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§1. Introduction

When we compute a solution x =% of a nonlinear equation F(x)=0, it is difficult
to get a highly accurate approximation to the solution £ by applying the Newton
method to the equation F(x)=0 in the case where the Jacobian matrix F (x) of F(x)
is singular at x= 3.

In the present paper, we propose a useful method for overcoming the difficulty
arising from the singularity of the Jacobian matrix F (£). Our method is as follows.

Let us introduce a parameter in the equation F(x)=0 and consider an enlarged
system consisting of the original equation F(x)=0 and additional equations involv-
ing the Jacobian matrix.

Then this enlarged system has an isolated solution which contains £ in question
and hence we can obtain an approximation to this isolated solution as accurately
as we desire by the Newton method. Here a solution of a nonlinear equation is
called to be “isolated” if the Jacobian matrix of the nonlinear equation is non-
singular at the solution.

H. Weber and W. Werner [18] have proposed a method similar to ours. When
the dimension of Ker (F, (%)) is one and the intersection Ker (F (%)) Im (F (%))
consists of the zero vector alone, they have considered an enlarged system similar
to (2.3) in §2 and they have obtained a result similar to Theorem 1 in §2, where
Ker (F (%)) denotes the kernel of F (%) and Im (F,(%)) denotes the image of F (%).
But, when the condition Ker (F (£))N\Im (F(%))={0} does not hold, they have
considered a complicated enlarged system instead of the one similar to (2.3).

On the other hand, in our case, we consider only the system (2.3) whether the
condition Ker (F (£))N\Im (F(£))={0} holds or not. Hence our method for
introducing a parameter in the equation F(x)=0 seems to be more useful and con-
venient than theirs. For details, see Remark 3 in §2 and Example 2 in §5. Further,
when the Jacobian matrix F (x) has a high singularity at the solution, they did not
describe anything. On the other hand, we can consider the solution with the
Jacobian matrix having the high singularity and we give a condition for classifying
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solutions with singular Jacobian matrices.

In the present paper, we also consider singular points of a nonlinear equation
F(x, B)=0, where B is a parameter. Here a point (%, B) satisfying the equation
F(x, B)=0 is called a “singular point” if the Jacobian matrix F.(x, B) of F(x, B)
with respect to x is singular at (x, B)=(£, B). Our method mentioned above is also
effective for singular points of the nonlinear equation F(x, B)=0 and we have results
similar to ones obtained for a solution of the equation F(x)=0 with a singular
Jacobian matrix.

When the dimension of the parameter B is one, our method is the same as the
one proposed by R. Seydel [12]. But he did not describe the case where the dimen-
sion of the parameter B is greater than one and he did not give any condition for
guaranteeing the isolatedness of a solution of an enlarged system. On the other
hand, we consider such a high dimensional case and we give the necessary and
sufficient condition for the isolatedness of the solution of the enlarged system.

Furthermore, our method can be applied to boundary value problems of ordi-
nary differential equations involving parameters.

In §3, we consider bifurcations of periodic solutions of nonlinear periodic systems
and in §4, we consider multi-point boundary value problems. We also give an
existence theorem of an exact solution of a multi-point boundary value problem
involving parameters.

In §5, in order to illustrate our theory and method, we present some examples of
solutions of nonlinear equations with singular Jacobian matrices. Further, we
also give some examples of singular points of nonlinear equations defined by
solutions of boundary value problems of ordinary differential equations involving
parameters. These examples show the usefulness of our theory and method.

§2. Solutions of Nonlinear Equations

2.1. The Case of a Nonlinear Equation F(x)=0

We consider a solution x =X of an n-dimensional nonlinear equation
(2.1) F(x)=0

such that the rank of the Jacobian matrix F, (x) is n—1 at x=2%, where the function
F(x) is defined on some neighborhood D of % in the x-space and F(x) is continuously
differentiable with respect to x in D.

In order to simplify the following argument, we assume that rank F, (X)=
rank Fo(X)=n—1, where Fy(R) is the nx(n—1) matrix obtained from F(X) by
deleting the first column vector.

Then there exists a positive integer k (1 <k <n) such that

(2.2) rank (Fy(%), e,)=n,
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where ¢, is the unit vector directed along the x, axis, that is,

e=(0,...,0, 1, 0,..., 0)T.
k

Here (---)T denotes the transposed vector of a vector (---).

Now, making use of the singularity of the Jacobian matrix F(X), we consider
the following three types of nonlinear systems consisting of the equation F(x)=0
and additional equations involving the Jacobian matrix.

In the first place, since the equation {fx(_)c%h_;éo has a solution due to rank
—1=

Fo(®)=n—1, we introduce a parameter B in the equation F(x)=0 and we consider
the system

F(x)— Be,
(2.3) G(x)=| FJ (x)h |=0,
h,—1

where x=(x, h, B)T, x=(xy,..., x,)T and h=(hy,..., h,)T. Then, from rank Fy(X)=
n—1, the system (2.3) has a solution £=(%, h, 0)T and the x-component £ of £ is
the desired solution of (2.1). For this solution £, we have the following theorem.

Theorem 1.

Assume that the function F(x) is twice continuously differentiable with respect
to x in D. Then the solution £=(%, h, 0)T of (2.3) is isolated (that is, det G'(£) = 0)
if and only if

(2.4) rank (Fo(%), D=n,

where G'(x) denotes the Jacobian martrix of G(x) with respect to x and 1=
{F.(®)h}h. Here F_(x) denotes the second derivative of F(x) with respect to x.

ProOOF. Since F(x) is twice continuously differentiable with respect to x, the
function G(x) defined by the equality (2.3) is continuously differentiable with
respect to x and we have

Fo(x) 0 —ey
(2.5) G'(x)=| Fu(x)h  Fu(x) 0 |,
00---0 10---0 0
from which it follows that
the solution £ of (2.3) is isolated if and
(2 only if rank (Fo(%), =n.

This completes the proof. Q.E.D.



30 Norio YAMAMOTO

Thus, if the condition (2.4) is satisfied, we can get an approximation to the
solution £=(%&, A, 0)T of (2.3) as accurately as we desire by the Newton method.
When rank (F (%), )=n—1, since the equation
F.()k+1=0,
2.7) )
k] = O

has a solution k=(ky,..., k,)T, we introduce one more parameter and we consider
the system
F(x) - Blek

F(x)h,— B;e,
(2.8) Gi(x)) =| F(x)hy+ {F(x)1} Ry | =0,
hl—1

h;

where x, =(x, hy, h,, By, B,)T and h;=(h}, h?,..., h)T (i=1, 2). Evidently, this
system (2.8) has a solution £, =(&, f,, fi,, 0, 0)T, where /1, is a solution of (2.7). For
this solution £,, we readily get the following theorem.

Theorem 2.

Assume that the function F(x) is three times continuously differentiable with
respect to x in D.  Then the solution £=(&, hy, h,, 0, 0)T of (2.8) is isolated (that is,
det G1(%,)=0) if and only if
(2.9) rank (Fy(%), 1,)=n,
where G'(x,) denotes the Jacobian matrix of G,(x,) with respect to x, and
XO=F(x), XD=XOh;, XD =XOh,+ XOh;, 1,=XDh, +28Dh,. Here X\
(j=0, 1) are the derivatives of X (j=0, 1) with respect to x, respectively, and
X (i=0,1,2) and XY (j=0, 1) mean the values of XV (i=0, 1, 2) and X\
(j=0, 1) at x=%, hy=h, and hy=Hh,, respectively.

More generally, let us suppose that the function F(x) is (d -+ 2) times continuously
differentiable with respect to x in D (d >2) and we put

(2.10) XHD=3 .CX®h,, , (1<i<d)
k=0
and
(2.11) L=Y ,CX®h, (1<i<d+1)
k=1

where X\ (j=0, 1,..., d) are the derivatives of X (j=0, 1,..., d) with respect to x,
respectively.
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If there exists a vector 9,=(&, h,,..., h,)T (where % is of course a solution of (2.1)
and satisfies the condition (2.2)) such that the conditions

(2.12) X©h; =0, h1—1=0 and X©h,,,+1,=0, h1, ;=0 (j=1,2,...,d-1),
(2.13) n—1l=rank Fo(8)=rank (Fo(%), 1,)="--=rank (Fy(), 1,)

are satisfied, then we introduce (d + 1) parameters B, B,,..., B;,, and we consider
the system

F(x)— Be,
X(O)hl —Bzek
X(O)h2+X(l)h1 _B3ek

2.14 G = | d=1 N
( ) a(xa) Z.O i-1CiXOhy_;— By

d
3 CiX iy

Ya(xy)
Where xd=(x, hl’ hz,..., hd+17 Bl’ Bz,..., Bd+ 1)T, hl':(hl, hlg’,..., h:‘)T (i:'l, 2,..., d+

D, Yux)=(h1—1, hi,..., h}. )T and X® (k=0, 1, 2...,d) and I, (i=1, 2,..., d)
mean the values of X® (k=0, 1,2,...,d)and [;(i=1,2,...,d)at x=X%, I, =El,..., h,=
h,, respectively. By (2.12) and (2.13), the system (2.14) has a solution £,=(§,,
hy.., 0)T (where h,, , is a solution of the equation X©®h,,,+1,=0, h},,=0and 0

is the (d + 1)-dimensional zero vector) and for this solution £, we have

Theorem 3.
The solution £,=(R, hy, hyy..., hyiy, 0, 0,..., 0)T of (2.14) is isolated (that is,
det G)(£,)=0) if and only if

(2.15) rank (Fo(%), lys1)=n,

where G'(x,) denotes the Jacobian matrix of G,x,) with respect to x, and 1,,,
means the Uah/le Of 1d+1 at x=5€, 111=fl1, hZ:Ez,..., hd+l=ﬁd+1'

ProoF. Since F(x) is (d+2) times continuously differentiable with respect to
x in D, the function G,(x,) defined by the equality (2.14) is continuously differentiable
with respect to x; and we have
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0CoX @ 0 0
1Co XM CXO 0
2CoX® O XD X O
: dCO:‘X(d) dCIXZ—(d_l) dcz/\;(d_z)

216)  Ga(x) = 1 CoX D 1 CX @y CXUD

al 10---0 00---0

|
|
| 00-+-0 10---0

o0

0 0 —e, 0 -+ 0
0 0 0 —e O
0 0 0 0.0
dCdiY‘O) () 0 0 -.—:ek
c a11CaXD L Cu X© 0 0 - 0
0 0 0
0 0 \
... | ‘ 0 O cee O
10---0 00---0” 0 0 e 0
00---0 10---0 0 0 -0
Then, by (2.16), we see that
(2.17) det G(%,) =0 is equivalent to rank (Fo(%), l,4,)=n.
This completes the proof. Q.E.D.

Thus, if the condition (2.15) is satisfied, we can get an approximation to the
solution £, of (2.14) as accurately as we desire by the Newton method.

Particularly, when n=1, F(x) is a scalar-function and, in this case, the conditions
(2.13) and (2.15) become

(2.18) 0=F ()=1,=--=1,_,=1,=0 and 1,,,x0.

Of course, in this case, x, hy, h,,..., h;,, are scalars.
In the second place, since det F,(£)=0, we may consider the system
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F(x)— Be, >
g(x)

instead of the system (2.3), where x=(x, B)T and g(x)=det F,(x). Then £=(%, 0)T
is certainly a solution of (2.19) and for this solutin £, we have

(2.19) H(x)= (

Theorem 4.
The solution £=(&, 0)T of (2.19) is isolated if and only if the condition (2.4)
is satisfied.

ProOr. We denote by H'(x) the Jacobian matrix of H(x) with respect to x and
we have

Fx(x) — €y
0x
where 0g(x) =<8g(x) yeres 0g(x) ) Then, for the solution X, we have
ox 0x, 0x,
“ F ) - ek 0 Fo()%) - ek ‘
(2.21) det H'(%) =\ dg N I R
1 " ox, 0x,
where 7 —~h~~ -det (1, Fo(%)). Here h=(h,,..., h,)T is the h-component of the solu-
1
tion (&, h, 0)T of (2.3). By (2.21), we easily get
(2.22) det H'(%) =0 is equivalent to 7 0.
This completes the proof. Q.E.D.

When rank (F(%), )=n—1, since rank H'(£)=n, we may consider the system
F(x)—B, e,
(2.23) H(x,)=| g(x)—B, =0
g1(x)

instead of the system (2.8), where B, and B, are parameters, x; =(x, B, B,)T and
g.(x)=det H'(x).

