On a Submanifold of a Submanifold of a Riemannian Manifold and the Gauss Map

Dedicated to Professor Dr. Makoto Matsumoto on his sixtieth birthday

By

TÔRU ISHIHARA
(Received April 30, 1980)

The fundamental properties of frame bundles of a submanifold of a Riemannian manifold are described by S. Kobayashi and K. Nomizu in [2]. Using the similar method, we will study frame bundles of a submanifold of a submanifold of a Riemannian manifold. The main purpose of this paper is to associate the Gauss (generalized) map to a submanifold of a submanifold of Euclidean space. M. Obata [3] associates the Gauss map to a submanifold of a simply-connected complete N-space of constant curvature. We will study the relationship between the Gauss map in the sense of Obata and that of our sense in the forthcoming paper.

§ 1. Euclidean spaces and orthogonal groups

Let $e_1, e_2, \ldots, e_{n+p+q}$ be the natural base for the $(n+p+q)$-dimensional Euclidean space R^{n+p+q}. We shall denote by R^n the subspace of R^{n+p+q} spanned by e_1, e_2, \ldots, e_n, that is, $R^n = \{e_1, e_2, \ldots, e_n\}$. Similarly we set

\[R^p = \{e_{n+1}, e_{n+2}, \ldots, e_{n+p}\}, \quad R^q = \{e_{n+p+1}, e_{n+p+2}, \ldots, e_{n+p+q}\}, \]
\[R^{n+p} = \{e_1, \ldots, e_n, e_{n+p}\}, \quad R^{p+q} = \{e_{n+1}, \ldots, e_{n+p}, e_{n+p+q}\}. \]

Let $O(n+p+q), O(n), O(p), O(q), O(n+p)$ and $O(p+q)$ denote the orthogonal groups of $R^{n+p+q}, R^n, R^p, R^q, R^{n+p}$ and R^{p+q} respectively. We identify $O(n)$ with the subgroup of $O(n+p+q)$ consisting of all elements which induce the identity transformation on the subspace R^{p+q}. In other words

\[O(n) \cong \left(\begin{array}{cc} O(n) & 0 \\ 0 & I_{p+q} \end{array} \right), \]

where I_{p+q} denotes the identity matrix of order $n+p$. Similarly we have

\[O(p) \cong \left(\begin{array}{cc} I_n & 0 \\ O(p) & I_q \end{array} \right), \quad O(q) \cong \left(\begin{array}{cc} I_{n+p} & 0 \\ 0 & O(q) \end{array} \right), \]
\[O(n+p) \simeq \begin{pmatrix} O(n+p) & 0 \\ 0 & I(q) \end{pmatrix}, \quad O(p+q) \simeq \begin{pmatrix} I_n & 0 \\ 0 & O(p+q) \end{pmatrix}, \]

where \(I_n, I_{n+p} \) and \(I_q \) are the identity matrices of order \(n, n+p \) and \(q \) respectively. Let \(\mathfrak{o}(n+p+q), \mathfrak{o}(n), \mathfrak{o}(p), \mathfrak{o}(q), \mathfrak{o}(n+p), \mathfrak{o}(n+q) \) and \(\mathfrak{o}(p+q) \) be the Lie algebras of \(O(n+p+q), O(n), O(p), O(q), O(n+p), O(n+q) \) and \(O(p+q) \). Let \(B \) be the Killing-Cartan form of \(\mathfrak{o}(n+p+q) \). It holds

\[B(X, Y) = 2 \text{trace}(XY). \]

Let \(\mathfrak{g}(n, p, q) \) be the orthogonal complement to \(\mathfrak{o}(n) + \mathfrak{o}(p) + \mathfrak{o}(q) \) in \(\mathfrak{o}(n+p+q) \) with respect to the Killing Cartan form \(B \). Then \(\mathfrak{g}(n, p, q) \) consists of matrices of the form

\[\begin{pmatrix} 0 & A & B \\ -A^t & 0 & C \\ -B^t & -C & 0 \end{pmatrix}, \]

where \(A \) is a matrix with \(n \) rows and \(p \) columns, \(B \) a matrix with \(n \) rows and \(q \) columns, \(C \) a matrix with \(p \) rows and \(q \) columns, and \(A^t, B^t \) and \(C^t \) are the transposes of \(A, B \) and \(C \) respectively.

