On Relation Modules

By

Motoyoshi Sakuma

(Received April 30, 1979)

Let $\oplus R$ and $\oplus R$ be free modules over a commutative ring R with canonical bases T'_1, \ldots, T'_m and T_1, \ldots, T_n respectively and m and n are positive integers. For any R-linear map $f : \oplus R \to \oplus R$, $f(T'_i) = \sum_{j=1}^{n} a_{ji} T_j$, $a_{ji} \in R$ ($i = 1, \ldots, m$), we associate with an $n \times m$ matrix A defined by the coefficients of T'_is:

$$A = \begin{pmatrix} a_{11} & \cdots & a_{1m} \\ \vdots \\ a_{n1} & \cdots & a_{nm} \end{pmatrix}$$

Corresponding to f, we define an R-linear map $'f : \oplus R \to \oplus R$, transpose map of f, by

$$'f(T'_i) = \sum_{j=1}^{m} a_{ij} T'_j \quad (i = 1, \ldots, n).$$

The matrix associated with $'f$ is the transposed matrix A' of A.

Let m_1, \ldots, m_n be n elements of an R-module M. We denote by $\text{Rel}(m_1, \ldots, m_n)$ the set of sequences of n elements of R, $(r_1, \ldots, r_n) \in \oplus R$, such that

$$r_1 m_1 + \cdots + r_n m_n = 0.$$

Obviously $\text{Rel}(m_1, \ldots, m_n)$ is an R-module and we call it the relation module of (m_1, \ldots, m_n).

Lemma 1. With the same notations as above,

i) $(r_1, \ldots, r_n) \in \text{Rel}(f T_1, \ldots, f T_n)$ if and only if $(r_1, \ldots, r_n) A = 0$.

ii) If $g : \oplus R \to R$ is an R-linear map, then $(g(T_1), \ldots, g(T_n)) \in \text{Rel}(f T_1, \ldots, f T_n)$ if and only if $g(\text{Im } f) = 0$.

Proof. i) Assume $(r_1, \ldots, r_n) \in \text{Rel}(f T_1, \ldots, f T_n)$, then $r_1 f T_1 + \cdots + r_n f T_n = 0$ so that $(T'_1 \cdots T'_m) A \begin{pmatrix} r_1 \\ \vdots \\ r_n \end{pmatrix} = 0$. Hence $A \begin{pmatrix} r_1 \\ \vdots \\ r_n \end{pmatrix} = 0$, and whence $(r_1 \cdots r_n) A = 0$. Con-
verse is clear.

ii) Let \(g(T_i) = s_i \) \((i = 1, \ldots, n)\). Then, we have

\[
g(\text{Im } f) = 0 \iff g(f(T'_i)) = 0 \quad (i = 1, \ldots, m)
\]

\[
\iff g\left(\sum_{j=1}^{n} a_{ji} T_j \right) = 0 \quad (i = 1, \ldots, m)
\]

\[
\iff 0 = \sum_{j=1}^{n} a_{ji} g(T_j) = \sum_{j=1}^{n} a_{ji} s_j \quad (i = 1, \ldots, m).
\]

Hence \(g(\text{Im } f) = 0 \) if and only if \((s_1, \ldots, s_n)A = 0\). Therefore we get ii) in view of i).

Lemma 2. \(\text{Rel}(fT_1, \ldots, fT_n) \cong \text{Hom}_R(\oplus^n R/\text{Im } f, R) \).

Proof. For any \((r_1, \ldots, r_n) \in \text{Rel}(fT_1, \ldots, fT_n)\), we define an \(R \)-linear map \(g: \oplus^n R \to R, g(T_i) = r_i \) \((i = 1, \ldots, n)\).

By Lemma 1, ii), we have \(g = 0 \) on \(\text{Im } f \), so that \(g \) induces an \(R \)-linear map \(\bar{g}: \oplus^n R/\text{Im } f \to R \). Thus we get a map \(\lambda: \text{Rel}(fT_1, \ldots, fT_n) \to \text{Hom}_R(\oplus^n R/\text{Im } f, R) \) such that

\[
\lambda((r_1, \ldots, r_n)) = \bar{g}.
\]

It is clear that \(\lambda \) is injective. Since \(\text{Hom}(\oplus^n R/\text{Im } f, R) \) is identified with the set of \(R \)-linear maps \(h: \oplus^n R \to R \) which vanish on \(\text{Im } f \), \(\lambda \) is surjective.

Summarizing the above consideration, we get

Theorem 1. Let \(f: \oplus^m R \to \oplus^n R \) be an \(R \)-linear map defined by the matrix \(A \):

\[
A = \begin{pmatrix}
a_{11} & \cdots & a_{1m} \\
\cdots & \cdots & \cdots \\
a_{n1} & \cdots & a_{nm}
\end{pmatrix}
\]

and let \(f': \oplus^m R \to \oplus^n R \) be the transpose of \(f \) corresponding to \(A \). Then,

\(\text{Rel}(fT_1, \ldots, fT_n) \cong (\text{Coker } f)^* \)

where \(M^* = \text{Hom}_R(M, R) \) for an \(R \)-module \(M \).

