J. Math. Tokushima Univ.
Vol. 19 (1985), 1-18

On the Poincaré Series of a Semigraded Module

By

Hiroshi OKUYAMA
(Received May 10, 1985)

In his paper [10], M. Steurich introduced the notion of the semigraded local
ring as a generalized concept of a power series ring over a field and in [9], we studied
the homogeneous Golod homomorphism and some change of ring theorems about
Poincaré series for semigraded rings. In this paper, we investigate how the prop-
erties of inert modules introduced by J. Lescot [7] which are connected with Golod
homomorphisms can be transfered to the semigraded case.

Throughout the paper, all rings are commutative and Noetherian, and the
symbol (R, m, k) stands for R is a local ring with maximal ideal m and residue
field k.

By definition, a local ring (R, m, k) is semigraded if (i) R= H R; as an abelian
group, (i) R;R JgR,+ ;+ An R-module M is called semlgraded 1f M satisfies the
conditions: (i) M= H M,, (i) RM;=M;, ;. For any semigraded (abbreviated by
s.g.) R-modules M and N, R-homomorphism f': M—»N 1s said to be homogeneous
of degree d=0 if (i) f(M,)= N;,, for all i, (ii) f( Z X;)= Z f(x;) where x;€ M.

Since there exists a minimal free resoluticl):nO for aF%nitely generated s.g. R-

module M, this extends to a grading on the modules TorR (k, M) and we can define
the Poincaré series PX(X, Y) of M as the power series in two variables X and Y:

P¥(X, Y)= Y dim,TorR;(k, M)X'Y/
i,j=0
where TorR ; (k, M) is the j-th homogeneous component of TorR(k, M). For the
detail of the definitions and results the reader is referred to [9], [10].
Unless otherwise specified, we shall use the same notations and the same ter-
minology which appeared in [9].

1. Inequalities between the Poincaré series of semigraded module

Let (R, m), (S, n) be s.g. local rings and let f: S—R be a surjective homogenous
homomorphism of degree 0. Suppose f(n)cm and f induces an isomorphism of
residue fields k=R/m=S/n. And, suppose further that R is a finite S-module via f.
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Let X (resp. Y) be a minimal homogeneous S (resp. R) algebra resolution of k and
let M be a s.g. R-module. We consider the double complex L=Y® M ® T where
T=X®sR is a homogeneous R-algebra which is minimal. Then the filtration
F,L= @ (Y, ®M®T) determines a spectral sequence of the following form in the

same way as the non-homogeneous case [7]:
E(f, S, R, M): E] ,=TorR (k, H(M®T))=Tork (k, k)®, Tqri (M, k)
=55 (Tor} (M, k)®, Tors (k, k), q-

If we represent the completion R of R as the form R = S/I where (S, n) is regular
and Icn?, then the canonical homomorphism s: (S, n)—(R, i) is a surjective
homogeneous homomorphism of degree 0 and if we write M for M® xR and K for
X®sR which is identified with the Koszul complex of R, then the corresponding
spectral sequence E(s, S, R, M) which we denote by E(R, M) is

E(R, M): E2 ,=Tor (k, k)® H (M® gR)==> (Tor& (M, k)@(R® k), +,-

Since the completion of s.g. modules is an exact functor, we also get a spectral
sequence E(R, M) which is isomorphic to E(R, M). That is, for any s.g. local ring
R and for any s.g. R-module M, there exists a spectral sequence

ptq

E(R, M): E2,,=Tork (k, K)®,H(M®K) =23 (Tor&(M, k) @K ® £k))

where K is the Koszul complex of R.
The existence of spectral sequence E( £, S, R, M) and E(R, M) guarantees the
following 1nequa11tles between the Poincaré series of s.g. module.

Proposition 1. Let f: (S, n)—>(R, m) be a surjective homogeneous homomor-
phism of s.g. local rings of degree 0. Let M be a s.g. R-module and suppose the
Poincaré series PY(X, Y) of M considered as S-module is defined, then we have a
coefficientwise inequality:

A(M): PiX,Y) P¥(X, Y)ZP¥(X,Y) -P¥X, Y).