The system (2.23) has a solution £, =(%, 0, 0) and for this solution £, analogously to
Theorem 2, we have

Theorem S.
The solution £,=(&, 0, 0)T of (2.23) is isolated if and only if the condition
(2.9) is satisfied.
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More generally, if the conditions (2.12) and (2.13) are satisfied, then we may
consider the system

F(x)— B¢
go(x)— B,
(2.24) Hfx)=|g 1(X) —B; =0

Ga—1(x)~= By

gu(x)

instead of the system (2.14), where x,=(x, By,..., B;j11)T, go(x)=det F (x) and
gi{x)=det H;_(x;_;) (i=1,2,...,d). Here H;_,(x;_{) (i=1,2,..., d) are the Jaco-
bian matrices of

F(x)—B,e,
go(x)— B,

(2.25) Hi y(xi-)=| 91(x)— B, (i=1,2,.... d: Ho(xo)=H(x)),
giea(0)— B,

gi—1(x)

with respect to x;_, =(x, By,..., B;)T, respectively.
Then the system (2.24) has a solution £,=(%, 0, 0,..., 0)T and for this solution %,
analogously to Theorem 3, we get

Theorem 6.
The solution £,=(%, 0, 0,..., 0)T of (2.24) is isolated if and only if the condition
(2.15) is satisfied.

The third type of nonlinear systems is led from the second one. From (2.21),
we have

Fr (%)

ag(x)
} O0x

(2.26) det H'(£)=(—1)-(—1)k+ntD)

where F_ _, (%) is the (n—1)xn matrix obtained from F(X) by deleting the k-th
row vector. Then we may consider the system

F_i(x)
(2.27) I(x)= ( ) =0
g(x)

instead of the system (2.19), where F _ (x) is the (n — 1)-dimensional vector obtained
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from F(x) by deleting the k-th component. Of course, £ is a solution of (2.27).
Analogously to Theorem 4, we have

Theorem 7.
The solution X of (2.27) is isolated if and only if the condition (2.4) is satisfied.

When rank (Fo(%), )=n—1, we may consider the system

F_(x)
(2.28) 1(x)= ( ) =0
g.(x)

instead of the system (2.23). Further, if the conditions (2.12) and (2.13) are satisfied,
then we may consider the system

CF (%) >
(2.29) [(x)= (
ga(x)

instead of the system (2.24). Of course, £ is a solution of (2.29). Then, analogously

to Theorem 6, we readily get

Theorem 8.
The solution % of (2.29) is isolated if and only if the condition (2.15) is satisfied.

Remark 1.
In the case of the first type, eliminating the parameter B in the system (2.3), we
have

F_4(x)
(2.30) G(x)=1| F(x)h | =0,
hy—1

where X=(x, h)T. Thus, we may consider the system (2.30) instead of the system
(2.3).

Remark 2.
Since the n-th component g,(x) of I,(x) defined by the equality (2.28) is of the
form

] Fx(x) — €y ' : Fx,—k(x) ‘
gl(x)ZdetH/(x = i aw) 0 \ =(_1)-(_1)k+()1+1)% a_gf(ic)‘ "
| ox | |ox |

we may consider the system

. F_i(x)
(2.31) I(x)= ( > =0
g1(x)
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Fx,—k(x)
instead of the system (2.28), where gl(x)=det< dg(x) )

0x
Similarly, instead of the system (2.29), we may consider the system

Y F_i(x)
(2.32) I (x)= ( > =0,
Ga(x) :

Fx,—k(x) )

Where gd(x)=d6t< 894_1
%12 )

Remark 3.
When dim Ker (F(%))=1 and Ker (F (2)NIm (F(X))={0}, H. Weber and
W. Werner [18] have considered the system

F(x)+Bh
(2.33a) W(x)=| F(x)h |=0
hTh—1

instead of the system (2.3), where x=(x, h, B)T, x=(x4,..., x,)¥, h=(h4,..., h,)T and
B is a parameter. Evidently, the system (2.33a) has a solution £=(&, A, 0)T (where
hi is a solution of the equation F (%)h=0, hTh—1=0) and for this solution £, they
have obtained a result similar to Theorem 1. But, when the condition Ker (F,(£))
Im (F(X))=1{0} does not hold, the solution £ of (2.33a) is not isolated. Then they
have considered the system

F (X)TF(x)+ Bh
(2.33b) W(x)=| F(x)h =0
hTh—1

instead of the system (2.33a), where F,(x)T denotes the transposed matrix of F (x).

On the other hand, in our case, we consider only the system (2.3) whether the
condition Ker (F (%)) Im (F(X))={0} holds or not. Hence our method seems to
be simpler than theirs. Particularly, comparing the system (2.33b) with the system
(2.3), it seems that our method is more convenient than theirs. Of course, we may
adopt the condition h; —1=0 instead of the condition h""Th—1=0 in the systems
(2.33a) and (2.33b) when rank F (X)=rank Fy(X)=n—1.

Now, we consider the case where rank F (£)=n—d (1<d<n). For the sake of
simplicity, we assume that

(2.34) n—d=rank F (X)=rank F, %),
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where F,(X) is the n x (n—d) matrix obtained from F (%) by deleting the first column
vector through the d-th column vector.
Then there exist d positive integers kq, k,,..., k; (1<ky, k,,..., k;<n) such that

(2.35) rank (Fy (%), e,, €,,..., €,)=n,
where e, =(0,..., 0, l;’ 0,....,0T (i=1,2,..., d).

ki
Then we introduce d parameters B, B,,..., B, in the equation F(x)=0 and
we consider the system

F(x)—Bye,,— Bye,,~ - —Bye,,
F.(x)h
(2.36) G(x)=| /p, a, =0,
h.z —| @
h:d a:d

where x=(x, h, By,..., B)T, x=(xq,..., x,)T, h=(hy,..., h,)T and a=(ay,..., a))7T is
a d-dimensional non-zero constant vector. Then the condition (2.34) implies that
the system (2.36) has a solution £=(%, 4, 0, 0,..., 0)T. For this solution £, we have

Theorem 9.
Assume that the function F(x) is twice continuously differentiable with respect
to x in D. Then the solution £=(%, , 0, 0,..., 0)T of (2.36) is isolated if and only if

(2.37) l‘ank (Fd()?), ﬁ’ll, ﬁ’lz,..., ﬁ’ld)=n,

where w;={F ()} h® (1<i<d). Here h» (1<i<d) are solutions of the linear
equations

F (R)h(H =0,
=0,
(2.38) : : (where h() =(h{D, hiP, ..., h())T)
h(ii)= 1,
=0,

(1<i<d), respectively.

We must choose a d-dimensional vector a(=0) so that (2.37) is satisfied. But,
in case of

(2.39) rank (F8), iy, Pig,..., M) <n,

we regard the system G(x)=0 as the original equation F(x)=0 and we repeat the
above-mentioned process for the system G(x)=0.



38 Norio YAMAMOTO

2.2 The Case of a Nonlinear Equation F(x, B)=0

We consider a point (x, B)=(%, B) satisfying a nonlinear equation
(2.40) F(x, B)=0

whose left member’s Jacobian matrix with respect to x is singular at (%, B), where
x and F(x, B) are n-dimensional vectors and F(x, B) is defined on some neighbor-
hood Q of (%, B) in the (x, B)-space and F(x, B) is continuously differentiable with
respect to x and B in Q. Here B is a parameter and we assume that the dimension
of the parameter B is m (m>1).

The point (&, B) mentioned above is called a “singular point’ of the nonlinear
equation F(x, B)=0.

At first, let us suppose that the values of (m — 1) components of B are given and
one and only one component of B is unknown. For the sake of simplicity, we
denote this unknown component of B by B and this is called the parameter B with
dimension one.

Now, we assume that

(2.41) rank F (%, B)=n—1<n=rank (F(%, B), Fi(%, B)),

where F (x, B) denotes the Jacobian matrix of F(x, B) with respect to x and Fy(x, B)
denotes the partial derivative of F(x, B) with respect to B.
Further, in order to simplify the following argument, we assumc that

n—1=rank F (&, B)=rank F (%, B)
(2.42) ) )
<n:rank (FO())Ea B)a FB()AC: B))>

where Fo(%, B) is the n x (n— 1) matrix obtained from F (%, B) by deleting the first
column vector.
Here we consider the following problem:

(2.43) Look for a singular point (%, B) € Q satisfying (2.42).

Since the equation F (%, B)h=0 has a nontrivial solution due to rank F (%, B)=
n—1, we consider the system

F(x, B)
(2.44) G(x)=| F(x, B)h | =0,
chy—1

where x=(x, h, B)T, x=(x,,..., x,)T and h=(h,,..., h,)".
The system (2.44) has a solution £=(%, h, B)T (where /1 is a solution of the equation
F(%, Byh=0, h;—1=0).
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Then, the problem (2.43) is reduced to the problem of finding a solution of
the system (2.44), because (%, B) is the desired singular point, where £ and B are
the x-component and the B-component of the solution £ of (2.44), respectively.
Hence we have only to consider the system (2.44).

Analogously to Theorem 1, for the solution £=(%, 1, B)T of (2.44), we have

Theorem 10.
Assume that the function F(x, B) is twice continuously differentiable with
respect to x and B in Q. Then the solution % of the system (2.44) is isolated if and

only if
(2.45) rank (Fo(%, B), )=n,

where 1={F (&, B)iYh. Here F _(x, B) denotes the second derivative of F(x, B)
with respect to x.

Proor. Since F(x, B) is twice continuously differentiable with respect to x and
B in Q, G(x) is continuously differentiable with respect to x. We denote by G'(x)
the Jacobian matrix of G(x) with respect to x and we have

Fx(x’ B) O FB(-xs B)
(246) G,(x) = Fxx(xa B)h Fx(x9 B) FxB(x’ B)h )
00---0 10.--0 0

where F, z(x, B) denotes the partial derivative of F(x, B) with respect to B. By
(2.42) and (2.46) we see that

(2.47) det G'(R)=0 is equivalent to (2.45).
This completes the proof. Q.E.D.

Thus, if the condition (2.45) is satisfied, then we can get an approximation to
the solution 5 of (2.44) as accurately as we desire by the Newton method. Then
we can also obtain a desired approximation to the singular point (£, B) of the
equation F(x, B)=0 satisfying (2.42).

This singular point (%, B) is called a “turning point™.

When rank (Fy(%, B), [)=n—1, since the equation

F (%, B)k+1=0,
k,=0

has a solution k=(k,..., k), we suppose that besides the previous unknown
component of the parameter B, one of the given (m — 1) components of B is unknown,
that is, two components of B are unknown and we consider the system
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F(x, B)
Fx(xa B)hl

(2.48) Gl(x1)= Fx(x, B)h2+ll =0,

hi—1
h}

where x,=(x, h;, hy, B)Y, h;=(h},..., h")T (i=1, 2), B=(B;, By)" and I,=
{F _(x, B)h;}h,. Here we write two unknown components of the parameter B as
B, and B,. For brevity, we denote this parameter B by B=(B;, B,)" and this is
called the parameter B with dimension two.

Besides the conditions

n—1=rank F (&, B)=rank Fy(%, B)
%) [ <n=rank (Fo(%, B), Fy.(%, B))
and
(2.50) n—1=rank (Fo(%, B), 1,),

we assume that

2n,

Fx(je’ B) O FBl()ACs B) FBZ(-)?’ B)
(2.51) rank o ~ . . =
Fxx()/ea B)hl Fx()AC, B) FxB1(5<\:a B)hl Fsz(fea B)hl

where 1, ={F, (%, B)h,}h,, and Fy(x, B) and F,z(x, B) (i=1,2) are the partial
derivatives of F(x, B) and F (x, B) with respect to B; (i=1, 2), respectively.

From (2.49) and (2.50), the system (2.48) has a solution £, =(%, h,, i,, B)T and
for this solution £,, analogously to Theorem 2, we easily get

Theorem 11.
Assume that F(x, B) is three times continuously differentiable with respect
to x and B in Q. Then the solution £, of (2.48) is isolated if and only if

(2.52) rank (Fo(%, B), 1,)=n,

where £ =F (%, B), X0 =XOh,, XD =XOh,+XOh, and 1,=X®h +2XDh,.
Here XV (i=0, 1) are the derivatives of X (i=0, 1) with respect to x, respectively,
and XM (i=0, 1, 2) and XY’ (j=0, 1) mean the values of X (i=0, 1, 2) and
XU (j=0,1) at x=%, h;=h,, h,=h, and B=B, respectively.

This singular point (%, B) is called a *“‘cusp point’’, where % and B are the x-
component and the B-component of the solution £, of (2.48), respectively.
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More generally, we suppose that (d+1) components of the parameter B are
unknown (2<d<m-—1) and we write these (d-+1) unknown components as
B,, B,,..., B, and, for brevity, we denote this parameter B by B=(B,, B,,..., B;; )T
and this is called the parameter B with dimension d+1. Further, let us suppose
that F(x, B) is (d+2) times continuously differentiable with respect to x and B in
Q2<d<m-—1).

Put
(2.53) X+ = kio CXWhyy o, (I<i<d)
and
(2.54) = kjl CXOh o (1<i<d+1),

where X©@O=F (x, B), XOW=XOh,, XOD=XOh,+XDh,. Here XY (j=0,
1,..., d) are the derivatives of X)) (j=0, 1,..., d) with respect to x, respectively.