Remark. With the same notations as in Lemma 2, \(\lambda^{-1}: (\text{Coker } f)^* \to \text{Rel}(fT_1, \ldots, fT_n) \) is given by

\[
\bar{g} \mapsto (g(T_1), \ldots, g(T_n)).
\]

Corollary 1. Let \(\varphi: \oplus^m R \to \oplus^n R \to \oplus^n R \) be an exact sequence of free \(R \)-
modules. Then,

\[\text{Rel}(\{gT'_1, \ldots, gT'_m\}) \cong (\text{Im } f)^* \]

where \(T'_1, \ldots, T'_m \) is the canonical base of \(\bigoplus R \).

Proof. By Theorem 1, we have

\[\text{Rel}(\{gT'_1, \ldots, gT'_m\}) \cong (\text{Coker } g)^*. \]

On the other hand

\[(\text{Coker } g)^* \cong (\bigoplus R/\text{Im } g)^* = (\bigoplus R/\text{Ker } f)^* \cong (\text{Im } f)^*. \]

Thus we get our result.

Remark. The isomorphism \((\text{Im } f)^* \cong \text{Rel}(\{gT'_1, \ldots, gT'_m\}) \) obtained in the Corollary 1 is given by

\[\phi \longrightarrow ((\phi \cdot f)(T'_1), \ldots, (\phi \cdot f)(T'_m)). \]

Corollary 2. Let \(f: \bigoplus R \to \bigoplus R \) be an \(R \)-homomorphism and let \(\text{Coker } f = Ru_1 + \cdots + Ru_n \) where \(u_i \) is the residue of \(T'_i \) modulo \(\text{Im } f \) (\(i = 1, \ldots, n \)). Then, we have the following exact sequence of \(R \)-modules:

\[0 \longrightarrow \text{Rel}(fT'_1, \ldots, fT'_m) \longrightarrow \bigoplus R \longrightarrow \text{Rel}(u_1, \ldots, u_n) \longrightarrow 0. \]

Proof. Clearly we have

\[(r_1, \ldots, r_n) \in \text{Rel}(u_1, \ldots, u_n) \iff r_1T'_1 + \cdots + r_nT'_n \in \text{Im } f \]

\[\iff r_1T'_1 + \cdots + r_nT'_n = r'_1f(T'_1) + \cdots + r'_mf(T'_m) \quad \text{for some elements } \ r'_i \in R \]

\[\iff \begin{pmatrix} r'_1 \\ \vdots \\ r'_m \end{pmatrix} = A \begin{pmatrix} r_1 \\ \vdots \\ r_n \end{pmatrix} \quad \text{for some elements } \ r'_i \in R \ (i = 1, \ldots, m). \]

Now we define a map \(\phi: \text{Hom}(\bigoplus R, R) \to \text{Rel}(u_1, \ldots, u_n) \) by

\[\phi(g) = A \begin{pmatrix} r'_1 \\ \vdots \\ r'_m \end{pmatrix} \]

where \(g \in \text{Hom}(\bigoplus R, R) \) and \(r'_i = g(T'_i) \ (i = 1, \ldots, m) \). Then, the first part of our proof shows that \(\phi \) is surjective.

Consider an exact sequence

\[0 \longrightarrow \text{Ker } \phi \longrightarrow \text{Hom}(\bigoplus R, R) \longrightarrow \text{Rel}(u_1, \ldots, u_n) \longrightarrow 0. \]
Since we have
\[g \in \ker \phi \iff A \left(\begin{array}{c} gT'_1 \\ \vdots \\ gT'_m \end{array} \right) = 0 \]
\[\iff g = 0 \text{ on each component of } A \left(\begin{array}{c} T'_1 \\ \vdots \\ T'_m \end{array} \right) \]
\[\iff g = 0 \text{ on each component of } (T'_1 \ldots T'_m)^* A = (fT_1 \ldots fT_n) \]
\[\iff g(fT_i) = 0 \quad \text{for } i = 1, \ldots, n. \]

Hence, identifying \(g \) with \((g(T'_1), \ldots, g(T'_m)) \) we get our assertion. q.e.d.

Theorem 2. Let \(\oplus R \xrightarrow{\phi} \oplus R \xrightarrow{f} \oplus R \) be an exact sequence of free \(R \)-modules where \(g \) and \(f \) are \(R \)-homomorphisms. Then,
\[\Ext^1(Coker f, R) \cong \text{Rel}(\langle gT'_1, \ldots, gT'_m \rangle)/\Im \langle f \rangle \]
where \(T'_1, \ldots, T'_m \) is the canonical base of \(\oplus R \).