\section*{§ 2. Frame bundles of a submanifold of a submanifold}

Let \(L \) be an \((n+p+q)\)-dimensional smooth Riemannian manifold with Riemannian metric \(g \). Let \(f_1 \) be an immersion of an \((n+p)\)-dimensional smooth manifold \(N \) into \(L \). Next let \(f_2 \) be an immersion of an \(n \)-dimensional smooth manifold \(M \). We also denote by \(g \) the metric induced on \(N \) as well as the metric induced on \(M \). For any point \(x \) of \(M \) we shall denote \(f_2(x) \in N \) and \(f_1 f_2(x) \in L \) by the same letter \(x \) if there is no danger of confusion. Thus the tangent space \(T_x(N) \) is a subspace of the tangent space \(T_x(L) \) and \(T_x(L) \) is a subspace of \(T_x(N) \).

Let \(O(M), O(N) \) and \(O(L) \) be the bundles of orthogonal frames over \(M, N \) and \(L \) respectively. \(O(N)|M = \{ v \in O(N); \pi(v) \in M \} \) is a principal fibre bundle over \(M \) with structure group \(O(n+p) \). The set of frames \(\{ v \in O(N)|M \} \) of the form \((Y_1, \ldots, Y_n, Y_{n+1}, \ldots, Y_{n+p}) \) with \(Y_1, \ldots, Y_n \) tangent to \(M \) forms the principal bundle \(O(N, M) \) over \(M \) with group \(O(n) \times O(p) \). Similarly we have the principal fibre bundle \(O(L, N) \) over \(N \) with group \(O(n+p) \times O(q) \). A frame \(v \in O(L)|M \) is said to be adapted if \(v \) is of the form \((Y_1, \ldots, Y_n, Y_{n+1}, \ldots, Y_{n+p}, Y_{n+p+1}, \ldots, Y_{n+p+q}) \) with \(Y_1, \ldots, Y_n \) tangent to \(M \) and \(Y_{n+1}, \ldots, Y_{n+p}, Y_{n+p+1}, \ldots, Y_{n+p+q} \) tangent to \(N \). Thus considered as a linear isomorphism \(\mathbb{R}^{n+q+p} \rightarrow T_x(L), v \) is adapted if and only if \(v \) maps the subspace \(R^n \) onto \(T_x(M) \) and the subspace \(R^{n+p} \) onto \(T_x(N) \), where \(\pi(v) = x \). The set of adapted
frames forms a principal fibre bundle over M with group $O(n) \times O(p) \times O(q)$. The bundle of adapted frames is denoted by $O(L, N, M)$. We define a homomorphism $h_1 : O(L, N, M) \rightarrow O(M, N)$ by

$$h_1(v) = (Y_1, \ldots, Y_n, Y_{n+p})$$

for $v = (Y_1, \ldots, Y_{n+p+q}) \in O(L, N, M)$. Similarly we can define homomorphisms $h_2 : O(L, N, M) \rightarrow O(L, N, M)/O(p)$, $h_3 : O(L, N, M) \rightarrow O(L, N, M)/O(n)$ and $h_0 : O(N, M) \rightarrow O(M)$, where $O(L, N, M)/O(p)$ is the bundle of frames of the form $(Y_1, \ldots, Y_n, Y_{n+p+1}, \ldots, Y_{n+p+q})$ with Y_1, \ldots, Y_n tangent to M and $Y_{n+p+1}, \ldots, Y_{n+p+q}$ normal to N, and so on. Corresponding the natural projection $O(n) \times O(p) \times O(q) \rightarrow O(n)$ we obtain a homomorphism $h : O(L, N, M) \rightarrow O(L, N, M)/O(n) \times O(q) = O(M)$. Similarly we have $h' : O(L, N, M) \rightarrow O(L, N, M)/O(n) \times O(q)$ and $h'' : O(L, N, M) \rightarrow O(L, N, M)/O(n) \times O(p)$. The following diagrams illustrate these bundles and homomorphisms:

$$
\begin{array}{c}
O(N, M) \\
\downarrow h_0 \quad O(L, N, M)/O(q) \\
O(L, N, M)/O(p) \times O(q) \\
\downarrow h_1 \quad O(L, N, M)/O(n) \times O(q) \\
O(L, N, M)/O(p) \\
\downarrow h_2 \quad O(L, N, M)/O(n) \times O(p) \\
\end{array}
$$

There are the following natural injections:

$$
\begin{array}{c}
O(N, M) \xrightarrow{k_1} O(N)/M \xrightarrow{k_2} O(N) \\
O(n) \times O(p) \downarrow \quad O(n+p) \downarrow \pi_N \quad O(n+p) \downarrow \pi_N \\
M \quad \xleftarrow{\pi_N} M \quad N
\end{array}
$$

Moreover we have the following commutative diagram:

$$
\begin{array}{c}
O(L, N) \xrightarrow{i_1} O(L, N, M) \xrightarrow{i_2} O(L) \\
O(n) \times O(p) \downarrow \pi_L \quad O(n+p) \downarrow \pi_L \\
M \quad O(L, M) \quad N \quad O(L) \quad M
\end{array}
$$

where i_1, i_2, j_1 and j_2 are the natural injections.
§ 3. Canonical forms and connection forms

Let θ_M, θ_N and θ_L be the canonical forms of M, N and L respectively. θ_M is an \mathbb{R}^n-valued 1-form on $O(M)$, θ_N is an \mathbb{R}^{n+p}-valued 1-form on $O(N)$ and θ_L is an \mathbb{R}^{n+p+q}-valued 1-form on $O(M)$. Put $k = k_2k_1$. Then it holds [2, Chapter 7, Proposition 1.1]

$$
k^*\theta_N = h^*_N \theta_M.
$$

Set $i = i_2i_1$. Then we can prove similarly

Proposition 1.

$$(kh_1)^*\theta_N = h^*\theta_M = i^*\theta_L.$$

Proof. By definition of θ_L, it follows

$$i^*\theta_L(Y) = (i(v))^{-1} \pi_*h_*i_*(Y) = v^{-1}\pi_*(Y) \quad \text{for} \quad Y \in T_m(O(L, M, N)).$$

Since $\pi_*(Y) \in T_m(M)$, where $x = \pi(v)$, we get $v^{-1}\pi_*(Y) \in \mathbb{R}^n$. Since $h(v) = v \mid \mathbb{R}^n$ and since $\pi_*(Y) = \pi$, we have

$$v^{-1}\pi_*(Y) = v^{-1}(\pi_*(Y)) = (h(v))^{-1} \pi_*(h_*(Y)) = \theta_M(h_*(Y)) = (h^*\theta_M)(Y).$$

Using the equation (1), we get

$$(h_0h_1)^*\theta_M = (kh_1)^*\theta_N.$$

q.e.d.

Let ω^M, ω^N and ω^L be the Riemannian connection forms on $O(M)$, $O(N)$ and $O(L)$ respectively. The following result is also found in [2, Chapter 7, Proposition 1.2].

Proposition 2. Let $\tilde{\omega}$ be the $\mathfrak{o}(n) + \mathfrak{o}(p)$-component of $k^*\omega^N$ with respect to the decomposition $\mathfrak{o}(n+p) = \mathfrak{o}(n) + \mathfrak{o}(p) + \mathfrak{g}(n, p)$, where $\mathfrak{g}(n, p)$ is the orthogonal complement to $\mathfrak{o}(n) + \mathfrak{o}(p)$ in $\mathfrak{o}(n+p)$ with respect to the Killing-Cartan form. Then $\tilde{\omega}$ defines a connection in the bundle $O(N, M)$.