If there exists a vector (9, B)” (where §,=(%, hy,..., hy)T, B=(By,..., B,. )T
and (%, B) satisfies (2.40)) such that the conditions

(2.55) X©h;=0,h}—1=0 and XOh;,, +1,=0, h!, ;=0 (j=1,2,.,d—1),
(2.56) n—1=rank Fo(&, B)=rank (Fo(%, B), 1,)="---=rank (Fo(%, B), 1,)
and
VOCOX(O)
(2.57) rank ICO)A(“) ’Cl)fw) X O, Oy Ogyy |=(d+ Dn
» 26X ,C R 2C2'X<°> .
dCo:X(‘” dclzj((d—w dc;)?(dﬂ).:fdcd)?w)
are satisfied, then we consider the system
F(x, B)
XOh,

(2.58) Gx)=| XOhy+XDh, | =g,

, :
2 dCXBhyy
k=0

Wa(xg)

where x,=(x, hy,..., hyoy, B)T, x=(x1,..., x)T, hy=(h},...., k)T (i=1, 2,..., d+1),
B=(By,..., By. )T, Yu(x)=(ht—1, hi,..., b, )T and U, (i=1, 2,...,d+1) are the
following n(d + 1)-dimensional vectors:
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(2.59) Ul= X%O)Ez‘i‘)?(l)i’; (1—_—1, 2,..., d+1).

d—1 ~
> oG Ph,
Here, X(B"i) (k=0, 1,...,d; i=1, 2,..., d+1) are the partial derivatives of X®) with
respect to B, respectively, and Xt (k=0, 1,...,d) and 7j(j=1, 2,...,d) mean the
values of X® and [; at x=2%, h; =hy,..., hy=h, and B= B, respectively.

Then, by (2.55) and (2.56), the system (2.58) has a solution £,=(9,, hy.y, B)T
(where h,., is a solution of the equation XOh, +1,=0, hl,;=0) and for this
solution £,, analogously to Theorem 3, we readily get

Theorem 12. A
The solution £,=$4 hyr1, B)T of (2.58) is isolated if and only if

(2.60) rank (Fo(%, B), 1,4 ,)=n,

where 1,, , means the value of 1, at x=%, hy=h,..., hyy ,=hy,, and B=B.
Remark 4.

When the dimension of the parameter B is one, R. Seydel [11], [12] has con-
sidered the enlarged system (2.44), but he did not give the condition (2.45). When
the dimension of the parameter B is greater than one, the present paper is the first
to consider singular points and to give a method for calculating them as far as the
author is aware.

Remark 5.
J. P. Abbott [10] and H. Kawakami [23] have independently considered the
system

F(x, B)
(2.61) H(x)= =

g(x, B)
instead of the system (2.44) since det F (%, B)=0, where x=(x, B)T and g(x, B)=
det F (x, B).

The system (2.61) has a solution £=(%, B)T and for this solution £, we have

the matrix H’'(%) is non-singular if and only if

(2.62) o
rank (Fy(X, B), [)=n,

wherevH’(x) denotes the Jacobian matrix of H(x) with respect to x and 1 is the
vector given in (2.45).
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This tells us that the condition rank (Fy(%, B), ))=n is essentially important also
when we discuss whether the solution £= (£, B)T of (2.61) is isolated or not.
The proof of (2.62) is as follows: By Fe C2[Q], we have

F.(x, B) Fg(x, B)

(2:69 HO=| ogx. B)  o9(x. B) |
Ox 0B
where ﬁg:(@;@ 8gﬁ> and 9 denotes the partial derivative of g(x, B) with
ox ox, " oOx, 0B ’

respect to B.
Then, for the solution % =(%, B)T of (2.61), we have

| F(%, B)  Fy(%, B)
(2.64) |

det H'(2)=" 992, B)  0q(%, B)
. 0x 0

where # =—EL~ -det (I, Fo(%, B)). Here h is the h-component of the solution (£, i, B)T
1
of (2.44). By (2.64), we have

(2.65) det H'(%)0 is equivalent to 4=0.
Thus (2.62) follows from (2.65).

Remark 6.
When rank (Fo(%, B), I)=n—1, since rank H'(§)=n, we may consider the
system

F(x, B)
(2.66) H(x,)=|g(x, B) |=0
gl(x’ B)

instead of the system (2.48), where the dimension of the parameter B is two and
x;=(x, B)", B=(By, B,)" and g¢,(x, B)=det H'(x;). Then the system (2.66) has a
solution £;=(%, B)T from rank (Fyo(%, B), )=n—1. We denote by H/(x,) the
Jacobian matrix of H(x,) with respect to x, and for the solution £, of (2.66), we have

the matrix H(£,) is non-singular if and only if
(2.67) .
rank (FO(-)%: B)) l2)=l’l,
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where 1, is the vector given in (2.52).
When rank (Fo(%, B), 1,)=n—1, by increasing the number of unknown com-
ponents of the parameter B, we have a result similar to Theorem 12.

§3. Periodic Solutions of Periodic Systems Involving Parameters

3.1. Singular Points Different from Bifurcation Points

We consider a 27-periodic solution x(f) of an n-dimensional periodic system

3.1) »%){—zX(x, B, 1)

whose first variation equation with respect to x = x(t)

(3.2) fgﬁ—:Xx(x(t), B, t)h
has a characteristic multiplier one, where X(x, B, 1) is periodic in ¢ of period 2z and
is continuously differentiable with respect to (x, B) in the region 4 x R. Here 4 is
a given region of the (x, B)-space and R is the real line and B is a parameter and
X (x, B, t) denotes the Jacobian matrix of X(x, B, f) with respect to x.

We assume that X(x, B, t) and its first partial derivatives with respect to (x, B)
are all continuous on the region 4 x R.

Let ¢(t, x(0), B) be a solution of (3.1) at a given parameter B such that
©(0, x(0), B)=x(0). Of course, (x(0), B)e 4. Then we consider the equation

(3.3) F(x(0), B)=¢(0, x(0), B)— (27, x(0), B)
=x(0)— (27, x(0), B)=0.

The x(0)-component X(0) of (X(0), B) satisfying (3.3) is the initial value of a 27-
periodic solution of (3.1) at B=B. That is, the solution of (3.1) at B=B through
%(0) at t=0 is 2n-periodic in t.

By the assumption, the function F(x(0), B) defined by the equality (3.3) is
continuously differentiable with respect to (x(0), B) in 4 and we denote by F(x(0), B)
the Jacobian matrix of F(x(0), B) with respect to x(0). Then we have

(34) FX(X(O), B)=En_d)(27t)a

where E, is the nxn unit matrix and @(1) is the fundamental matrix of (3.2) at
x=x(f)= (1, x(0), B) and the given B satisfying the initial condition #(0)=E,.

Now, we assume that there exists a point (%(0), B) e 4 satisfying the equation
(3.3) and also satisfying

(3.5) rank F (£(0), B)=rank [E,— ®Q2n)]=n—1,
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where @(t) is the fundamental matrix of (3.2) at x=%(f) and B=B satisfying the
initial condition #(0)=E,. Here £(¢) is a solution of (3.1) at B=B through £(0)
at t=0. Indeed, (1) is a 2n-periodic solution of (3.1) at B=B.
The condition (3.5) means that the first variation equation of (3.1) with respect to
x=£(1) (at B=B) has a characteristic multiplier one and it tells us that (£(0), B) is a
singular point of the nonlinear equation F(x(0), B)=0. Hence our theory and
method developed for singular points of a nonlinear equation F(x, B)=0 in Section
2.2 are also effective for ones of the nonlinear equation F(x(0), B)=0.

At first, let us suppose that the dimension of the parameter B is one. Further,
in order to simplify the following argument, we assume that

(3.6) rank [E, — ®(2n)]=rank D,(2n)=n—1,

where D,(2r) is the n x (n— 1) matrix obtained from E,—&(2r) by deleting the first
column vector.
As has been mentioned in Section 2.2, we consider the system

F(x(0), B)
(3.7) G(x)= | F{x(0), B)k | =0,
ki —1

where x=(x(0), k, B)T and k=(ky,..., k,)". By the condition (3.6), the system (3.7)
has a solution £ =(£(0), k, B)T, where k is a solution of the equation [E,— ®(2n)]k =0,
k,—1=0. In fact, (£(0), k)T is the initial value of a 2z-periodic solution (%(¢), A(t))
of the system

dx _

W—X(x, B, 1),
(3.8)

dh _

at B= B satisfying the condition
(3.9) h,—1=0,

where h(0)=(hy,..., h,)T. Indeed, h(t)=B(1)k.
Hence, the system (3.7) can be rewritten in the following way.

Let (o(t, x), ¢(t, x))T be a solution of (3.8) such that (¢(0, x), (0, x))T=
(x(0), h(0))”, where x=(x(0), h(0), B)T. Then the system (3.7) is equivalent to the
system

(p(O’ x)_(P(zTC’ x)
(3.10) G(x)=| ¢,0, x)—¢,2n, x) | =0.
hi—1
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For the solution £ of the system (3.10) (or (3.7)), analogously to Theorem 10, we have

Theorem 13.

Assume that X(x, B, t) is twice continuously differentiable with respect to
(x, B) in the region A x R and X(x, B, t) and its first and second partial derivatives
with respect to (x, B) are all continuous on the region A x R.

If the conditions

n—1=rank [E, — #(2n)]=rank D,(27)
(3.11) {

<n=rank [D,(2n), &,(2n)]
are satisfied, then the solution £ of (3.10) (or (3.7)) is isolated if and only if

(3.12) rank (D,(2n), 127))=n,

N ~ 2n ~ " - ~
where él(2n)=@(2n)g O~ Y$)X (X(s), B, s) ds, I2n)= —®,(2n)h(0) (of course,
-~ o~ o~ OA
h(0)=k). Here (9(t), D,(t)T is a solution (2n x n matrix) of the first variation
equation of (3.8) with respect to (x, HT=(%(1), h(t)T (at B=B) satisfying the
initial condition ($(0), ®,(0))T=(E,, 0) (0 is the n x n zero matrix) and X y(x, B, t)
is the partial derivative of X(x, B, t) with respect to B.

PrOOF. By the assumption of the theorem, the function G(x) is continuously
differentiable with respect to x and we denote the Jacobian matrix of G(x) with
respect to x by G'(x). Then we get

E,—®(2n) 0 —&(2m)
(3.13) G'(x)=| —@,2n) E,—dQ2n) —&0Qn) |,
00---0 10---0 0

where (£,(1), &,(1))T is a solution of the system

Lo~ X (x(0), B, 4+ X,(x(0), B, 1),
(3.14)
D2 X (x(0), B, 0Z2 4 {X o0, B, 001+ X(x(1), B, D}h(1)

satisfying the initial condition (&,(0), £,(0))T=(0, 0)T and (®(¢), @,(?))T is a solution
(2n x n matrix) of the first variation equation of (3.8) with respect to (x, h)T=
(x(1), h(t))T (at the given B) satisfying the initial condition (®(0), ®,(0))T=(E,, 0)T.
Here X . (x, B, t) is the second derivative of X(x, B, t) with respect to x and X g(x, B, t)
is the partial derivative of X, (x, B, t) with respect to B. Thus, for the solution £ of
(3.10) (or (3.7)), we have
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| E,— &(2m) 0 —¢,(2n) ‘
(3.15) detG'(5)= —&,2n) E,—®2n) —&(2n)
00---0 10---0 0
0 D@2m) 0 0 _g,(z,t)'
=1en) D2m) 0 D,em) —&(m
0 00 1 00 0 \

from which, by (3.11), it follows that
(3.16) det G'(%)0 is equivalent to (3.12),

where D,(2n) is the n x (n— 1) matrix obtained from —&,(2n) by deleting the first
column vector.
This completes the proof. Q.E.D.

The 27-periodic solution (£(2), A(1), B)T of (3.8)-(3.9) satisfying det G’(£)=0 is
called to be “isolated’’. In order to obtain an approximation to the isolated periodic
solution of (3.8)-(3.9), we applied the Urabe-Galerkin method to (3.8)~(3.9) and we
obtained a highly accurate approximation and, moreover, we gave a sharp error
bound for it. For details, see [24] and [25].

When rank (D,(27), 1(2n))=n—1, since the equation

[E,— ®Q2n)]k +1(21) =0,
(3.17) )
has a solution k=(k,,..., k,)T, analogously to (2.48) in Section 2.2, we consider the
system
F(x(0), B)

F(x(0), B)k,

(3.18) Gy(x)=| F(x(0), B)k, +1; | =0,
ki—1
k3

where the dimension of the parameter B is two and x,=(x(0), k,, k,, B)T, k;=
(kl, k?,..., kDT (i=1, 2), B=(By, B,)T and [, ={F,(x(0), Bk }k,=—®,(2n)k,.
Here F,,(x(0), B) denotes the second derivative of F(x(0), B) with respect to x(0).
Since rank D,(2n)=rank (D,(2n), 1(2n))=n—1, the system (3.18) has a solution
5,=(%(0), ky, k,, B)T and (2(0), k,, k,)T is really the initial value of a 2z-periodic
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solution (£(£), fi,(t), h,(1))T of the system

dx _
T_X(xa B, t)’
(3.19) Ahy _x (x, B, 0h,,
dt
%’i[& — X.(x, B, Dh,+{X .(x, B, Dhy}h,
at B= B satisfying the conditions
hl—1=0,
(3.20)
hy=0,
where h(0)=(h!, h2,..., h¥)T (i=1, 2). Indeed, hi;(t1)=B(H)k, and h,(1)=d,(Dk,+
d(t)k,.