In particular, let x,..., x, be a minimal homogeneous generators of m, deg x;,=
d;(i=1,..., n) and let K be the Koszul complex of R and suppose the Hilbert series
of HM®K) which we denote by Hy yex(X, Y) is defined, then it holds

B(M): PE(X, ¥) Hymgnr(X. Y)Z PY(X, Y)- TT (1+ X14).
i=1
Proposition 2 ([9], [10]). Under the same conditions as in Proposition 1,
we have

o iz
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and the equality holds if and only if f:S—>R is a homogeneous Golod
homomorphism.

(14 XY4)

Y cini+lyj

1j=0

2 PH(X, V) —
1—

M= l'.:l‘

i

Il

where c;;=dim, H;(K). And the equlity holds if and only if R is a homogeneous
Golod ring.

PrOOF. (1) is obtained by A(m): PE(X, Y)-PYX, Y)SPKX, Y)-P3(X, Y)
combined with the following formulas which are induced from the exact sequence
0-»m—->R—-k—0:

PX,Y)—1
X

Py(X, Y)=
and

P X, Y)—1
e .

Py(X, Y)S[P§(X, Y)—1]+
Also, (2) is obtained by B(m) combined with the inequality

(1 + XY4)—1
'

HH(m®RK)(Xs Y)éHfI(K)(Xy Y)—1+ i=1

Corollary. Under the same conditions as above, we have

(1) f:S—R is a homogeneous Golod homomorphism if and only if there
exists a s.g. R-module M such that the Poincaré series P¥(X, Y) of M considered
as S-module is defined and

PY¥(X, Y)
T=-X[PE(X, Y)—1]

(*) PR(X, Y)=

(2) R is a homogeneous Golod ring if and only if there exists a s.g. R-module
M such that Hyyerx(X, Y) is defined and

H, (X, Y)
PM X, Y)= H(MQRrK) s
(xx) K ) = X Hy oo (X, T) =11

Proor. (1) This condition is necessary. Conversely, let M be a s.g. R-module
such that (#) holds. Then, by using the inequality A(M), we have

PY(X, Y)
X[PS(X, Y)-11"

PE(X, Y)Z

From Proposition 2 (1), it is easily seen that f is a Golod homomorphism,
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(2) is proved in the same way by using the inequality B(M).

2. Semigraded inert module

Under the same notations as Proposition 1, we define the inert module due to
Lescot [7] in semigraded case.

Definition. Let f: (S, n)—>(R, m) be a surjective homogeneous homomorphism
of s.g. local rings of degree 0, then the s.g. R-module M is said to be inert by f if
one of the following equivalent conditions are satisfied:

(1) The spectral sequence E(f, S, R, M) is degenerate.

(2) PR(X, Y)-PY(X, Y)=P¥(X, Y)-PYX, Y).

Especially, a s.g. R-module M is said to be inert R-module when one of the following
equivalent conditions are satisfied
(1) The spectral sequence E(R, M) is degenerate.

() PKX, ¥) Hyorg (X, V)=P¥(X, 1)-TT (1+XY%).

Remark 1. Let M be a s.g. R-module and M be its completion, then the ob-
servation before Proposition 1 shows that the following conditions are equivalent:

a) M is an inert R-module.

b) M is an inert R-module.

¢) M is inert by s: (S, n)—(R, i) where R~S/I is a quotient of regular local
ring (S, n) by a homogeneous ideal I < n?.

Remark 2. When R is a s.g. regular local ring, then every s.g. R-module is an
inert module.

Proposition 3. Let f: (S, n)—=(R, m) be a surjective homogeneous homomor-
phism of s.g. local rings of degree 0 and let M be a s.g. R-module such that mM =0,
then M is an inert R-module and M is also inert by f.

ProoF. It is enough to prove when M is a finitely generated module, since, in
general case, by considering M as an inductive limit of finitely generated s.g. sub-
modules M;, the spectral sequence E(R, M) (resp. E(f, S, R, M)) is degenerate if
each corresponding spectral sequences E(R, M) (resp. E(f, S, R, M;)) are degen-
erate.

Let M be a finitely generated s.g. R-module and let T be a minimal homogeneous
generating system of M and we write y,,(Y) for ZT Ydet  Then we have

te

and
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PHX, V) HyuonoXs V)=PEX, Y)-u(¥)- TT(1+XY)
—PY(X, V). TT(1+XY4)
i=1
which shows that M is an inert R-module and M is also inert by f.

Proposition 4. Let f: S»R be a surjective homogeneous homomorphism of
s.g. local rings of degree 0 and let M, N are s.g. R-modules, then M@®N is inert by

fif and only if M and N are inert by f. Also, M@®N is an inert R-module if and
only if M and N are inert R-modules.