We have the following direct sum decompositions:

$$\mathfrak{o}(n+p+q) = \mathfrak{o}(n) + \mathfrak{o}(p) + \mathfrak{o}(q) + \mathfrak{g}(n, p, q)$$

$$= \mathfrak{o}(n+p) + \mathfrak{o}(q) + \mathfrak{g}(n+p, q)$$

$$= \mathfrak{o}(n) + \mathfrak{o}(p+q) + \mathfrak{g}(n, p+q),$$

$$\mathfrak{g}(n, p, q) = \mathfrak{g}(n+p, q) + \mathfrak{g}(n, p) = \mathfrak{g}(n, p+q) + \mathfrak{g}(p, q).$$

Corresponding to the above, we get the following decompositions of connection forms;
On a Submanifold of a Submanifold of a Riemannian Manifold and the Gauss Map

\[
\begin{align*}
\omega^L &= \omega^L_c + \omega^L_\ell + \omega^L_q + \omega^L_{\bar{g}(n,p,q)} \\
&= \omega^L_c(n+p) + \omega^L_\ell(q) + \omega^L_{\bar{g}(n+p,q)} \\
&= \omega^L_c(n) + \omega^L_\ell(p+q) + \omega^L_{\bar{g}(n,p+q)}.
\end{align*}
\]

Moreover we have

\[
\begin{align*}
\omega^L_c(n+p) &= \omega^L_c(n) + \omega^L_\ell(p) + \omega^L_{\bar{g}(n,p)}, \\
\omega^L_\ell(p+q) &= \omega^L_\ell(p) + \omega^L_q + \omega^L_{\bar{g}(p,q)}, \\
\omega^L_{\bar{g}(n,p,q)} &= \omega^L_{\bar{g}(n+p,q)} + \omega^L_{\bar{g}(n,p)} + \omega^L_{\bar{g}(p,q)}.
\end{align*}
\]

Using Proposition 6.4 in [2, Chapter 2], we can prove the following result as similarly as Proposition 2.

\textbf{Proposition 3.} Put

\[
\begin{align*}
\omega &= i^s(\omega^L_c(n) + \omega^L_\ell(p) + \omega^L_q), \\
\omega' &= i_2^s(\omega^L_c(n+p) + \omega^L_q), \\
\omega'' &= j_2^s(\omega^L_{\bar{g}(n)} + \omega^L_{\bar{g}(p+q)}).
\end{align*}
\]

Then \(\omega, \omega'\) and \(\omega''\) define connections in the bundles \(O(L, N, M), O(L, N)\) and \(O(L, M)\) respectively.

There is the following in [2, Chapter 7, § 1]

\textbf{Proposition 4.} The homomorphism \(h_0: O(N, M) \to O(M)\) maps the connection in \(O(N, M)\) defined by \(\bar{\omega}\) into the Riemannian connection of \(M\), that is

\[
h_0^* \omega^M = \bar{\omega}_\circ(n),
\]

where \(\bar{\omega}_\circ(n)\) denotes the \(\circ(n)\)-component of the \(\circ(n)+\circ(p)\)-valued form \(\bar{\omega}\).