Thus the system (3.18) can be rewritten in the following way.

Let (o(t, x1), ¢.(t, x;), @,(t, x,))T be a solution of (3.19) with (¢(0, x,),
?1(0, x1), 9,0, xl))T:(x(O)a h1(0), h,(0)", where x;=(x(0), h,(0), h,(0), B)T.
Then the system (3.18) is equivalent to the system

(,0(0, xl)_(p(zns xl)
010, x;)—¢,(27, xy)

(3.21) Gy(x)=| 0200, x;)—,(27, x;) | =0.
hi—1
h}

For the solution £; of (3.21) (or (3.18)), similarly to Theorem 11, we have

Theorem 14,

Assume that X(x, B, t) is three times continuously differentiable with respect to
(x, B) in the region A x R and X(x, B, t) and its first, second and third partial deriv-
atives with respect to (x, B) are all coutinuous on the region Ax R and that the
conditions

(3.22) rank (D,(2n), &,,2n))=n

and

< D,(2n) 0 E(2n)  &,(2m) >
(3.23) rank =2n

ﬁz(Zn) D1(2n) 521(2”) 522(270
are satisfied. Then the solution £, of (3.21) (or (3.18)) is isolated if and only if
(3.24) rank (D,(2n), 1,(2n))=n,
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where E(t)=(&,(1), E,(D)T (i=1, 2) are solutions of

L1~ X (500, B, 1)z, +Xp (200), B, 1),
(3.25)
L2 X ($(0), B, 02, +{X W00, B, 02, + X5 (500, B, O}, ()

satisfying the initial condition £(0)=(0, 0)T (i=1, 2), respectively, and
(3.26) 1,2n)= — &,(21)h (0) = 2d,(21)h5(0) .

Here (&(1), ®,(1), D5(t)T is a solution (3n x n matrix) of the first variation equation
of (3.19) with respect to (x, hy, hy)T=(%(1), h,(?), h,(t))T (at B=B) such that ($(0),
@2(0)) @3(0))T=(En7 0’ O)T'

The 2r-periodic solution (£(1), h(¢), h,(t), B)T of (3.19)~(3.20) satisfying
det G{(%,)=0 is also called to be “isolated”.

More generally, we suppose that the dimension of the parameter B is (d+ 1) and
X(x, B, t) is (d+2) times continuously differentiable with respect to (x, B) in the
region 4 x R (d>2) and X(x, B, t) and its first, second,..., (d + 2)-th partial derivatives
with respect to (x, B) are all continuous on the region 4 x R.

Putting
(3.27) XED=3 CX®Oh, ., (1<i<d),
k=0
we consider the system
dx _
~—dt——X(x, B, 1),
ah _ x0
dt X hla

(3.28)

E d
ihﬁ*]’ = 2 deX(k)hd+1—k,
dt =0

where X® =X (x,B, 1), XW=X®h,. Here X{¥ (0<k<d) are the derivatives of
X® (0< k< d) with respect to x, respectively.

Now, we assume that there exists a 27-periodic solution (£(¢), h,(f), h,(0)....,
By, (1), B)T of (3.28) satisfying the conditions

hi—1=0,
(3.29) h} =0,
h}+1 =0
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and, moreover, we assume that for the solution (2(¢), fi;(t), h,(0),..., gy (1), B)T,
the conditions

n—1=rank D,(2n)=rank (D,(2n), 1,2n))="-----
(3.30) =rank (D,(2n), 1(2n))
<n=rank (D,(2n), 1, ,(2n))
and
0CoD; (21)
CoDy(2n)  ,C D, (27) 0
(3.31) rank ~ R R
2:CoD3(2n)  ,C1Dy(27) ,C,Dy(2m)
CoDyai21)  CDy27)  (CoD e (21)- CuD, (2)
&a@n) &) € (2n)
En(2m)  &pn@n) -&hun(2m)

. R N =(d+ )n
C§1(2”) é;z(zﬂ) "'C§d+1(2”)
E;lﬂl(zn) E;1+12(27T)"‘€{;+1d+1(27f)

are satisfied, where h(0)=(h}, h?,..., k)T (i=1, 2,.. ,d+1) and

(3.32) Lm)= = ¥ by @0k, (0)  (1<i<d+1)

and D,(2n), D,(2n),..., D, ,(27) are the nx(n—1) matrices obtained from E,—
&(2n), —P,(2n),.. , —P,.,(2n) by deleting the first column vectors, respectively.
Here (&(1), $,(1),..., P4, ,(t)T is a solution ((d+2)n x n matrix) of the first variation
equation of (3.28) with respect to (x, hy, hy,..., hgy )T =(R(0), hy (1), hx(2),.. , By ()T
(at B=B) such that (&(0), &,(0),..., &,,,(0)T=(E,, 0,..,0)T, and E(1)=(E, (1),
El), .y Eui ()T (i=1, 2,..., d+1) are solutions of

%_::X(O)Zl +XB,(),€(t)’ B’ t)s

(3.33) ‘%2 = ROz, + XDz, 4 KOk, (1),

: d N d—1 “~ o~
ﬁi: > G XBzy o+ Y d—leXS;k.)hd—k(t)
dt k=0 k=0 t

satisfying the initial condition &(0)=(0, 0,..., 0)T (i=1, 2,..., d+ 1), respectively,
where X® (k=0, 1, .., d) and X§) (j=0,1,...,d—1; i=1, 2,..., d+ 1) are the values
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of X and XY at x=2(1), h, =h,0),..., hye,=hy.(f) and B=B, respectively.
Here X4 (j=0,1,...,d—1;i=1,2,...,d+1) are the partial derivatives of X() with
respect to B;, respectively.

Let (o(t, x,), ©,(1, X),-- , ©44 (¢, x,))T be a solution of (3.28) such that (¢(0, x,),
0100, xp),.. , 04410, x))T=(x(0), h{(0),..., hy,1(0))T and let us consider the system

@0, x,)—@(2m, x,)
®4(0, xd)‘_‘P1(27T, xy)

(3.34) Gd(xd): : :0
©a+1(0, x9)— 41127, x,)

Y a(xy)

where x,=(x(0), h(0),..., hy,((0), B)T, h(0)=(h}, hZ,.., T (i=1, 2,..,d+1),
B=(By,..., B;. )T and Y (x,)=(hi—1, hi,...,h}l,{)T. Then the initial value
£,=(%0), h,(0),.. , hy. ,(0), B)T of the 2n-periodic solution (%(t), 1(2),..., hys (1), B)T
of (3.28)—(3.29) is of course a solution of the system (3.34). Further, by (3.30) and
(3.31), for this solution £,, we readily get

2

Theorem 15.
The solution %, of (3.34) is isolated.

The 2zn-periodic solution (£(t), h,(1),..., hys (1), B)T of (3.28)—(3.29) satisfying
det G4(%,)=0 is also called to be “isolated’’, where Gj(x,) denotes the Jacobian
matrix of G,(x,) with respect to x,.

Concerning the method for computing a highly accurate approximation to the
isolated 2z-periodic solution of (3.28)—(3.29), see [24] and [25].

Remark 7.
As is seen from Theorem 12 in Section 2.2, for the solution £, of (3.34), we have
the matrix G,(%,) is non-singular if and only if
(3.35) ~ A
rank (D,(2n), l;4 (27))=n.

This shows that the condition rank (D,(2n), 1,,,(2n))=n plays an important role
when we investigate whether a solution of (3.34) is isolated or not.

Remark 8.
Analogously to (2.61) in Section 2.2, we may consider the system
(;D(Oa x) - (,0(27Z, x)
(3.36) H(x)= =0
g9(x)

instead of the system (3.10), where x=(x(0), B)T and ¢(t, x) is a solution of (3.1) at
a given B such that ¢(0, x)=x(0) and g(x)=det [E,— ®(2n)].
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In this case, under the same assumptions as in Theorem 13, the system (3.36)
has a solution £=(%(0), B)T and for this solution £, we have

the matrix H'(X) is non-singular if and only if
(3.37) .
the condition (3.12) is satisfied,

where H'(x) denotes the Jacobian matrix of H(x) with respect to x. For the proof
of (3.37), see the one of (2.62) in Remark 5.

3.2. Bifurcations of Periodic Sclutions

We consider bifurcations of periodic solutions of periodic systems involving a
parameter. In this section, we assume that the right-hand member X(x, B, t) of the
periodic system (3.1) is twice continuously differentiable with respect to (x, B) in the
region 4 x R and X(x, B, t) and its first and second partial derivatives with respect
to (x, B) are all continuous on the region 4 x R and that the dimension of the para-
meter B is one.

We classify bifurcation problems into the following two cases.

Case (1)
Concerning the right-hand member X(x, B, t) of the periodic system (3.1),
we assume that for any t

X(xo(t+m), B, t+7m)= —X(x¢(1), B, 1), Xp(xo(t+7), B, t+7)=
(3.38) — Xg(xo(t), B, t) and
X (xo(t+m), B, t+m)= X, (x0(1), B, t)

for an arbitrary 2n-periodic function xy(t) which satisfies both xq(t+n)= —Xx(t)
for any t and (x.(t), B)e 4 for all t, where X (x, B, t) is the Jacobian matrix of
X(x, B, t) with respect to x and Xg(x, B, t) is the partial derivative of X(x, B, 1)
with respect to B.

Let B=B be a bifurcation point and x=3%(f) be a 2n-periodic solution of (3.1)
at B=B satisfying %(t+n)= —%(t) for any t. When ®(1) is the fundamental
matrix of (3.2) at x=%(t) and B=B satisfying the initial condition #(0)=E,, we
moreover assume that

n—1=rank [E, - ®(n)] =rank D,(n),
(3.39) n—1=rank [E,— ®(2n)] =rank D,(2n)=rank [D,(2n), &,2n)] and
n=rank [E,+®(n)],

where D(t) is the nx(n—1) matrix obtained from E,—®(t) by deleting the first
column vector and
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(3.40) E,(t)= (1) go B-1(5)X 4(3(s), B, 5) ds.
Case (II)
We assume that

X(xo(1), B, 1), Xp(xo(1), B, t) and X (x(1), B, t) are all periodic in t of
(3.41)
period © for any n-periodic function xy(t) satisfying (xq(t), B)e 4 for all t.

Let x=%(t) be a n-periodic solution of (3.1) at B=B and &(t) be the fundamental
matrix of (3.2) at x=2%(t) and B=B satisfying the initial condition d(0)=E,.
Further, we assume that

n—1=rank [E,+ ®(n)]=rank A,(n),
(3.42) n—1=rank [E,— ®(2n)]=rank D,(2n)=rank [D,(2n), £,(2n)] and
n=rank [E,— ®(n)],

where A,(t) and D,(t) are the nx(n—1) matrices obtained from E,+®() and

E,—®(t) by deleting the first column vectors, respectively, and &,(f) is the vector
defined by (3.40).

First, we consider Case (I).
Case (I). From the assumption (3.38), we have
(3.43) O(t+ )= D(t)d(m)
for the fundamental matrix &(¢) and we have
(3.44) & @n)= —[E,— (M) (n)
since &, (1)=d(1) gt d~1(s)X g(X(s), B, s) ds.
Now, we congider the equation
(3.45) [E,— ®Q2n) ]k =AE, (2n)
for any constant number A. From (3.43) and (3.44), we have
[E,+®(n)][E,— ®(n)]k=[E,— d(m)] [E,+ (n)]k
o [ —[E,~ $Qm)lk=A¢,(2m) = —[E,— B(m)]4E(n)

since ®(2n) = ()2
(i) When A4 =0, the equation (3.46) becomes

(3.47) [E,— ®Q2n)]k=[E,+ ®(n)] [E,— ®(n)]k=0.
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By the assumption (3.39), the equation

[En - @(T[)]y = 0>
(3.48)
y1—1=0

has a solution y, where y=(y,..., v,)T. This solution J is also a solution of (3.47).
In fact,

(3.49) [E,—2m)]9=[E,+H®)][E,~ S(m)]9=[E,+S()]0=0.

Since rank [E,—®(2n)]=n—1 by the assumption (3.39), an arbitrary solution k
of the equation (3.47) is of the form

(3.50) k=c9,

where ¢ is a constant number. Thus the solution § becomes the initial value of a
2n-periodic solution of (3.2) at x==%(t) and B=F. But, since § is a solution of (3.48)
and X (X(f), B, 1) is periodic in t of period m by the assumption (3.38), § becomes
the initial value of a n-periodic solution of (3.2) at x=%(t) and B=B. That s, i(f)=
&(f)p is a n-periodic solution of (3.2) at x=2(¢) and B=B.

