Harmonic Sections of Tangent Bundles

By

TÔRU ISHIHARA
(Received April 30, 1979)

Let \(M \) be an \(m \) dimensional smooth Riemannian manifold with metric \(g \). The tangent bundle \(T(M) \) over \(M \) is endowed with the Riemannian metric \(g^P \), the diagonal lift of \(g \) [3],[5]. Let \(X \) be a vector field on \(M \). Then it is regarded as a mapping \(\phi_X \) of \(M \) to \(T(M) \). The purpose of this paper is to study under what conditions the mapping \(\phi_X \) of Riemannian manifolds is harmonic.

§ 1 is devoted to describe some basic facts on geometry of tangent bundles. We will see in § 2 that the natural projection, \(\pi: T(M) \to M \) is a totally geodesic submersion. In the last section, it is proved that when \(M \) is compact and orientable, \(\phi_X: M \to T(M) \) is harmonic iff the first covariant derivative of \(X \) vanishes.

§ 1. Diagonal lifts of Riemannian metrics to tangent bundles

We will review differential geometry of tangent bundles briefly. For details, compare [5].

Let \(\{ U, x^i \} \) be a coordinate neighborhood, where \((x^i) \) is a system of local coordinate defined in the open set \(U \). Then we can introduce a system of local coordinates \((x^i, y^j) \) in the open set \(\pi^{-1}(U) \) of \(T(M) \) in such a way that for each \(p \in U \), \((x^i(p), y^j)|_{\pi^{-1}(U)} \in T(M) \), where \(\pi: T(M) \to M \) is the natural projection. \((x^i, y^j) \) are called the induced coordinates in \(\pi^{-1}(U) \).

The Riemannian metric of \(M \) is given locally by

\[
ds_M^2 = \sum_{i=1}^{m} (\theta^i)^2,
\]

where \(\theta^i \) are local 1-forms such that

\[
\theta^i = \sum_{j=1}^{m} \xi_j^i dx^j.
\]

(In the paper, the indices \(i, j, k,... \) run over the range \(\{1,\ldots, m\} \) and the indices \(A, B, C,... \) the range \(\{1,\ldots, m,\ldots, 2m\} \). We also use the notation \(i^* = m + i \).) Let \(\omega^i, \omega^{i*} \) be vertical lifts and horizontal lifts of the local 1-forms \(\theta^i \), i.e.,
\[\begin{aligned}
&\omega^i = (\theta^i)^\nu = \pi^*\theta^i = \sum_{j=1}^{m} \xi^j_i \cdot \pi dx^j, \\
&\omega^* = (\theta^*^i) = \sum_{j=1}^{m} \tilde{\xi}^j_i \cdot \pi (dy^j + \sum_{k,l=1}^{m} \Gamma^i_{kl}y^k dx^l),
\end{aligned} \]

where \(\Gamma^i_{kl} \) are local components of the Riemannian connection in \(M \). Then the diagonal lift \(g^0 \) of \(g \) is written locally as

\[ds^2_{T(M)} = \sum_{\alpha=1}^{2m} (\omega^\alpha)^2 = \sum_{i=1}^{m} (\omega^i)^2 + \sum_{i=1}^{m} (\omega^*^i)^2. \]

Let \(X = \sum_{i=1}^{m} X^i \frac{\partial}{\partial x^i} \) be a vector field on \(M \). The vertical lift \(X^V \) and the horizontal lift \(X^H \) of \(X \) are written locally as

\[\begin{aligned}
X^V &= \sum_{i=1}^{m} X^i \frac{\partial}{\partial y^i}, \\
X^H &= \sum_{j=1}^{m} X^j \left(\frac{\partial}{\partial x^k} - \sum_{k,l=1}^{m} \Gamma^i_{kl}y^k \frac{\partial}{\partial y^l} \right).
\end{aligned} \]

The structure equations in \(M \) are

\[\begin{aligned}
&d\theta^i = \sum_{j=1}^{m} \theta^j \wedge \theta^j, \\
&d\theta^*^i = \sum_{k=1}^{m} \theta^k \wedge \theta^k - \frac{1}{2} \sum_{k,l=1}^{m} R^i_{kl} \theta^k \wedge \theta^l,
\end{aligned} \]

where \(\theta^j \) are the Riemannian connection forms and \(R^i_{kl} \) are the coefficients of the Riemannian curvature tensor. Let \(\omega^*_B \) be the Riemannian connection forms in \(T(M) \). Then,

\[d\omega^\alpha = \sum_{B=1}^{2m} \omega^B \wedge \omega^*_B. \]

From the basic properties of vertical lifts [5], it follows

\[d\omega^i = d(\theta^i)^\nu = (d\theta^i)^\nu = \sum_{j=1}^{m} (\theta^j)^\nu \wedge (\theta^j)^\nu = \sum_{j=1}^{m} \omega^j \wedge \pi^* \theta^j. \]

On the other hand, a direct calculation shows

\[d\omega^*^i = \sum_{j=1}^{m} \omega^*^j \wedge \pi^* \theta^j + \frac{1}{2} \sum_{j,k=1}^{m} R^i_{jk} \tilde{\xi}^k \cdot \omega^*^j \wedge \omega^k. \]

Comparing with (4), we get

Proposition 1. Let \(Y^i = \sum_{j=1}^{m} \xi^j_i y^j \).
\[\omega^j = \pi^* \theta^j - \frac{1}{2} \sum_{l, k=1}^m R^j_{l k l} Y^l \omega^k, \]
\[\omega^j_\ast = - \omega^j_\ast = - \frac{1}{2} \sum_{l, k=1}^m R^j_{k l l} Y^l \omega^k, \]
\[\omega^j_\ast^\ast = \pi^* \theta^j. \]