Let \(\omega_\circ(n)\) (resp. \(\omega_\circ(n)+\circ(p)\)) denote the \(\circ(n)\) (resp. \(\circ(n)+\circ(p)\)) component of the \(\circ(n)+\circ(p)+\circ(q)\)-valued form \(\omega\), that is

\[
\omega_\circ(n) = i^s(\omega^L_c(n)), \quad \omega_\circ(n)+\circ(p) = i^s(\omega^L_c(n)+\omega^L_\ell(p)).
\]

Then we have

\textbf{Proposition 5.} The homomorphism \(h_1: O(L, N, M) \to O(M, N)\) maps the connection in \(O(L, N, M)\) defined by \(\omega\) into the connection in \(O(M, N)\) defined by \(\bar{\omega}\). Hence the homomorphism \(h=h_0h_1\) maps the connection in \(O(L, N, M)\) into the Riemannian connection of \(M\) and the following relations are valid:

\[
h_1^*(\bar{\omega}) = \omega_{\circ(n)+\circ(p)}, \quad h^* \omega^M = \omega_{\circ(n)}.
\]
Proof. Since $h_1 : O(L, N, M) \rightarrow O(N, M)$ is a homomorphism such that the induced mapping $h_1 : M \rightarrow M$ is the identity mapping of M, from the well known result [2, Chapter 2, Proposition 6.1], it follows that h_1 maps the connection defined by ω into a connection in $O(N, M)$ whose connection form $\tilde{\omega}'$ satisfies $h_1^*(\tilde{\omega}') = \omega_{\sigma(n) + \sigma(p)}$. Since h_1 maps $O(L, N, M)$ onto $O(N, M)$, in order to show $\tilde{\omega} = \tilde{\omega}'$, we only prove $h_1^*(\tilde{\omega}) = h_1^*(\tilde{\omega}') = \omega_{\sigma(n) + \sigma(p)}$. We have the following commutative diagram:

$$
\begin{array}{ccc}
O(L, N, M) & \xrightarrow{k_1} & O(N, M) \\
\downarrow i_1 & & \downarrow k \\
O(L, N) & \xrightarrow{k_4} & O(N)
\end{array}
$$

where h_4 is the homomorphism corresponding to the natural projection $O(n + p) \times O(q) \rightarrow O(n + p)$. Corresponding to the decomposition $\sigma(n + p) = \sigma(n) + \sigma(p) + g(n, p)$, ω^N is written as

$$
\omega^N = \omega^N_{\sigma(n)} + \omega^N_{\sigma(p)} + \omega^N_{g(n, p)}.
$$

Then we have

$$
(5) \quad h_1^* \tilde{\omega} = h_1^* k^* (\omega^N_{\sigma(n)} + \omega^N_{\sigma(p)}) = i_1^* h_1^* (\omega^N_{\sigma(n)} + \omega^N_{\sigma(p)}).
$$

From (3) we get

$$
(6) \quad \omega' = i_1^* (\omega_{\sigma(n) + \sigma(p)} + \omega_{\sigma(q)}) = i_1^* \omega_{\sigma(n)} + i_1^* \omega_{\sigma(p)} + i_1^* \omega_{\sigma(n, p)} + i_1^* \omega_{\sigma(q)}.
$$

Applying Proposition 4, we have

$$
(7) \quad h_4^* \omega^N = i_1^* \omega_{\sigma(n) + \sigma(p)}.
$$

Combining (6) with (7), we obtain

$$
(8) \quad h_4^* (\omega^N_{\sigma(n)} + \omega^N_{\sigma(p)}) = i_1^* \omega_{\sigma(n)} + i_1^* \omega_{\sigma(p)}.
$$

Finally we obtain

$$
(9) \quad h_1^* \tilde{\omega} = i_1^* h_4^* (\omega^N_{\sigma(n)} + \omega^N_{\sigma(p)}) = i_1^* i_1^* (\omega_{\sigma(n)} + \omega_{\sigma(p)}) = \omega_{\sigma(n) + \sigma(p)}.
$$

q. e. d.

The homomorphisms h_2, h_3, h' and h'' given in § 3 map the connection defined by ω in $O(L, N, M)$ into connections in $O(L, N, M)/O(p)$, $O(L, N, M)/O(n)$, $O(L, N, M)/O(n) \times O(q)$ and $O(L, N, M)/O(n) \times O(p)$ respectively. We call those connections as the canonical connections in those bundles respectively.