Proof. From an exact sequence
\[0 \to \Im f \xrightarrow{\phi} \oplus R \to Coker f \to 0, \]
we get a long exact sequence of \(R \)-modules:
\[0 \to \Hom(Coker f, R) \to \Hom(\oplus R, R) \xrightarrow{\phi^*} \Hom(\Im f, R) \]
\[\to \Ext^1(Coker f, R) \to \Ext^1(\oplus R, R) \to \cdots \]
Since \(\Ext^1(\oplus R, R) = 0 \), identifying \(\oplus R \) with \(\oplus R \), we have
\[\Ext^1(Coker f, R) \cong (\Im f)^*/\phi^*(\oplus R). \]

By the Corollary 1 of Theorem 1, we have
\[(\Im f)^* \cong \text{Rel}(\langle gT'_1, \ldots, gT'_m \rangle) \]
and \(\phi^*(\oplus R) \) is generated by the restriction to the \(\Im f \) of the projection map
\[p_i \colon \oplus R \to R \quad (i = 1, \ldots, n), \text{ i.e., } \phi^*(\oplus R) \text{ is generated by} \]
\[((p_i f)(T'_1), \ldots, (p_i f)(T'_m)) \quad (i = 1, \ldots, n). \]
Since \(f T_i = \sum_{j=1}^n a_{ji} T_j \) (\(i = 1, \ldots, n \)) and \((p_i f)(T_i) = a_{ji} \), we have

\[(p_i f)(T_1, \ldots, p_i f)(T_n) = (a_{i1}, \ldots, a_{in}) \quad (i = 1, \ldots, n).\]

Identifying \((a_{i1}, \ldots, a_{im}) \) with \(a_{i1} T_1 + \cdots + a_{im} T_m = f T_i \) (\(i = 1, \ldots, n \)), we see that \(\phi^*(\bigoplus R) \) is generated by \(f T_1, \ldots, f T_n \), so that \(\phi^*(\bigoplus R) = \text{Im } f \). q.e.d.

Assume \(R \) is a Noetherian local ring and let \(M \) be a finitely generated \(R \)-module with minimal system of generators \(u_1, \ldots, u_n \). Then, it is well known that \(\text{Rel} (u_1, \ldots, u_n) \) is determined uniquely up to isomorphism [1, theorem 26.1]. We call it the relation module of \(M \) and denote it \(\text{Rel} (M) \).

Now, let

\[
\cdots \longrightarrow F_i \overset{d_i}{\longrightarrow} F_{i-1} \longrightarrow \cdots \overset{d_1}{\longrightarrow} F_0 \overset{\varepsilon}{\longrightarrow} M \longrightarrow 0
\]

be a minimal projective (free) resolution of \(M \) with augmentation \(\varepsilon \). For any integer \(n \geq 1 \), the \(n \)-th Syzygy module of \(M \) is defined to be \(\text{Im } d_n \) and is denoted by \(\text{Syz}_n(M) \).

Let \(N \) be a submodule of \(\bigoplus R \), minimally generated by \(m \) elements, \(N = Rv_1 + \cdots + Rv_m \). Take a map \(f: \bigoplus R \rightarrow \bigoplus R \) such that \(f(T_i) = v_i \) (\(i = 1, \ldots, m \)). The submodule \(\text{Im } f \) of \(\bigoplus R \) is called the transpose of \(N \) and is denoted by \(^t N \).

Corollary. If \(M \) is finitely generated over a Noetherian local ring \(R \), then

\[\text{Ext}^n (M, R) \simeq \text{Rel} \left(\text{Syz}_{n+1}(M) \right) / \left(\text{Syz}_n(M) \right) \]

for \(n \geq 1 \).

Proof. We can assume the sequence

\[
\bigoplus R \overset{g}{\longrightarrow} \bigoplus R \overset{f}{\longrightarrow} \bigoplus R \longrightarrow M \longrightarrow 0
\]

is the first three terms of a minimal free resolution of \(M \). Hence, by Theorem 2, we have

\[\text{Ext}^1 (M, R) \simeq \text{Rel} \left(\text{Im } g \right) / \left(\text{Im } f \right). \]

Since \(\text{Im } g = \text{Syz}_2 M \) and \(\text{Im } f = \text{Syz}_1 M \), we have our corollary in the case \(n = 1 \).

In general we have

\[
\text{Ext}^n (M, R) = \text{Ext}^1 (\text{Syz}_{n-1} M, R) \\
\simeq \text{Rel} \left(\text{Syz}_2 (\text{Syz}_{n-1} M) / \left(\text{Syz}_1 (\text{Syz}_{n-1} M) \right) \right) \\
= \text{Rel} \left(\text{Syz}_{n+1} M / \left(\text{Syz}_n M \right) \right),
\]
which finish our proof.

q.e.d.

Faculty of Integrated Arts and Sciences
Hiroshima University

References