Consequently, in order to obtain the bifurcation point, we find a periodic solution
(&(2), (1), B)T of the system

dx
"E;*—X(% B, 1),
(3.51)
dh - X ,
"'212*‘— X(X, B, t)h

satisfying the conditions
x(0)+x(m)=0,
(3.52) h(0)— h(n)=0,
hy—1=0,

where x(0)=(x,..., x,)T and h(0)=(h,,.., h,)T. Asisshown in the above arguments,
(3.51)~(3.52) certainly has a periodic solution (£(f), i(#), B)T and the B-component
B of this periodic solution (£(1), A(t), B)T is really the desired bifurcation point
and, of course, (£(1), h(1))7 is the periodic solution of (3.51) at the bifurcation point
B.

Next we study the isolatedness of the periodic solution (&(t), (1), B)T of (3.51)-
(3.52).

Let (¢(t, x), ¢,(t, x))T be a solution of (3.51) such that (¢(0, x), ¢,(0, x))T=
(x(0), h(0))T and let us consider the system
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@0, x)+o(n, x)
(3.53) F(x)=| ¢, x)—¢(n, x) | =0,
h—1

where x =(x(0), h(0), B)T, x(0)=(x,,.. , x,)T and h(0)=(h,,..., h,)T. Then the initial
value £ =(%(0), h(0), B)T of the periodic solution (%(1), i(t), B)T of (3.51)~(3.52)
is certainly a solution of the system (3.53) and for the solution £, we have

E,+®(n) 0 &y(m) |
(3.54) F'(#)=| —®y(n) E,~d(m) —&(n) |,
00---0 10---0 0

where F’(x) denotes the Jacobian matrix of F(x) with respect to x and (&(t), @,(1)T
is a solution (2n x n matrix) of the first variation equation of (3.51) with respect to
(x, T =(%(1), h(1))T (at B=B) satisfying the initial condition (&(0), &,(0))T=
(E,, 0)T and (2,(1), £,(1))T is a solution of

L1 X300, B, 07, + X430, B, 1),

(3.55)

ddztz :Xx(x(tl B, t)22+ {Xxx(x(t)’ B’ t)zl +XxB(x(t)s Ba t)}ﬁ(t)

satisfying the initial condition (&,(0), &,(0))T =(0, 0)T.
By (3.54) we see that

(3.56) det F'(%)=0 is equivalent to rank (D(n), §)=n,
where § = — ®,(n){ —&,(n). Here  is a solution of the linear equation
(3.57) [E,+ ®(m)]{= — & (m).

The periodic solution (£(f), A(f), B)T of (3.51)~(3.52) satisfying det F'(£)=0 is
called to be “isolated’’.

In order to obtain a highly accurate approximation to the isolated periodic
solution of (3.51)—(3.52), we applied the Urabe-Galerkin method to (3.51)-(3.52)
and we obtained such an accurate approximation. For details of the method,
see [24] and [25].

(i) When A0, since rank [E,+ ®(n)]=n from the assumption (3.39), the
equation

(3.58) [E,+®(m)]o=— AE,(n)

has one and only one solution # and this solution 0 is also a solution of (3.45) (or
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(3.46)). Actually, by (3.38), this solution 9 becomes the initial value of a 2z-periodic
solution fi(f) of the system

(3.59) AR~ X300, B, Oh+ A Xy(5(0), B, 1)

satisfying h(t+m)= — h(t) for any t. Indeed, h(0)=1.

Secondly, we consider Case (II).

Case (II). From the assumption (3.41), analogously to Case (I), we have
(3.60) O(t+ n) = P(1)D(m)
for the fundamental matrix &(f). By (3.60), for &,(2n), in this case, we have
(3.61) & 2m)=[E,+d(m)]¢(n).

Similarly to Case (I), we consider the equation
(3.62) [E,— ®Q2n)k=AE (2n)

for any constant number A. Taking account of (3.60) and (3.61), the equation
(3.62) can be rewritten in the following form:

(3.63)

=[E,— ®2n)]k=A¢,2n)=[E,+ ®(n)]A¢(n).

(i) When A=0, since rank [E,+®(n)]=n—1 from the assumption (3.42),
the equation

(3.64)

[E,+®(n)]y=0,
[ (Where y=(y15'--9 yn)T)

y,—1=0
has a solution § and this solution § satisfies the equation
(3.65) [E,—®(2r)]k=0.
Then, by (3.42), an arbitrary solution k£ of (3.65) can be written in the form
(3.66) k=cJ,

where ¢ is a constant number. But, since § is originally a solution of (3.64) and
X (%(1), B, t) is periodic in t of period n by the assumption (3.41), § becomes the
initial value of a 2n-periodic solution h(t) of (3.2) at x=2%(t) and B=B satisfying
h(t+m)= —h(t) for any t. That is, i(f)=&(1)j is a 2n-periodic solution of (3.2) at
x=%(t) and B= B satisfying i(t+n)= — h(t) for any t.

Consequently, in order to obtain the bifurcation point, we find a periodic
solution (£(¢), h(t), B)T of the system
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dx _

—d—t—X(x, B, t),
(3.67)

dh

W—Xx(x, B, Hh

satisfying the conditions
x(0) —x(m) =0,
(3.68) h(0)+ h(m) =0,
h,—1=0,

where x(0)=(x4,..., x,)T and h(0)=(h,..., h,)T. Then, as is shown in the above
argument, (3.67)~(3.68) has a periodic solution (£(¢), A(f), B)T and the B-component
B of this solution (£(2), A(t), B)T is really the desired bifurcation point and, of course,
(£(1), h(1))T is the periodic solution of (3.67) at the bifurcation point B.

Analogously to Case (I)-(i), we consider the isolatedness of the solution (£(7),
(1), B)T of (3.67)—(3.68).

Let (o(t, x), (1, x))T be a solution of (3.67) with (¢(0, x), ¢,(0, x))T =(x(0),
h(0))T and, in this case, we consider the system

(:0(0’ x)—(p(n, x)
(3.69) F(x)=| ¢4(0, x)+¢4(n, x) | =0,
h—1

where x=(x(0), h(0), B)T, x(0)=(x4,..., x,)T and h(0)=(h,,..., h,)T. Then, of
course, the initial value £=(%(0), 1(0), B)T of the periodic solution (%(¢), A(t), B)T
of (3.67)-(3.68) is a solution of the system (3.69) and for this solution £, we have

E,~®(n) 0 —&i(n)
(3.70) F($)=| &,(n) E+d(n) &) |,
00---0 10---0 0
from which it follows that
(3.71) det F'(£)=0 is equivalent to rank (A ,(n), §')=n,

where F'(x) denotes the Jacobian matrix of F(x) with respect to x and &' =®&,(n){' +
&,(n). Here {' is a solution of the linear equation

(3.72) [E,—®(m]'=E(m).

The periodic solution (£(1), A(t), B)T of (3.67)(3.68) satisfying det F'(£)=0 is
called to be “isolated’’.
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Actually, when we considered bifurcations of periodic solutions of the Duffing
equation, we used the Urabe-Galerkin method in order to get a highly accurate
approximation to the isolated periodic solution of (3.67)-(3.68).

(i) When A0, since rank [E,—®(n)]=n from the assumption (3.42), the
equation

(3.73) [E,— ®(n) o= AE&,(n)

has one and only one solution # and this solution 9 is also a solution of (3.62). In
fact, by (3.41), this solution 9 becomes the initial value of a n-periodic solution
h(t) of the system

(3.74) Adh _ x (1(t), B, Dh+A- X43(0), B, 1).
di

Indeed, A(0)=5.

§4. The Multi-Point Boundary Value Problems

The theory and method for singular problems mentioned in the preceding
sections can also be applied to the following multi-point boundary value problem:

dx

(4.1) ~Zt—=X(x, B, 1)
and

N
(4.2) ;0 Lix(t)=c,

where x and X(x, B, t) are n-dimensional vectors, B is a parameter and
_1=t0<t1<t2< """ <tN-—1<tN=13

and L; (i=0, 1, 2,..., N) are the given n x n matrices and c is a given n-dimensional
vector. Here X(x, B, t) is continuously differentiable with respect to (x, B) in the
region A, where 4 is a given region of the (x, B, )-space intercepted by two hyper-
planes t=—1 and t=1.

We assume that X(x, B, ) and its first partial derivatives with respect to (x, B)
are all continuous on the region 4.

At first, let us suppose that the dimension of the parameter B is one.

Let ¢(t, x(—1), B) be a solution of (4.1) at a given B such that ¢(—1, x(—1),
B)=x(—1). Then we consider the equation

(4.3) F(x(—1), B)= io Lio(t,, x(—1), By—c=0.

By the assumption, the function F(x(—1), B) defined by the equality (4.3) is con-
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tinuously differentiable with respect to (x(—1), B) and we denote the Jacobian
matrix of F(x(—1), B) with respect to x(—1) by F (x(—1), B). Then we have

N

(4.4) Fx(=1), B)= ¥ L®(1),
i=0

where @(t) is the fundamental matrix of the system

(4.5) %a_x (x, B, f)h

at x=x(t)=o(t, x(—1), B) and the given B satisfying the initial condition ®(—1)=
E

ne

Assume that there exists a point (£(— 1), B) satisfying (4.3) and also satisfying
o N ~
(4.6) rank F (%(—1), B)=rank Y L®(t,)=rank G,=n—1,
i=0

where (£(1), B, f)e 4 for any te[—1, 1] and &(2) is the fundamental matrix of (4.5)
at x=2%(t) and B=B satisfying the initial condition &(—1)=E, and G, is the nx

(n—1) matrix obtained from G= Z L ®(t) by deleting the first column vector.

Here %(¢) is a solution of (4.1) at B B through £(—1) at t=—1. In fact, £(¢) is a
solution of (4.1)~(4.2) at B=B.

By the assumption (4.6), the equation
F(%(—1), B)k=0,

4.7)
kl — 1 =O
has a solution k, where k=(ky, ..., k,)7.
Putting
(4.8) h(t)= &)k,

h(?) is a solution of (4.5) at x=2%(t) and B=B satisfying the conditions

3 Liit)=0,
(4.9) i=0

~

where A(—1)=(hy,..., h,)T=k.
Consequently, analogously to the case of periodic solutions in Section 3.1, we
consider a solution (£(¢), i(¢), B)T of the system

dx
dt

dh _
dt

=X(x, B, t),
(4.10)
X (x, B, t)h
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satisfying the conditions

N
EO x(t)=c,

(4.11) iLh(t) 0,
h,—1=0,

where h(—1)=(hy,..., h,)T.
As is shown in the above argument, (4.10)~(4.11) certainly has a solution (X(%), h(1),
B)T.
Now we consider the isolatedness of the solution (£(¢), i(t), B)T of (4.10)—(4.11).
In this case, the system corresponding to (3.10) in Section 3.1 is of the following
form:

an

Lio(t;, x)—

i

(4.12) H(x)= i Ly (1 )
i=0

hl—]

where x=(x(—1), h(—1), B)T, x(—=1)=(xy,..., x,)T, h(—1)=(hy,..., h,)T, and
(p(t, x), @,(t, x))T is a solution of (4.10) such that (p(—1, x), ¢(—1, x))T=
(x(—=1), h(=1)T. A ) A

Of course, the initial value £=(&(—1), h(—1), B)T of the solution (X(¥), h(1),
B)T of (4.10)—(4.11) is a solution of the system (4.12) and for this solution £, anal-
ogously to Theorem 13, we have

Theorem 16.

Assume that X(x, B, t) is twice continuously differentiable with respect to
(x, B) in the region A and X(x, B, t) and its first and second partial derivatives
with respect to (x, B) are all continuous on the region A.

If the conditions

(4.13) n—1=rank G=rank G, <n=rank (G,, &)
are satisfied, then the solution £ of (4.12) is isolated if and only if
(4.14) rank (G,, )=n,

where &, = Z L, £)) (t,, X) and l—[Z L,®,(t)]hi(—1). Here %% is the partial

derivative of @ with respect to B, and (B(t), D5(1))T is a solution (2n x n matrix)
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of the first variation equation of (4.10) with respect to (x, h)T =(%(1), h(t))T (at B=B)
satisfying the initial condition (®(—1), ®,(—1))T=(E,, 0)T.

PrROOF. By the assumption of the theorem, the function H(x) defined by the
equality (4.12) is continuously differentiable with respect to x and we denote by H'(x)
the Jacobian matrix of H(x) with respect to x. Then, for the solution £, we have

0

S b > L9 (1,, 5
i;() P (1) 0 ig() iTB‘(tia )
' —_| ~ R N N N

@ HO= S Lé) 3 L) ¥ L0 |

i=0 i=0 i=o ' OB

00:----- 0 10 0 0

where %(%1 is the partial derivative of ¢, with respect to B. By (4.13) and (4.15)
we see that
(4.16) det H'(%) 0 is equivalent to (4.14).
This completes the proof. Q.E.D.

The solution (£(1), Ai(1), B)T of (4.10)~(4.11) satisfying det H'(%)%0 is called to
be “isolated’’.