§ 4. The Gauss map

Let $G(n, p)$ be the Grassmann manifold of n-planes in R^{n+p}. Then we have
On a Submanifold of a Riemannian Manifold and the Gauss Map

\[G(n, p) = O(n + p)/O(n) \times O(p). \]

By an \(n \)-frame in \(\mathbb{R}^{n+p} \), we mean an ordered set of \(n \) orthonormal vectors in \(\mathbb{R}^{n+p} \).
Let \(V(n, p) \) be the Stiefel manifold of \(n \)-frames in \(\mathbb{R}^{n+p} \). Then we have

\[V(n, p) = O(n + p)/O(p). \]

A pair \((U, V)\) of \(n \)-dimensional linear subspace \(U \) and \(p \)-dimensional linear subspace \(V \) of \(\mathbb{R}^{n+p+q} \) such that \(U \cap V = \{0\} \) will be said to be a direct sum pair of type \((n, p)\) in \(\mathbb{R}^{n+p+q} \). Let \(G(n, p, q) \) be the set of direct sum pairs of type \((n, p)\) in \(\mathbb{R}^{n+p+q} \).

The group \(O(n+p+q) \) acts transitively on \(G(n, p, q) \). The elements of \(O(n+p+q) \) which leave invariant the particular pair \((\mathbb{R}^n, \mathbb{R}^p) \) form the subgroup \(O(n) \times O(p) \times O(q) \). Thus we have

\[G(n, p, q) = O(n+p+q)/O(p) \times O(p) \times O(q). \]

The homogeneous space \(G(n, p, q) \) is considered as a fibre space over Grassmann manifolds. In fact we have three fibre bundles:

- \(G(n, p, q) \) over \(G(n+p, q) \) with fibre \(G(n, p) \),
- \(G(n, p, q) \) over \(G(n, p+q) \) with fibre \(G(p, q) \),
- \(G(n, p, q) \) over \(G(n+p, q) \) with fibre \(G(n, q) \).

For example the projection of \(G(n, p, q) \) onto \(G(n+p, q) \) maps a direct sum pair \((U, V)\) to the \((n+p)\)-dimensional subspace \(U + V \). We have moreover the following seven principal fibre bundles over \(G(n, p, q) \):

- \(E = O(n+p+q) \) over \(G(n, p, q) \) with group \(O(n) \times O(p) \times O(q) \),
- \(E_1 = V(p+q, n) = O(n+p+q)/O(n) \) over \(G(n, p, q) \) with group \(O(p) \times O(q) \),
- \(E_2 = V(n+q, p) = O(n+p+q)/O(p) \) over \(G(n, p, q) \) with group \(O(n) \times O(q) \),
- \(E_3 = V(n+p, q) = O(n+p+q)/O(q) \) over \(G(n, p, q) \) with group \(O(n) \times O(p) \),
- \(E'_1 = O(n+p+q)/O(p) \times O(q) \) over \(G(n, p, q) \) with group \(O(n) \),
- \(E'_2 = O(n+p+q)/O(n) \times O(q) \) over \(G(n, p, q) \) with group \(O(p) \),
- \(E'_3 = O(n+p+q)/O(n) \times O(p) \) over \(G(n, p, q) \) with group \(O(q) \).

Let \(\gamma \) be the canonical 1-form of \(O(n+p+q) \), that is, the left invariant \(o(n+p+q) \)-valued 1-form uniquely determined by

\[\gamma(A) = A \quad \text{for} \quad A \in o(n+p+q). \]

