \quad \|\wedge f_*\|^{2p} \leq k\left(\frac{k}{p}\right)^{m-1} \frac{A}{B} l_1^p(x), \quad 1 \leq p \leq k.\]

In particular, we get

Corollary 3.3. Under the assumptions of Corollary 3.2, if $B \geq \frac{(m-1)k}{(m+1)A}l_1^p(x)A/2$ and M is connected the mapping f is distance decreasing. If $m = n$ and $B \geq n(n-1)l_1^p(x)A/2$, then f is volume decreasing.

Corollary 3.4. Let M and N be Riemannian manifolds of nonpositive constant curvature and $f: M \to N$ a harmonic mapping with rank $f \geq 2$. Then, if M is locally flat so is N (cf. Theorem 3.6).

If M is the unit open m-ball with the hyperbolic metric of constant curvature $-A$, the requirement that $\|f_*\|$ attain its maximum on M may be omitted and we obtain

Theorem 3.2. Let B^n be the m-dimensional unit open ball with the metric $ds^2 = 4\sum dx_i^2 / A(1-r^2)^2$, $A > 0$, and let N be an n-dimensional Riemannian manifold with sectional curvatures bounded above by a negative constant $-B$. Then, if $f: B^n \to N$ is a harmonic mapping of bounded dilatation of order K, the inequality (3.1) is satisfied, if $l_1(x)$ is replaced by K.

Let E^m denote Euclidean m-space with the standard flat metric. Then the same method of proof as that of Theorem 3.2 yields
THEOREM 3.3. Let \(N \) be an \(n \)-dimensional Riemannian manifold with negative sectional curvature bounded away from zero, and let \(f : E^m \to N \) be a harmonic mapping of bounded dilatation. Then, \(f \) is a constant mapping.

If \(\pi : S \to M \) is a Riemannian covering we have easily

Lemma 3.1. Let \(f : M \to N \) be a \(C^\infty \) mapping and \(\tilde{f} = f \circ \pi \). Then,

\[
\| \bigwedge^k \tilde{f}_* \| = \| \bigwedge^k f_* \|_{(x,\xi)}, \quad x \in S.
\]

If \(M \) is a complete connected Riemannian manifold of constant curvature \(c \), then its simply connected covering is

\[S^m \text{ if } c > 0, \quad E^m \text{ if } c = 0 \text{ and } B^m \text{ if } c < 0, \]

where \(S^m \) is the \(m \)-sphere of constant curvature \(c(>0) \) and \(B^m \) is the unit open \(m \)-ball with the metric \(ds^2 = -4\sum dx_i^2/c(1-r_i^2) \) of constant curvature \(c(<0) \). Hence, by Proposition 4.1 of [1], Theorems 3.2 and 3.1 above we get

THEOREM 3.4. Let \(M \) be a complete connected Riemannian manifold of positive constant curvature and let \(N \) be a manifold with non-positive sectional curvature. Then, if \(f : M \to N \) is a harmonic mapping, it is a constant mapping.

This fact is well-known (see [1]).

THEOREM 3.5. Let \(M \) be a complete connected Riemannian manifold of constant negative curvature \(-A\) and let \(N \) be a Riemannian manifold with sectional curvatures bounded above by a negative constant \(-B\). Then, if \(f : M \to N \) is a harmonic mapping of bounded dilatation of order \(K \), the inequality (3.1) is satisfied, if \(\ell(x) \) is replaced by \(K \).

Thus, if \(B \geq (m-1)\kappa^2 K/A/2 \), the mapping \(f \) is distance decreasing. In the equidimensional case, if \(B \geq n(n-1)K^4 A/2 \), \(f \) is volume decreasing.

THEOREM 3.6. Let \(M \) be a complete connected locally flat Riemannian manifold and let \(N \) be a Riemannian manifold with neg-
ative sectional curvature bounded away from zero. Then, if \(f: M \to N \) is a harmonic mapping of bounded dilatation, it is a constant mapping.

Theorem 3.6 generalizes Liouville's theorem and the little Picard theorem. For, in the first case, a bounded domain in \(C \) is contained in a disc which has constant negative curvature with respect to the Poincaré metric, and in the latter case, \(C \cdot \{2 \text{ points}\} \) carries an hermitian metric of constant negative curvature.

University of Illinois, Urbana
Tokushima University, Josanjima
Eastern Illinois University, Charleston

Bibliography