The proof follows from Proposition 1 by using the additive property of torsion
and homology functor.

Proposition 5. Let f: S—R be a surjective homogeneous homomorphism of
degree 0. Let M, M’ are s.g. R-modules and suppose that there exists a homo-
geneous R-homomorphism h: M—M' of degree O, then

(1) 1) If M is inert by f and hy: Tor$; (M, k)—Tor{; (M', k) is surjective
for each i, j, then M’ is inert by f.

2) If M’ is inert by f and h,: Tori; (M, k)—Tor$; (M, k) is injective
for each i, j, then M is inert by f.

(I) Let K be the Koszul complex of R.

1) If M is an inert R-module and h,: H;(M®gK)—H;{M'®gK) is
surjective for each i, j, then M' is an inert R-module.

2"y If M’ is an inert R-module and hy: H(M® gK)—>H;(M'®@¢K) is
injective for each i, j, then M is an inert R-module.

The proof follows by applying Proposition 2.11 A) and Proposition 4.1 of
Lescot [7] to the semigraded case.

3. Small, large and Golod homomorphism of semigraded local rings

Lescot investigated in [7] the homomorphisms of local rings such as small,
large and Golod homomorphism and he characterized these homomorphisms in
connection with the inert property of modules in the non semigraded case and he
also proved that the inert property of modules is preserved under the composition of
homomorphisms. Most of these results are realized in the semigraded case.

The following definition is due to Avramov [1] and Levin [6].

Definition. A surjective homogeneous homomorphism f: S—R of s.g. local
rings is called small (resp. large) homomorphism if the induced map fy: Tor?; (k, k)
—Tork; (k, k) is injective (resp. surjective) for each i, j.

The following theorem is the semigraded version of the result of Lescot [7].
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Theorem 1. Let f: S—>R be a surjective homogeneous homomorphism of s.g.
local rings of degree O and let M be a s.g. R-module.

(I) a) If the induced map (M, f)y: Torf; (M, k)-TorR (M, k) is injective
foreach i, j, then M is inert by f.  Moreover if Torf; (M, k)#0, then f is a small
homomorphism.

b) Iffissmall, then M is inert by f if and only if (M, f): Tors; (M, k)—
Tor® (M, k) is injective for each i, .

(I) Let K be the Koszul complex of R, then M is an inert R-module if and
only if the canonical map H;(M®gK)—Tork, (M, k) is injective for each i, j.

Theorem 2. Let f: S—R be a surjective homogeneous homomorphism of
s.g. local rings of degree 0, then the following conditions are equivalent:

1) fisa large homomorphism.

2) Any s.g. R-module is inert by f.

3) Semigraded R-module R is inert by f.

4) The map py: Tor{; (R, k)—Tor$; (k, k) induced by the projection p:
R—k is injective for each i, j.

5) For any s.g. R-module M, the map (M, f),: Tor}; (M, k)-»TorR, (M, k)
is surjective for each i, j.

6) PYX,Y)=PKX,Y) -PRX,Y).

7) P¥(X, Y)=P}¥(X,Y) -PXX,Y) forany s.g. R-module M.

PrROOF. The equivalences from 1) to 5) are easily seen by the similar argument
in Theorem 4.8 [7].

2)-7). Since M is inert by f, we have PA(X, Y)-PM(X,Y)=P¥(X, Y)-
PY(X, Y). Especially, for M=R, it holds P4X, Y)- PR(X, Y)=PKX, Y). There-
fore we have PY(X, Y)=P}¥(X, Y)- PX(X, Y).

7)—2). Suppose P¥(X, Y)=P¥(X, Y)-PR(X, Y) for any s.g. R-module M,
then especially for M=k we have PXX, Y)=PK(X, Y)- PR(X, Y). From this we
get PY(X, Y) - P¥(X, Y)=P}(X, Y)-P&X, Y). This implies that M is inert by f.

7)—6). Obvious.