§ 2. Riemannian submersion

Let \(N \) be an \(n \)-dimensional Riemannian manifold with metric \(ds_N^2 \). We assume \(n > m \). Let \(f: N \to M \) be a smooth mapping. If for every point \(p \) of \(N \), we can choose local 1-forms \(\omega^1, \ldots, \omega^m \) in a neighborhood of \(p \) in \(N \) and \(\theta^1, \ldots, \theta^m \) in a neighborhood of \(f(p) \) in \(M \) such that \(ds_N^2 = \sum_{a=1}^n (\omega^a)^2 \), \(ds_M^2 = \sum_{i=1}^m (\theta^i)^2 \) and

\[f^* \theta^i = \omega^i, \quad i = 1, \ldots, m, \]

\(f: N \to M \) is called a Riemannian submersion. (In this section, the indices \(a, b, c \) run from 1 to \(n \) and \(\alpha, \beta \) from \(m+1 \) to \(n \).) Let \(\omega^g \) be the connection forms in \(N \), i.e.,

\[d\omega^a = \sum_{b=1}^n \omega^b \wedge \omega^g_b. \]

Then we can put

\[f^* \theta^j - \omega^j = \sum_{a=m+1}^n L^j_a \omega^a, \]
\[\omega^j_\ast = \sum_{\beta=m+1}^n L^j_\beta \omega^\beta. \]

\(L^j_a, L^j_\beta \) are called the structure tensors of the Riemannian submersion \(f \). If \(\sum_{a=m+1}^n L^i_a = 0 \) (resp. \(L^i_\beta = 0 \)), \(f \) is said to be minimal (resp. totally geodesic) [2].

Now we will return to the natural projection \(\pi: T(M) \to M \). Since we have \(\pi^* \theta^i = \omega^i \), it is a Riemannian submersion. Moreover, Proposition 1 implies

Proposition 2. The natural projection \(\pi: T(M) \to M \) is a totally geodesic Riemannian submersion with structure tensors

\[L^j_{ik} = \frac{1}{2} \sum_{l=1}^m R^j_{ik l} Y^l, \quad L^j_{i k \ast} = 0. \]

§ 3. Sections of tangent bundles

Let \(\phi_X: M \to T(M) \) be a section of the tangent bundle. We can put locally
\[X = \sum_{i=1}^{n} X^i e_i \] with respect to the dual base \(\{ e_i \} \) of \(\{ \theta^i \} \). Define \(F^A_i \) by

\[\phi^*_A(\omega^A) = \sum_{i=1}^{n} F^A_i \theta^i. \]

Then it holds

\[\phi^*_A(\omega^A) = \phi^*_{X^A} \pi^*(\theta^i) = \theta^i. \]

By a calculation, we get

\[\phi^*_A(\omega^A) = \sum_{k=1}^{n} X^i_k \theta^k, \]

where \(X_k^i \) are components of the first covariant differential of \(X \) given by

\[\sum_{k=1}^{n} X^i_k \theta^k = dX^i + \sum_{j=1}^{n} X^{ij} \theta^j. \]

Thus it is evident

\[F^i_j = \delta^i_j, \quad F^*_{ij} = X^i_j. \]

The fundamental tensor \(F^A_{ij} \) of the mapping \(\phi_X \) is defined to be

\[\sum_{j=1}^{m} F^A_{ij} \theta^j = dF^i_A + \sum_{k=1}^{m} F^A_k \omega^k_B - \sum_{j=1}^{m} F^i_A \theta^j. \]

If \(\sum_{i=1}^{m} F^A_i = 0 \), \(\phi_X \) is called a harmonic mapping [1]. Using (5) and (9) we obtain

Proposition 3. The components \(F^A_{ij} \) of the fundamental tensor of the mapping \(\phi_X: M \to T(M) \) are given by

\[
\begin{align*}
F^A_{ij} &= \frac{1}{2} \sum_{l,h} \left(R^A_{ih} X^j_l + R^A_{lj} X^h_i \right) X^i, \\
F^A_{ij} &= X^i_j + \frac{1}{2} \sum_{l,h} R^i_{lj} X^l,
\end{align*}
\]

where \(X^i_{ij} \) are the components of the second covariant differential of the vector field \(X \).

Proposition 4. \(\phi_X: M \to T(M) \) is a harmonic mapping iff

\[\sum_{i=1}^{m} X^i_l = 0, \quad \sum_{j=1}^{m} R^i_{ij} X^l = 0. \]

If \(M \) is compact and orientable, we have the following integral formula [4, p. 39]

\[
\int_M \left\{ \frac{m}{2} \sum_{i,k=1}^{m} X^i_l X^k + \sum_{i,j=1}^{m} (X^i_j)^2 \right\} dV = 0,
\]
where \(dV \) is the Riemannian volume element. Hence, \(\sum_{i=1}^{m} X^i_T = 0 \) \((k = 1, \ldots, m) \) imply \(X^i_j = 0 \) \((i, j = 1, \ldots, m) \). Thus we get

Proposition 5. Assume that \(M \) is compact and orientable. \(\phi_X : M \to T(M) \) is harmonic iff \(X \) has the vanishing covariant derivative.

Department of Mathematics
Faculty of Education
Tokushima University

References