Remark 9.
< o0 (1, %), 09, (t, i))T is a solution of the system
0B 0B
L X3, B, 07+ Xy(5(1), B, 1),
4.17)
D2 X (5(0), B, D2+ (X800, B, )z, + X 5(2(1), B, 0}i(0)

satisfying the initial condition (z,(—1), z,(—1))T=(0, 0)T, where Xg(x, B, t) and
X .p(x, B, t) are the partial derivatives of X(x, B, t) and X (x, B, t) with respect to
B, respectively.

When rank (G,, )=n—1, the equation

(i) Gk+1=[3 Ld(t)]k+1=0,
(4.18) =

(i) k,=0

has a solution k, where k=(ky,..., k,)7.
Since 7=[% L®,(t)]h(—1), we can rewrite (i) of (4.18) in the following form:
i=0
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N PPN ~
(4.19) ZO L,[D(t)k + @,(t)h(—1)]=0.
Putting
8(t)=B(Dk + B,(Hh(—1),

9(t) is a solution of the system

(4.20) %:Xx()?(t), B, o+ {X (R(1), B, ))h(£)}h(t)

satisfying the conditions

% La(1)=0,
(4.21) i=0

Uy =05

where v(—1)=(vy, .., v,)T.
Then, let the dimension of the parameter B be two and let us consider the
following multi-point boundary value problem:

g =X B0,
(4.22) dcf'l; =X (x, B, t)h,
,dédt’l :Xx(x, B, t)h2+{Xxx(x’ B, t)hl}hl
and
N
> Lix(t)=c,
i=0
N
L;h,(1,)=0,
i=0
(4.23) y
LihZ(ti)ZOa
i=0
hi—1=0,
h3=0,

where x(—1)=(xy,..., x,)T, h(—=1)=(h}, h?,..., k)T (i=1, 2) and B=(By, B,)7.
As is shown in the above argument, the problem (4.22)—(4.23) has a solution (%(?),
h(0), hy(1), B)T. In fact, h,(1)="h(t) and h,(t)=(2).

Now we consider the isolatedness of the solution (£(2), f,(2), hy(t), B)T of (4.22)-
(4.23).
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In this case, the system corresponding to (3.21) in Section 3.1 is of the following
form:

N
i; z(p(tn xl)—c
N
isz (L, x1)

(4.24) Hi(x)=| y =0,
; 02ty X1)
hi—1

where x;=(x(—=1), h(=1), hy(=1), B)T, x(—1)=(xq,..., x,)T, h{—1)=(h}, h?
T (i=1,2), B=(B4,B,)T, and (¢(1, x,), ¢(t, x;), ¢,(t, x,))T is a solution of
(4.22) such that (@(—1, xy), 91(=1, x1), @2( =1, x))"=(x(=1), hi(=1), hy(=D)".
Of course, the initial value £,=(X(-=1), hy(—1), hy(—=1), B)T of the solution
(£(1), hy(2), hy(1), B)T of (4.22)~(4.23) is a solution of the system (4.24) and for this
solution £,, similarly to Theorem 14, we easily get

Theorem 17.

Assume that X(x, B, t) is three times continuously differentiable with respect
to (x, B) in the region A and X(x, B, t) and its first, second and third partial deriva-
tives with respect to (x, B) are all continuous on the region A and that the conditions

(4.25) rank (G, &,,)=n
and
Gl 0 Ell 812
(4.26) rank|{ . =2n
G, Gy S Sa

are satisfied.
Then the solution % of (4.24) is isolated if and only if

(4.27) rank (G,, 1,)=n,

0 . A
where &=(&1, &a)=( 5, Lt 0, 3 LeS810 %) (j=1.2), and G,
N
and G, are the nx(n—1) matrices obtained from G= Z L&(t) and Y Ld,(1)
i=0 i=0

by deleting the first column vectors, respectively, and

22=[§0 Li<ﬁ3(ti>]ﬁl(—1)+2[§0 Lib(t)1hs(—1).
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Here % and gg‘ (j=1, 2) are the partial derivatives of ¢ and ¢, with respect

to B; (]—] 2), respectmely, and (&(1), ®,(1), D5(1)T is a solution (3n x n matrix) of
the ﬁrst variation equation of (4.22) with respect to (x, hy, hZ)T—(x(t) h, (0, hy(H)T
(at B=B) satisfying the initial condition (B(—1), B,(—1), D3(—1)T=(E,, 0, 0)T.

More generally, we suppose that the dimension of the parameter B is (d+1)
and X(x, B, 1) is (d+2) times continuously differentiable with respect to (x, B) in
the region A (d>2) and X(x, B, 1) and its first, second,..., (d +2)-th partial deriva-
tives with respect to (x, B) are all continuous on the region A

Putting

(4.28) X0= 3 (CXOhyi (I<I<d),

we consider the system

=X, B, 1),
dh _ x0
a =~ X0k
(4.29)
dh
G =X O X Oh,
: d
i@ﬂl-\z Z deX(k)hd+ 1—-k>
dt k=0

where X©@© =X (x, B, 1), X®W=X®h,. Here X{¥ (0<k<d) are the derivatives
of X (0< k< d) with respect to x, respectively.

Now, we assume that there exists a solution (£(¢), h,(?),..., hy. (), B)T of (4.29)
satisfying the conditions

N
Z X(t,)—c=0,
N
2 Lihy(1)=0,
N:

(4~30) 'gb Lihd+ 1(ti) =0,
h1—1=0,
hi=0
h¢li.+1=0

and, moreover, we assume that for the solution (%(1), h,(2),..., sy ((2), B)T, the
conditions
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n—1=rank G, =rank (G, I,)=----
(4.31) o o
=rank (G, lp))<n=rank (G, [, )

and

0CoG4

. R 0

1COG2 1C161
(4.32) rank ~ R .
ZCO_G3 ZC_’IGZ ZQZGI

dCOGd+1 dCIGd dCZGdfl”'dCdGI
Ell 512 "'gld-ﬂ

& & aan
=(d+1)n

A

é:}l égz "'égdﬂ
fd+11 éd+12"‘5d+1d+1

are satisfied, where h(—1)=(h{, h?,..., k)T (i=1, 2,...,d+1) and
. j N “
(4~33) lj= kgl jck[ ';o Li(pk+ l(ti)]thrl -k(— 1) (1 Sjgd'*‘ 1)

and G, G,,... G,,Jrl are the nx(n—1) matrices obtained from G= ZLQI)(t,)
Z L®,(1),.. Z L®,,,(t) by deleting the first column vectors, respectlvely

Here ((1), 452(t) ., @,.,(0)T is a solution ((d +2)n x n matrix) of the first variation
equation of (4.29) with respect to (x, hy,..., hyy )T =(R(0), h,(0),..., hyp ()T (at
B=B) satisfying the initial condition (&(—1), (—1),..., D, .(—1)T=(E,, O,...,
0T, and 5,:(51,-, Ezj,..,, Edﬂj)T (j=1, 2,...,d+1) are n(d + 1)-dimensional vectors
defined by the following way.

Let 490 =0, 75°®),..., 1¥2,())T (j=1, 2,...,d+1) be solutions of the
systems

d;t‘~—X<°>zl+XB (%(0), B, 1),
(4.34) L2 2ROz, + 80z, + RO (), (j=1,2,...,d+1)
dzge, _ 4 (k) & Qf
—a - > G X®zy o+ X d—leXBj ha— (1)
k=0 k=0

satisfying the initial condition W (—1)=(0, 0,..., 0)T (j=1, 2,..., d+ 1) respectively
and we define the vectors ‘fj (j=1,2,...,d+1) by
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s s s s N . N
Cjz(‘fu, Cajses Ca+ 1j)T=(_§) Liﬁ(lj)(ti)a igo L,-n(zj)(t,-),,,,
(4.35)
N ,
ters Z Llﬁﬁl{f-)l(tl))T (}= 17 27'-'9 d+ 1) respeCtively’
i=0

where X® (k=0, 1, 2,...,d) and )?39”;) (m=0,1,.,d—1; j=1,2,...,d+1) mean
the values of X® and Xy at x=2x(1), I, =h,0),.. ,hye;=hys(t) and B=B,
respectively. Here X%";) (m=0,1,..,d—1;j=1,2,...,d+1) are the partial deriva-
tives of X with respect to B;, respectively.

Now we consider the isolatedness of the solution (%(2), h,(1),..., by (1), B)T
of the multi-point boundary value problem (4.29)—(4.30).

In this case, the system corresponding to (3.34) in Section 3.1 is of the following
form:

Lip(t;, x5)—c

i

-~

M=

A Lip,(t;, x,)

-
Il

(4.36) Hy(x,;)=

4

. Lipa+1(ti; x9)

~
i

Y a(xy)

where x;=(x(—1), hy(=1),..., by 1(=1), BT, h{—=1D)=(h}, h%, .., )T (j=1,2,...,
d+1), B=(By,..., Byy )7, Yxy)=(h1—1, hi,..., h}, DT, and (o(t, xp), @,(t, xp),-..,
0q+1(t, x))7T is a solution of (4.29) such that (p(—1, x,), @,(—1, X2),.-.s @yuy
(=1L x)r=(x(=1, hy(=1),..., hyy {(=1))T. Then, of course, the initial value
R=R(=1), hy(=1), ., by (—=1), BT of the solution (£(¢), hy(t),..., hyr(t), B)T
of the problem (4.29)-(4.30) certainly becomes a solution of the system (4.36).
Further, by (4.31) and (4.32), analogously to Theorem 15, for this solution £,, we
have

Theorem 18.
The solution %, of (4.36) is isolated.

Remark 10.

In fact, the condition rank(G,, l,,,)=n guarantees the isolatedness of the
solution %, of the system (4.36).

As is seen from Theorem 12 in Section 2.2, for the solution £, we have

the matrix H)(%,) is non-singular if and only if
rank (Gla 7al+ D=n,

where Hy(x,) denotes the Jacobian matrix of H,(x,) with respect to x,.
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The solution (&(¢), h,(1),..., hy+,(t), B)T of the multi-point boundary value
problem (4.29)—(4.30) satisfying det H(%,)=0 is called to be ““isolated’’.

Lastly, in order to estimate an error bound for an obtained approximation to
the isolated solution of (4.29)-(4.30), we give an existence theorem analogous to
Proposition 3 in [4].

We consider the multi-point boundary value problem

dx
Ax iy
(4.37) ra=| @ X,

)

where x and X(u, t) are m-dimensional vectors and u=(x, B)T, B=(B,,..,By)T is a
parameter and

> La(t)—c
(4.38) fuw)y=| =0 =0.
g(u)
Here L, (i=0, 1, 2 .., N) are the given m x m matrices and c is a given m-dimensional
vector and g(u) is a suitable d-dimensional vector-function.

We assume that X(u, t) is continuously differentiable with respect to u in the
region O and that X(u, t) and its first partial derivatives with respect to u are all
continuous on the region @, where & is a given region of the (u, t)-space intercepted
by two hyperplanes t=—1 and t=1.

Further, we assume that the vector-function g(u) is continuously Fréchet differen-
tiable with respect to u.

If we obtain a “good’’ approximate solution of (4.37), then we can guarantee
the existence of an exact solution of (4.37) in a sufficiently small neighbourhood of
this approximation by applying the following existence theorem:

Theorem 19.

Assume that the equation (4.37) has an approximate solution u=1u(t) in S
satisfying det f'(i1(1)) [W(t)] =0, where ¥(t) is the fundamental matrix of the homo-
geneous system

g [ Xdaw,n
(4.39) ‘d;:( —5 )z

satisfying the initial condition Y(—1)=E,, ,,.
Further, let fy, tys1s-- s Umsqg and v be positive numbers such that

przmax ([|Hyilles [Haalle),

(4.40) /{m+12maX(|H1m+1|, |H 3 511) 5

#m+d2max (|H1m+d|a IHgm+d|)
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and

L= X@@, 0| 1@ lmsa

(4.41) r= IRl =4

If there exist positive constants 81, 6,1 (»..., Oy+q and a non-negative constant
k<1 such that

(4.42) D= {u(t)=(x(1), B)T; |x()=X(1)| . <0y, [By = B{| <0y 15
o |By— By <8ysq u(t)e C[ITx R4} =S’

(where I=[—1, 1]),

(4.43) [ X (u(®), 1) — X, (@ (@), Ol + 17 () =" (@) | ra
< | K on y
I AT o N e ol [ O »
A Hmta? Hmtal
(444) -1 Séla 1—x g5m+19--'a 1 —x Sém+d’

then the equation (4.37) has one and only one solution 6(t)=(%(t), B)T in
(4.45) Ds={u()=(x(t), B)T; [|x(t) = X(t)[[.<01, |B; = B1| <Ot 15
s 1By= B <8, 0 u(t)e C'[1]x R}

and for this solution {i(t) we have

(4.46) 2 =X <52, By =By <Al By By < A
This existence theorem is essentially the same as the one we have obtained for a
periodic solution of periodic differential systems involving parameters. For details

of the definitions and the notations of norms, operators, etc. appeared in the theo-
rem, see [24] and [25].

Remark 11.
We can also obtain, for a solution of an autonomous system satisfying (4.38),
an existence theorem similar to Theorem 19.