6)—7). Let X be a minimal homogeneous S-algebra resolution of k and let Y
be a minimal homogeneous R-algebra resolution of M. We consider the double
complex C, ,=Y,®sX,, then the filtration F,C= @ Y,®sX gives rise to the change

isp

of rings spectral sequence E", , with

EZ ,=Tork (M, k)®Tors (R, k)= TorS,, (M, k).

p.q—
From this it follows that

On the other-hand, by using the inequality A(M), we have
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PY(X, V)2 PH(X, Y)-P§(X, Y)
which proves our assertion.
Corollary 1 ([4]). Let g: R—S bea homogeneous algebra retract of degree 0,
that is, there exists a homogeneous homomorphism f: S—R of degree 0 such that

fog=id. R. Let M be a s.g. R-module, then by considering M as a s.g. S-module
via f, we have

The proof follows by Theorem 2, since the map f: S—R is a large homomor-
phism.

As an application of Corollary 1, we obtain a generalized form of Theorem 6

[9].

Corollary 2. Let M and N are s.g. modules over a s.g. local ring R, and let
R(M) be a trivial extension of R by M, then we have

PR(X, Y)
“XPY(X,Y) "

PrOOF. The canonical map g: R—»R(M) is a homogeneous algebra retract
such that f: R(M)—R is a large homomorphism. Hence we get from Corollary 1

P%(M)(Xa Y):P%(Xa Y)'Pﬁ(M)(X, Y)
and
P%(M)(Xa Y)=P%(X, Y)‘Pﬁ(M)(X> Y)-

On the other hand, since the exact sequence of s.g. R-modules 0—M —R(M)—R—0
is regarded as a sequence of s.g. R(M)-modules, we have

From these relations we get our result.

The following theorems are also semigraded version of the result of Lescot.

Theorem 3. (I) Let f: (S, n)—(R, m) be a surjective homogeneous homomor-
phism of s.g. local rings of degree 0. Then the following conditions are equivalent:

1) f:S—R is a homogeneous Golod homomorphism.

2) f:S-R is a small homomorphism and m is inert by f.

3) The canonical homomorphism (m, f),: Torf; (m, k)>Tork; (m, k) s
injective for each i, j.

4) wm is inert by f and the map Tor§; (m, k)—Torf; (R, k) induced by the
injection m—R is surjective for each i=1, j=0.

5) m is inert by f and the map Tor3; (n, k)»Tor{; (m, k) induced by the
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surjection n—m is injective for each i, j.

(II) Let (R, m) be a s.g. local ring and let K be the Koszul complex of R,
then the following conditions are equivalent:

1) R is a homogeneous Golod ring.

2) wmis an inert R-module.

3) The canonical homomorphism H,(m® zK)—Tork (m, k) is injective for
each i, j.

Theorem 4. 1) Let f: (S, n)—>(R, m) and g: (R, m)—(R’, m') are surjective
homogeneous homomorphisms of s.g. local rings of degree 0. Put h=gof and let
M be a s.g. R'-module such that the Poincaré series P¥.(X, Y) is defined. Then
M is inert by h if and only if M is inert by g and is inert by f considered as a s.g.
R-module via g.

2) Let g: (R, m)—(R’, m') be a surjective homogeneous homomorphism of
s.g. local rings of degree 0. Let M be a s.g. R’-module such that the Poincaré
series PY(X, Y) is defined. Then M is an inert R'-module if and only if M is
inert by g and is an inert R-module considered as a s.g. R-module via g.

Corollary. Let f: (S, m)—(R, m) and g: (R, m)—=(R’, m’) are two surjective
homogeneous homomorphisms of s.g. local rings of degree 0. Suppose the com-
posite map gof is homogeneous Golod homomorphism, then the following three
conditions in (A) and (B) are respectively equivalent:

(A) 1) g is a homogeneous Golod homomorphism.

2) g is a small homomorphism.
3) The induced homomorphism Tork; (m, k)—Torf; (', k) is injective
for each i, j.
(B) 1) fisa homogeneous Golod homomorphism.
2) mis inert by f.
3) The induced map Tor§; (m, k)—>Tork; (m, k) is injective for each i, j.

PROOF. (A) Since the composite map gof is homogeneous Golod, the s.g.
R’-module m’ is inert by gof from Theorem 3, (I). Therefore m’ is also inert by g
by Theorem 4. Now the equivalence of 1), 2) and 3) follows from Theorem 3, (D.

(B) Since gof is homogeneous Golod, it is a small homomorphism by Theorem
3, (I). Therefore f is also a small homomorphism [1, Lemma 3.8]. Now the
equivalence of 1), 2) and 3) in (B) follows from the above theorem.