Let \(\omega_k \) be the \(o(n) + o(p) + o(q) \)-component of \(\gamma \) with respect to the decomposition
\(o(n+p+q) = o(n) + o(p) + o(q) + g(n, p, q) \). By the well known result [2, Chapter 2, Theorem 11.1], the form \(\omega_E \) defines a connection in \(E \) which will be called the canonical connection in \(E \) and will be denoted by \(\Gamma_E \). Let \(f_i \) (resp. \(f'_i \)) be the bundle homomorphisms of \(E \) onto \(E_i \) (resp. \(E'_i \)) defined by the natural projections \((i = 1, 2 \text{ and } 3)\). The homomorphisms \(f_i \) (resp. \(f'_i \)) map the connection \(\Gamma_E \) onto connections in \(E_i \) (resp. \(E'_i \)), denoted by \(\Gamma_{E_i} \) (resp. \(\Gamma_{E'_i} \)) such that the connection forms \(\omega_{E_i} \) (resp. \(\omega_{E'_i} \)) are determined by \(f^*_1(\omega_{E_i}) = \gamma_{o(p)} + \gamma_{o(q)} \), \(f^*_2(\omega_{E_i}) = \gamma_{o(n)} + \gamma_{o(q)} \) and \(f^*_3(\omega_{E_i}) = \gamma_{o(n)} + \gamma_{o(p)} \) (resp. \(f'^*_1(\omega_{E'_i}) = \gamma_{o(n)} \), \(f'^*_2(\omega_{E'_i}) = \gamma_{o(p)} \) and \(f'^*_3(\omega_{E'_i}) = \gamma_{o(q)} \)), respectively, where \(\gamma_{o(n)}, \gamma_{o(p)} \) and \(\gamma_{o(q)} \) are the \(o(n) \), \(o(p) \) and \(o(q) \)-components of \(\gamma \) respectively.

Let \(P_1 \) and \(P_2 \) be principal bundles over \(M \) with groups \(G_1 \) and \(G_2 \) respectively. Then \(P_1 \times P_2 \) is a principal fibre bundle over \(M \times M \) with group \(G_1 \times G_2 \). Let \(P_1 + P_2 \) be the restriction of \(P_1 \times P_2 \) to the diagonal \(\Delta M \) of \(M \times M \). Since \(\Delta M \) and \(M \) are diffeomorphic to each other, \(P_1 + P_2 \) is considered as a principal fibre bundle over \(M \). Moreover let \(P_3 \) be a principal fibre bundle over \(M \) with group \(G_3 \). Then we can construct a principal fibre bundle \(P_1 + P_2 + P_3 \) over \(M \) with group \(G_1 \times G_2 \times G_3 \). Now we have the following bundle isomorphisms:

\[
(f_i, f'_i): E \cong E_i + E'_i \quad (i = 1, 2 \text{ and } 3),
\]

\[
(f'_1, f'_2, f'_3): E \cong E'_1 + E'_2 + E'_3.
\]

Let \(N \) be an \((n+p)\)-dimensional manifold immersed in the \((n+p+q)\)-dimensional Euclidean space \(\mathbb{R}^{n+p+q} \). Let \(M \) be an \(n \)-dimensional manifold immersed in \(N \). We have the following principal fibre bundles over \(M \).

\[
P = O(\mathbb{R}^{n+p+q}, N, M) \text{ over } M \text{ with group } O(n) \times O(p) \times O(q),
\]

\[
P_1 = O(\mathbb{R}^{n+p+q}, N, M) \text{ over } M \text{ with group } O(p) \times O(q),
\]

\[
P_2 = O(\mathbb{R}^{n+p+q}, N, M) \text{ over } M \text{ with group } O(n) \times O(q),
\]

\[
P_3 = O(\mathbb{R}^{n+p+q}, N, M) \text{ over } M \text{ with group } O(n) \times O(p),
\]

\[
P'_1 = O(\mathbb{R}^{n+p+q}, N, M) \text{ over } M \text{ with group } O(n),
\]

\[
P'_2 = O(\mathbb{R}^{n+p+q}, N, M) \text{ over } M \text{ with group } O(p),
\]

\[
P'_3 = O(\mathbb{R}^{n+p+q}, N, M) \text{ over } M \text{ with group } O(q).
\]

The canonical connections in \(P, P_1, P_2, P_3, P'_1, P'_2 \) and \(P'_3 \) given as in §3, will be denoted by \(\Gamma_P, \Gamma_{P_1}, \Gamma_{P_2}, \Gamma_{P_3}, \Gamma_{P'_1}, \Gamma_{P'_2}, \Gamma_{P'_3} \) and \(\Gamma_P \).