§5. Examples

In this section, we give examples of solutions of nonlinear equations with singular
Jacobian matrices and examples of singular points of nonlinear equations defined
by solutions of boundary value problems of nonlinear ordinary differential equa-
tions involving parameters. Further, we give examples of bifurcations of solutions
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of boundary value problems of nonlinear ordinary differential equations involving
parameters.

Now, we consider solutions of nonlinear equations with singular Jacobian
matrices. First, we consider the case where rank F (£)=n—1.

Example 1 ([8]).
We consider the equation

C X2 —Xx,+u
(5]) F(x):( :0’
—x,+x3+a

where x=(x,, x,)T and «=0.25. This equation (5.1) has a solution £=(%,, £,)T=
(0.5, 0.5)T and the Jacobian matrix F,(x) of F(x) with respect to x is singular at the
solution %, that is, in this case,

1 -1
(5.2) rank F (R)=rank ( > =1.
—1 1

Then let us introduce a parameter B in (5.1) and consider the system
F(x)— Be,
(5.3) G(x)=| F(x)h =0,
Vhy—1

where x=(x, h, B)T, x=(xy, x,)T, h=(hy, h,)T and e;=(1, 0)7. Then the system
(5.3) has a solution £=(%&, h, 0)T (where £=(0.5, 0.5)T and h=(1, 1)) and for this
solution £, we have

(5.4) det G'(£) %0

since

-1 0 0 —1

0 2 -1 1

0

(5.5) Gx)=| 2 0 1 -1 0/,
0
0

0 0 1 0
where G'(x) is the Jacobian matrix of G(x) with respect to x.

Example 2 ([18]).
Let us consider the equation
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(5.6) F(x)= =0,

where x=(x,, x,)T. The equation (5.6) has a solution £=(%,, £,)"=(1, )T and for
this solution £ we have

"0 1
(5.7) rank F (X)=rank < > =1.
0 0

Since rank (F (%), e,)=2, we introduce a parameter B in (5.6) and we consider the
system

F(x)— Be,
(5.8) G(x)=| F(x)h =0,
h,—1

where x=(x, h, B)T, x=(xy, x,)T, h=(hy, h,)T and e,=(0, 1)T. The system (5.8)
has a solution %£=(%, /1, 0)7 (where £=(%&,, £,)T=(1, DT and h=(h,, h,)T=(1, 0)7)
and for this solution £, we have

(5.9 det G'(%)=0

since
0 1 0 0 0
0 0 0 0 -1

(5.10) G'(5)=| 2 0 0 1 0
6 —1 0 0 0

0 0 1 0 0

H. Weber and W. Werner [18] also considered this example. As is seen from
Remark 3 in Section 2.1, their method for introducing a parameter in (5.6) is different
from ours. In fact, in this example, they considered the system

F (x)TF(x)+ Bh
(5.11) H(x)=| F(x)h =0,
hTh—1

where x=(x, h, B)T, x=(x,, x,)T, h=(h,, h,)T and F(x)T denotes the transposed
matrix of F (x) and B is a parameter, Comparing the system (5.11) with the system
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(5.8), it seems that our method is more useful and convenient than theirs. Of
course, we may adopt the condition 1, —1=0 instead of the condition h"h—1=0
in (5.11).

Example 3 ([15]).
Let us consider the equation

X3+ XX,
(5.12) F(x)= =0,
X +X%

where x=(x;, x,)T. Evidently, the equation (5.12) has a solution £=(%,, £,)T=
(0, 0)T and for this solution £ we have

0 0

(5.13) rank F (%)=rank =1.
0 1

In this casc, since |={F, (£)h}h=(0, 0)T, we have

(5.14) rank (F (), l)=rank (F(%), =1,

where i1=(1, 0)T and Fy(%)=(0, 1)T.
Therefore we introduce two parameters B,, B, and consider the system

F(x)—B,e,
Fx)h,—B,e,
(515) G(x)= Fx(x)hZ + {Fxx(x)hl}hl =0,

hi—1

h}
where x=(X, hla th Bl’ BZ)Ta x=(x1a x2)Ta h1=(h11, h'Z)T (l=1, 2) and 61:(1, O)T

Then the system (5.15) has a solution £=(%, hi;, fi,, 0, 0)T (where £=(0, 0)7, i, =
(1, 0)T and h,=(0, 0)7) and for this solution ¢ we have

(5.16) detG'(£)=0
since
0 0 0 0 0 0 -1 0
0 1 0 0 0 0 0 0
0 1 0 0 0 0 0 —1
0 0 0 1 0 0 0 0
(5.17) G'(%)=
6 0 0 2 0 0 0 0
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Example 4 ([20]).
Let us consider the equation

8x,+x3—12
-0,

(5.18) mm:(

x24+x,—3

where x=(x,, x,)7. The equation (5.18) has a solution £=(%;, £,)"=(1, 2)T and
for this solution £, the Jacobian matrix F (%) has the same singularity as in Example 3.
Then, considering the system (5.15) once more, £ =(&, h;, 1i,, 0, 0)T (where £=(1,
DT, hy=(1, =2)T and h,=(0, —2)7) is a solution of (5.15) and for this solution
£ we have

(5.19) det G'(£)=0

since
8 4 0 0 0 0 -1 0
2 1 0 0 0 0 0 0
0 —4 8 4 0 0 0 -1
2 0 2 1 0 0 0 0

(5.20) G'(%)= .
0 —4 0 -8 8 4 0 0
0 0 4 0 2 1 0 0
0 0 1 0 0 0 0 0
0 0 0 0 I 0 0 0

Secondly, we consider the case where rank F (£)=n—2.

Example 5 ([16]).
Let us consider the equation

x?+x3
(5.21) H@=< >=Q
- X3 ,

where x=(x,, x,)7. Obviously, the equation (5.21) has a solution £=(%,, £,)7=
(0, 0)T and for this solution £ we have
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0 0
(5.22) rank F (X)=rank < > =0.
0 0

Therefore we introduce two parameters B;, B, in (5.21) and we consider the system
F(x)—B,e; — B,e,
F(x)h

(5.23) G(x)= =0,
h,—a,

where x=(x, h, By, B,),T x=(x;, x,),T h=(hy, h,)7, e;=(1, 0)T and e,=(0, 1)7.
In this example, we take a;=a,=1. Then, £=(&, h, 0, 0)T (where £=(0, 0)T and
h=(1, 1)T) is a solution of (5.23) and for this solution £ we have

(5.24) det G'(£)=0

since
0 0 0 0 -t 0
0 0 0 0 0 —1
2 0 0 0 0 0

(5.25) G'(3)=
0 2 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0

Example 6 ([7]).
We consider the equation

b

" filxgs X3) )
(5.26) F(x)= (
faxqs x3)

where x=(x,, x,)T and
fi(xy, x,)=x3 —10x3x3 4+ 5x;x3 —3x$ + 18x3x3 — 3x§ — 2x3 + 6x,x3
+3x2x, —x3+ 12x2 —12x3—10x,x, — 8x; + 8x,,

(5.27)
Sa(xq, x5)=5x%x, —10x2x3 + x3 — 12x3x, + 12x,x3 — x3 + 3x,x3

—6x2x, +2x3+5x2 —5x3+24x,x, —8x; —8x, +4.

The equation (5.26) has a solution £=(&,, £,)T=(2, 0)T and for this solution £ we
have
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"0 0
(5.28) rank F (%)=rank ( =0.
0 0

Hence, this example is the same type as Example 5. Then we consider the system
(5.23) again. In this case, we take a;=1 and a,=0 in (5.23). Evidently, £=(%,
h, 0, 0)T (where £=(2, 0)T and A=(1, 0)T) is a solution of (5.23) and for this solu-
tion £ we have

(5.29) detG'(£) =0
since
0 0 0 0 -1 0
0 0 0 0 0 —1
16 2 0 0 0 0
(5.30) G'(%)=
-2 16 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
Example 7 ([6]).
We consider the equation
X +X,+x3—1
(5.31) F(x)=| 0.2x3+0.5x3—x;+0.5x34+0.5 | =0,

Xy +x,+0.5x2—-0.5

where x=(x;, x5, x3)7. The equation (5.31) has a solution X=(X,, %,, £3)7=
(0, 0, 1)T and for this solution £ we have

1 11
(5.32) rank F (%)=rank| 0 0 O |=1.
1 1 1
Therefore we introduce two parameters B,, B, in (5.31) and we consider the system
F(x)_Blel —B2e2 \
F (x)h
(5.33) G(x)= =0,
hy—a,

hy,—a,
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where x=(x, h, By, By)T, x=(x,, x5, x3)T, h=(hy, hy, h3)T, e, =(1,0,0)7, e,=
O, 1, O)T.

In this example, we take a, =0 and a,=1. Then the system (5.33) has a solu-
tion £=(&, h, 0, 0)T (where £=(0, 0, )T and h=(0, 1, —1)T) and for this solution
£ we have

(5.34) det G'(%)=0

since
1 1 1 0 0 0 —1 0
0 0 0 0 0 0 0 -1
1 1 1 0 0 0 0 0
0 0 0 1 1 1 0 0

(5.35) G' (%)=
0 1 -1 0 0 0 0 0
0 0 -1 1 1 1 0 0
0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

Example 8 ([21]).
Let us consider the equation

X%+X2+3X3+X4“‘18

11
2

(5.36) F(x) = | 37 |=0
2x,+x3+ "7"-x§ +2x, =

1
xt+x3+ 5 x5 —x,—

2x4 +4x2+%x§—2x4—~1§

where x=(xy, x,, X3, Xx4)7. The equation (5.36) has a solution £=(&;, %,, X3,
2)T=(1, 2, 3, 4)T and for this solution £ we have

2 4 3 1
2 4 3 -1
(5.37) rank F (%)=rank =2,
2 4 3 2
\ 2 4 3 =2

Therefore we introduce two parameters B, B, in (5.36) and we consider the system
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F(x) - B1e1 - 3262

F.(x)h
(5.38) G(x)= =0,
hy—a,

h’2_a2 /

where x=(x, h, By, B,)T, x=(x;, X3, X3, X3)T, h=(hy, hy, h3, hy))", e;=(1,0,0,
0)T and e,=(0, 1, 0, 0)7.

In this example, we take a,=a,=1. Then the system (5.38) has a solution
$=(%,h,0,0)T (where £=(1, 2,3,4)7 and h=(1,1, —2, 0)T) and for this solution £

(5.39) det G'(%)=0
since
2 4 3 1 0 0 0 0 -1 0
2 4 3 -1 0 0 0 0 0 -1
2 4 3 2 0 0 0 0 0 0
2 4 3 =2 0 0 0 0 0 0
2 2 0 0 2 4 3 1 0 0
(5.40) G'(%)=
2 2 =2 0 2 4 3 -1 0 0
0 2 =2 0 2 4 3 2 0 0
0 0 -2 0 2 4 3 =2 0 0
0 0 0 0 1 0 0 0 0 0
' 0 0 0 0 0 1 0 0 0 0
Next, we consider the case where n=1.
Example 9.
F(x)=x2=0. Since F(x)=2x and F,(x)=2, we have
(5.41) 1, ={F (®)h,}h, =2h2=20,

where £=0and A, =1.
Then, introducing a parameter in the equation F(x)=0, we consider the system

F(x)—B x>—B
(5.42) G(x)=| F()h |=|2xh =0,
h—1 h—1
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where x=(x, h, B)T and h=h,.
Let G'(x) denote the Jacobian matrix of G(x) with respect to x. Then we have

2x 0 —1
(5.43) G'(x)=|2h 2x 01,
0 1 0
from which it follows that
0 0 -1
(5.44) det G'(x)=det| 2 0 0|0
0 1 0

for a solution £=(&, h, B)T=(0, 1, 0)T of (5.42).

Example 10.
F(x)=x3=0. Since F (x)=3x?, F (x)=6x and F, . (x)=6, we have

A 2 A oy~
(5.45) 12= Z 2CiX(l)h3_.

=X®f, =(68h, +6h2)h,; =60,

where £=0, i, =1 and h,=0.
Thus, in this example, introducing two parameters B,, B,, we consider the system

F(x)—B, x3—B,
F (x)h,—B, 3x%h,—B,
(5.46) G(x)=| F(x)hy+{F (x)h }h, | =| 3x?h, + 6xh? | =0,
hy—1 hy—1
h, | \h,

where x,=(x, hy, h,, By, B,)T.
Let G)(x,) be the Jacobian matrix of G,(x;) with respect to x,. Then we have

3x2 0 0 -1 0
6xh, 3x? 0 0 -1
(5.47) G\(x))=| 6xh,+6h2 2-6xh, 3x2 0 0O
0 1 0 0 0

0 0 1 0 0
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The system (5.46) has a solution £,=(%, h,, h,, By, B,)T=(0, 1,0, 0, 0)T and for
this solution X, we have

0 0 0 —1 0

0 0 0 0 -1
(5.48) det Gi(x,)=det | 6 0 0 0 0 |=0.