Theorem 5. Let f (S, m)—(R, m) and g: (R, m)>(R’, m') are two surjective
homogeneous homomorphisms of s.g. local rings of degree 0. Then the following
conditions are equivalent:

1) f, g and gof are homogeneous Golod homomorphisms.

2) g and gof are homogeneous Golod homomorphisms and the induced homo-
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morphism Tor§; (m, k)—Tor$; (m', k) is injective for each i, j.

3) f, g are homogeneous Golod homomorphisms and m' considered as a s.g.
R-module is inert by f.

4) f, g are homogeneous Golod homomorphisms and the ideal J=Keryg
is inert by f.

Proor. We consider the following commutative diagram:
Tor{; (m, k) — Torf; (', k)
l(m,f)* l(m',f)*

1)-2). Since gof and g are homogeneous Golod, the induced map Tor¥; (in, k)
—TorR, (m', k) is injective by the Corollary to Theorem 4 and since f is Golod, the
homomorphism (m, f), is also injective by the same Corollary. Hence the
homomorphism Tor§; (in, k)—Tor§; (m’, k) is injective for each i, j.

2)—1). Since gof is homogeneous Golod, the homomorphism (', gof):
Tor$; (m', k)-»Tork, (w’, k) is injective. Hence the homomorphism (', f) is
also injective. Since the map Tor§; (m, k)—Torf; (m’, k) is injective, it follows
that (m, f), is also injective. Therefore f is Golod by the Corollary to Theorem 4.

1)-3). Since s.g. R’-module m’ is inert by gof from Theorem 3, it is also inert
by f considered as a s.g. R-module in view of Theorem 4.

3)—1). By the similar argument in [1, Lemma 3.8], gof is a small homomor-
phism. Since m’ is inert by g and by f, it is also inert by gof from Theorem 4.
This implies that gof is homogeneous Golod by Theorem 3, (I).

3)4). Consider the following commutative diagram:

0 — Tor}; (m, k) — Torj; (m', k) — Tori_y ; (J, k) — 0

| |

0 — Tork (m, k) — Tork (m', k) — Tork, ; (J, k) — 0

Since g is homogeneous Golod, the homomorphism Torg (m, k)—Torf; (', k)
is injective by Theorem 3, (I) 5). Therefore the lower sequence is exact and the
injectivity (m, f), implies that the upper sequence is also exact. From this sequence,
we have

PY(X, Y)—P¥X, V)=X P{(X, Y)
and
PE (X, Y)—PiX, V)=X Py(X, Y).

Since f is Golod, m is inert by f and it holds
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PKX, Y)- Pu(X, Y)=Py(X, Y)- PXX, Y).
From these relations we have

PiX, Y)-PUX, Y)=P{X, Y)-PXX, Y)
if and only if

PiX, Y)-P¥'(X, Y)=P§(X, Y)-P&X, Y).
This completes the proof.

Corollary. Let (R, m) be a s.g. local ring and let x be a homogeneous non
zero divisor in mt and J be a proper homogeneous ideal of R. Then

1) Any s.g. R-module M such that JM =0 is inert by g: R—R/xJ considered
M as a s.g. R/xJ-module.

2) If R is a homogeneous Golod ring and J is an inert R-module, then R/xJ
is a homogeneous Golod ring.

3) Let f:S—R be a surjective homogeneous Golod homomorphism. IfJ
is inert by f, then the composite map gof : S—R/xJ is a homogeneous Golod homo-
morphism.

ProoOF. 1) It is well known that the homomorphism g: R—R/xJ is homo-
geneous Golod [9, Theorem 3]. Therefore we get

Pr(X, Y)

Pﬁ/xJ(X, Y)= I1—X[PRI(X,Y)—1] °

Since JM =0, we have by the similar argument as in [2, Theorem 5]

PR(X, Y)

PIA{/xJ(Xa Y)= 1— X[PRAI(X, V)=1] °

Hence it holds P}, (X, Y) - P¥(X, Y)=P} (X, Y)-PKX, Y).

2) is a special case of 3) and 3) follows by Theorem 5 since g: R—R/xJ is a
homogeneous Golod homomorphism.

Proposition 6. Let (R, m) be a homogeneous Golod ring and M be a finitely
generated s.g. inert R-module. Then R(M) is a homogeneous Golod ring.