We now define a bundle map \(g: P \rightarrow E \). The bundle \(O(\mathbb{R}^{n+p+q}) \) of orthonormal frames over \(\mathbb{R}^{n+p+q} \) is trivial, that is, \(O(\mathbb{R}^{n+p+q}) = \mathbb{R}^{n+p+q} \times O(n+p+q) \). Let \(\rho: O(\mathbb{R}^{n+p+q}) \rightarrow O(n+p+q) \) be the natural projection. Let \(i: P \rightarrow O(\mathbb{R}^{n+p+q}) \) be the natural injection. Then we define
On a Submanifold of a Riemannian Manifold and the Gauss Map

\[g(v) = \rho i(v) \quad \text{for} \quad v \in P. \]

Since \(g \) commutes with the right translation by \(O(n) \times O(p) \times O(q) \), \(g \) is a bundle map of \(P \) into \(E \). The bundle map \(g \) induces bundle maps \(g_i: P_i \rightarrow E_i \) and \(g'_i: P'_i \rightarrow E'_i \) \((i = 1, 2 \text{ and } 3)\). It induces also a mapping \(g: M \rightarrow G(n, p, q) \). Summing up, we have the following commutative diagram:

\[
\begin{array}{ccc}
P_i & \xrightarrow{g_i} & E_i \\
\downarrow h_i & & \downarrow f_i \\
P_i + P'_i = P & \xrightarrow{f'_i} & E = E_i + E'_i \\
\downarrow h'_i & & \downarrow f'_i \\
P'_i & \xrightarrow{g'_i} & E'_i \\
\end{array}
\]

where \(h_i: P \rightarrow P_i \) and \(h'_i: P \rightarrow P'_i \) are the natural homomorphisms as given in § 3. Now we have the following fundamental relationship of connections.

Proposition 6. The bundle maps \(g, g_1, g_2, g_3, g'_1, g'_2 \) and \(g'_3 \) map the connections \(\Gamma_P, \Gamma_{P_1}, \Gamma_{P_2}, \Gamma_{P_3}, \Gamma_{E_1}, \Gamma_{E_2} \) and \(\Gamma_{E_3} \) upon the connections \(\Gamma_E, \Gamma_{E_1}, \Gamma_{E_2}, \Gamma_{E_3}, \Gamma_{E'_1}, \Gamma_{E'_2} \) and \(\Gamma_{E'_3} \) respectively.

Proof. Since each \(f_i \) (resp. \(f'_i \)) maps \(\Gamma_E \) upon \(\Gamma_{E_i} \) (resp. \(\Gamma_{E'_i} \)) and since each \(h_i \) (resp. \(h'_i \)) maps \(\Gamma_P \) upon \(\Gamma_{P_i} \) (resp. \(\Gamma_{P'_i} \)), it suffices to prove that \(g \) maps \(\Gamma_P \) upon \(\Gamma_E \).

The flat Riemannian connection of \(R^{n+p+q} \) is given by the form \(\rho^*(\gamma) \) on \(O(R^{n+p+q}) \). The connection form \(\omega \) is the \(o(n)+o(p)+o(q) \)-component of \(i^*\rho^*(\gamma) = g^*(\gamma) \). On the other hand, \(\omega_E \) is the \(o(n)+o(p)+o(q) \)-component of \(\gamma \). Hence we obtain that \(\omega \) is equal to \(g^*(\omega_E) \).

\[\text{Department of Mathematics} \\
\text{Faculty of Education} \\
\text{Tokushima University} \]

This work was partially supported by the Grant in Aid for Scientific Research (No. 464018).

References