0 1 0 0 0

0 0 1 0 0/

Example 11.
F(x)=x*=0. Since F (x)=4x3, F (x)=12x2, F,, (x)=24x and F,,(x)=24,
we have

1y ={F (®h}hy=12%2h3 =0,

z2:Z{F.vcx(“‘%)l;1}1’52 + {F\x()e)l;2+FX\\(£)ﬁ%}El :O’
N 3 PUSN i PPN PPN
(5.49) l3: Z 3CiX(l)h4_i=3ClX(l)h3+3C2X(2)h2+3C3X(3)h1
i=1

=, Co X®h, = {12820, +2-24%h R, + (245, + 24h2)h B,

=240,

Whel"e )’C\=0, Elz 1, E2=O al’ld i/\ls=0
Then, in this example, introducing three parameters B,, B,, B;, we considcr the
system

F(x)— B,
F(x)h,— B,
Fo(x)hy+ {Fex(x)h 3 oy — By
(5.50)  Gy(x)=| Fu(x)h3+2{Fo ()1} hy + { Fo () s+ Frpi(X)h3} 1y
hy—1

h,

hy



Newton’s Method for Singular Problems and its Application to Boundary Value Problems 79
x*— B,
4x3h, — B,
4x3h, +12x*h? — B,
= | 4x3h3+2-12x2hhy + (12x2h, + 24xh2)h, | =0,

hl'—‘l.

ha

hy

where x,=(x, h,, h,, hy, B, B,, B3)T.
We denote by G3(x,) the Jacobian matrix of G,(x,) with respect to x, and we have

4x3 0 0 o -1 0 0
12x2h, 4x3 0 0 0 -1 0
(#) 2-12x2h, 4x3 0 0 0 -1
(5.51) xy)=1| (8% 3-(%) 3-12x%h, 4x3 ¢ 0 0|,
0 1 0 0] 0 0 0
0 0 I 0 0 0 0
0 0 0 1 0 0 0

where (#)=12x2h, +24xh? and
(#8)=12x2h3+2-24xh h, + (24xh, +24h})h,.

The system (5.50) has a solution £,=(&, h,, h,, h3, By, B,, B;)"=(0, 1,0, 0, 0, 0,
0)T and for this solution £, we have

0 0 0 0 -1 0 0

0 0 0 0 0 -1 0

0 0 0 0 0 0 —1
(5.52) det G5(%,)=det| 24 0 0 0 0 0 0 |=0.

0 1 0 0 0 0 0

0 0 1 0 0 0 0

0 0 0 | 0 0 0
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Next, we consider an example of a turning point of a curve of the (n+ 1)-di-
mensional space (that is, the (x, B)-space).

Example 12 ([12], [17]).
Let us consider the equation

=X1_)C3 X{— Xy X1+B=
Fi=o000 T 39 t s

_ X Xg | Xo T X4 -
F,= 10 + 39 +1(x,) =0,

X3—X X3—X
Fy="3"Y1 4 X371 _()

10000 25.5
(5.53)
Fo=255 55+ gy ~ st =0,
F5:' xsl;x64+x5—x4+1(x5):0,
_Xe— Xy Xg — X5 XG_U(xa“EL)__
Fo=""1p  t 3 T 0.201 =0,
where

(5.54)  I(y)=5.6x10"8e2—1) and U(y)=7.65xtan" ! (1962y).

The equation (5.53) defines a curve in the (x, B)-space and this curve has turning
points, where x=(x,, X,, X3, X4, X5, Xg)7. We compute one of them. The results
of numerical computations are as follows:

X;=0.49366 97072 217 x 10—, %,=0.54735 84097 315x 10°,

£,=0.49447 20687 332 x 10-1, %, =0.49447 41147 550% 10~ 1,
(5.55)
£5=0.12920 13089 757 x 10°, %, =0.11660 19652 671 x 101,

B =0.60185 30125 713 x 100,

The above results are equal to the ones given in [12] if we round off these results to
nine decimal places.

Now we consider periodic solutions of periodic differential systems involving
parameters. As has been mentioned in Section 3, in this case, the form of a
nonlinear equation is implicit. But the theory and method used for investigating
singular points of such a nonlinear equation implicit in form are the same as the
ones used in the case where the form of a nonlinear equation is explicit.

Example 13 ([23]).
Let us consider a 2n-periodic solution of the Duffing equation
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d*x dx | 3_p
(5.56) -raii-~+k~atr~+x =B-cost.

The equation (5.56) can be rewritten in the form of a first order system as follows:

(5.57)

ax. = —x3—kx,+B-cost.

Then we consider the system (5.57) together with the periodic boundary conditions

x1(0)—x,(2m)=0,
[ x,(0)—x,(2m)=0.

(5.58)

Let o(t, x(0), B)=(¢(t, x(0), B), ¢,(t, x(0), B))T be a solution of (5.57) with
(0, x(0), f)=x(0), where x(0)=(x,(0), x,(0))T and B=(k, B)T. Then we consider
the nonlinear equation

/ 901(03 X(O), ﬂ)—(/)l(zﬂ', X(O)a ﬂ)
(5.59) F(x(0), p)= <
?2(0, x(0), B)— (27, x(0), B)
( x1(0)— ¢, (27, x(0), B) )
x5(0) — @42, x(0), B)

This equation has turning points and cusp points.

In the first place, we put k=0.2 and B is unknown. In this case, the equation
(5.59) has turning points. We compute one of them and the results of numerical
computations are as follows:

[ £1(0)=—0.65391 94080 07, £,(0)=0.22397 44989 65,

(5.60) A
B=0.46139 11552 41.

In the second place, let k and B be (unknown) parameters. In this case, the
equation (5.59) has cusp points. We compute one of them and the results of numer-
ical computations are as follows:

£,(0)=—0.44363 29326, £,(0)=0.78058 36056,
(5.61) . ~
k=0.57730 83634, B=0.62295 09169.

Next, we consider bifurcations of periodic solutions of (5.56). We take k=0.2
in (5.56) and B is the only unknown parameter.

Example 14.
First, we consider bifurcations corresponding to Case (I) in Section 3.2. As has
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been mentioned in Section 3.2, we consider a periodic solution of

dx, _
a
%z = —x}—kx,+B-cost,
(5.62)
Y
dhy —3x2h, —kh,
dt
and
x1(0)+x,(m) =0,
x5(0)+ x5(1) =0,
(5.63) h1(0)— hy(n)=0,
h2(0)— hy(m) =0,
hy(0)— 1=0.

The results of numerical computations are as follows:
£,(0)=1.87793 92526, %,(0)=0.63506 90547,

(5.64) h;(0)=—0.11859 06031, £,(0)=1.0,
B=2.40337 71161.

Example 15.
Secondly, we consider bifurcations corresponding to Case (II) in Section 3.2.
this casc, we consider the equation
d*x

dx

(5.65) o7h

+4x3=4B-cos 2t (k=0.2)

instead of the equation (5.56). Thus, we consider a periodic solution of

'dd)';‘%: —4x3—2kx, +4B - cos 21,
(5.66)

In
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and
x1(0) = x,(m) =0,
x2(0) = x,(m) =0,
(5.67) h(0)+ hy(m)=0,
h,(0)+ h,(n)=0,
h(0)— 1 =0.

The results of numerical computations are as follows:
%1(0)=2.64693 5, %,(0)=4.30580 6,

(5.68) h,(0)=—0.07177 8, h,(0)=1.0,
B=5.39106 7.

Next, we consider two-point boundary value problems. First, we give examples
of turning points and a cusp point.

Example 16 ([11]).
Let us consider the following two-point boundary value problem:

(5.69) Y =oy-exp GRI-PI(+BA-y)}  (=04)
and
AN
(5.70) a0
y(H=1.

We rewrite (5.69)-(5.70) in the following form:

Sl =x,,
dt
(5.71)
,{i;}z:axl -exp {pB(1 = x /(1 +B(1 —x,))}

and

X1(1)= ]>
(5.72)

x,(0)=0.

Let o(t, x(0), B)y=(¢,(t, x(0), B), ¢,(t, x(0), B))T be a solution of (5.71) with
(0, x(0), B)=x(0), where x(0)=(x,(0), x,(0))T and B=(J, y)T. Then we consider
the equatinp
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1
(5.73) F(x(0), By=Ly¢(0, x(0), B)+L,¢(1, x(0), B)—< 0 )

901(1, X(O)a B)_l )
( ([)2(0, X(O), B)

where LO:<8 ?) and L, =<(1) 8>

This equation (5.73) has turning points and a cusp point.

At first, we put y=20 and the parameter J is unknown. In this case, the equa-
tion (5.73) has two turning points. We compute both of them. The results of
numerical computations are as follows:

>

(5.74) £,(0)=0.22732 51767 297, 5=0.07793 03111 191
and
(5.75) %,(0)=0.79283 87486 932, 6=0.13755 74408 208.

Next, let 5 and y be (unknown) parameters. In this case, the equation (5.73)
has a cusp point. In [11], R. Seydel has suggested the existence of the cusp point,
but he has given neither a method for calculating it nor its value.

In our case, as has been mentioned in Section 4, we can compute it. The results
of numerical computations are as follows:

£,(0)=0.52648 93016, =0.22286 26066,
(5.76)
5 =14.40322 20353.

Secondly, we give an example of a bifurcation point.

Example 17 ([14]).
We consider bifurcations of solutions of the two-point boundary value problem

2
(5.77) %;C + (x4 x2)=0
and
ax
(5.78) ar O
x(1)=0.

The equation (5.77) can be rewritten in the form of a first order system as follows:

(5.79)
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Let u be a parameter and let us consider the equation (5.79) together with the
first variation equation of (5.79) with respect to x=x(¢). That is, let us consider the
following boundary value problem:

dxy _

=X,,
dt 2

dax, _
dt

dh,
=h,,
dt 2

dh, _
dt

_#(xl + X%) )
(5.80)

—uhy+2xhy)

and
Lox(0)+ L, x(1)=0,
(5.81) Loh(0)+ L, h(1)=0,
ho—1=0,
where  x(D)=(x, (0, x2(0)7, h(D=(hy(0), ha(), 5(0)=(x,(0), xx(0)T=(x%, X9,
HO)=(hy(0), ha0)T=(ht KT and Lo=( ), Li=(7 ).

Let (o(t, x), @(t, x))T be a solution of (5.80) such that (¢(0, x), ¢,(0, x))T=
(x(0), h(0))T and let us consider the equation

Lo@(0, x)+Lyo(1, x)
(5~82) F(x)= Lo(/’1(0> x)+L1(,01(1, x) | =0,
h9—1

where x=(x(0), h(0), w)7.
Let F (x) denote the Jacobian matrix of F(x) with respect to x. Then we have

¥, 0 &4
(5.83) Fx)=|¥, ¥ &,
00 10 0

where ¥, =Ly®(0)+ L, (1), ¥,=LyP,(0)+L;P,(1) and
£ =Lo 220, )+ L, 221, %), &=Lo2PL(0, x)+L,9%1(1, x)
1 Oa,u > Ia'u -3 ’ 2 0 au ’ 1 au =] .

Here (&(t), @,(1))T is a solution (4 x 2 matrix) of the first variation equation of
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(5.80) with respect to (x, H)T=(¢(t, x), ¢,(t, x))T (at the given u) satisfying the
initial condition (®(0), ®,(0))T =(E,, 0)7, and %f and -%%‘— are the partial deriva-
tives of ¢ and ¢, with respect to y, respectively.

Here yz(%)‘ is one of bifurcation points of solutions of (5.77)-(5.78). Then

52=<O, 0, 1,0, <~§—>2>T is a solution of (5.82) and for this solution £, we have

(5.84) det F(£)=0

because --g%«(t, £)=0. In fact, in this case, since

cos -t 2 sin "¢
) 3 7 sin 5.
(5.85) d(1)= ,
— T gin "¢ cos ¢
272 2
we have
0 1
(5.86) Lo®(0)+ L, ®(1)= 5
=
and
(5.87) L2920, £)+1,22.(1, 2) = O
’ “ou You 0/
from which it follows that
0 1 0 0 0
2
0 P 0 0 0
(5.88) F.(%)= 0 0 0 1 0
4 4 2 1
I A
0 0 1 0 0
By (5.88) we see that
(5.89) rank F (%)=4.

Then we apply the method proposed in Section 2.1 to the equation (5.82). That is,
introducing a parameter B in (5.82), we consider the system
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F(x)— Be,
(5.90) G(y)=1| F(x)k =0,
ks—1

where y=(x, k, B)", x=(x9, x3, h9, h%, )7, k=(ky, ky, ks, ks, k5)T and e, =
(1,0,0,0,0). Here, in the system (5.90), we may adopt the condition k,—1=0
instead of the condition ks—1=0.

Let G'(y) be the Jacobian matrix of G(y) with respect to y. Then we have

Fx(x) O €y
(5.91) G'(y)=| Fx(x)k  F.(x) 0
00000 00001 0

The system (5.90) has a solution 9=(%, [, 0)T <where )’6=<0, 0, 1,0, <§>2>T and
’I L
f:=<—”437;, 0,0,0, l> ) and for this solution §, we have

(5.92) det G'(§) 0.
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