Proor. Let K be the Koszul complex of R(M). From the exact sequence of
R(M)-modules 0— M —(m, M)—m—0 we have the following commutative diagram:

H;; (M®R(M)K) — H;; ((m, M)®R(M)K) — H;; (m®R(M)K)

1 l J

0 — Torf™ (M, k) — Tork™)((m, M), k) — Torf™M) (m, k) — 0
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for each i=0, j=0.

The lower row is exact, since TorR™ ((m, M), k)= TorR4) (k, k) for i=0,
j=0 and the map TorRM) (k, k)—TorR™) (m, k) induced by the exact sequence
0—->m—>R—k—0 is surjective for each i, j from Theorem 2, 4).

Since M and m are inert R-modules, they are also inert considered as R(M)-
modules by Theorem4, 2). Hence the left vertical map H;(M® gK)—
TorR™) (M, k) is injective for each i, j by Theorem 1, (II). So we have the exact
sequence

0— Hij(M®R(M)K) - Hij((m: M)®R(M)K) - Hij(m®R(M)K) —0

for each i, j, from which we get the following additive property for trivial extension
ring.

P;(n(li\jlw))(X) Y)=P%(M)(Xa Y)+PE(M)(X, Y)
and
Hy (o, 1)@ r o 6 Y) = Hym@eon k) (X Y+ Higa@g o, 0 (X 1)

By calculating the Poincaré series, it is easily seen that the module (m, M) is an inert
R(M)-module and therefore R(M) is a homogeneous Golod ring in view of Theorem
3, (IT).

4. Applications

As applications of the preceding sections, we treat of three cases. The first is
the reduction to the Artin case and the second is the inert property of syzygy modules
and the third is the fibre product of semigraded local rings.

A) Reduction to the Artin case.

In this part, we fix a s.g. local ring (R, m) of embedding dimension n and let
Xy,..., X, be @ minimal homogeneous generators of m, deg x;=d; (i=1,..., n) and K
be the Koszul complex of R. All s.g. R-modules considered are assumed to be
finitely generated and all unspecified tensor products are over R. For any finitely
generated s.g. R-module M we denote by H(M)(X, Y) the Hilbert series of M
associated with a m-adic filtration: H(M)(X, )= 3% c¢;X'Y/ where ¢;=

i,jz0
dim(m:M/m*1M);.

Proposition 7. For any s.g. R-module M, there is an integer s, such that for
all s=s,

Hywsme(X, Y)=H@M)(-X, Y)- EII (1+XY%),



12 Hiroshi OKuYAMA

PrRoOF. The argument similar to [5, Lemma 2.6] shows that there is an integer
so such that for any s> s, the induced homomorphism H(ms*"'M® K)— H(m*M ® K)
is zero.

Therefore, the exact sequence O—-ms*'M—omsM->msM/mst M -0 yeilds the
exact sequence

(%) 0— H, (mM®K) — H, (m*M/ms*" ' M@K)
— H, | (m*'M®K)— 0
for p=1, g=0and s=s,. Put
B, (D)=dim, H, (M'M®XK), b,,=dim, H, (K®k)=dim, (K,QKk),.
Then, (*) implies that
B, [(5) =k+h2=qcs’kbp’h —B,_; (s+1).

Upon iterating, we have
p=1

B, (s)= Y ¥ (_1)ics+i,kbp—i,h+(—l)pBO,q(S+p)'
0k

i=0 kth=gq

Since By ,(s + p) = dimy H,, ,(m**?M ® K) = dim H,, , (m**?M/m**7*1M Q@ K) =

2 Csipibon we have
k+h=q

p .
Bp,q(s) =2 ;éq (— 1)lcs+i,kbp—i,h .

i=0 k+

Consequently,

HH(mSM®K)(X, Y)= X OBp,q(S)Xqu
p,qz

= HmsM)(— X, Y)- 131 (14 XY#),

which finish our proof.

Theorem 6. Let M be a s.g. R-module. Then, there is an integer s, such
that for any s=s,

1) msM is an inert R-module.

2) The canonical map TorX  (msM, k)>TorR  (msM/ms*1M, k) is injective
for each p, g.
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3) a) PyM(X, Y)=H(mM)(—X, Y)-PKX, Y).

b) PY/™M(X, Y)=X-HmM)(—X, Y)-PKX, V)+P¥(X,Y) for s=s,
+1.

Proor. 1) and 2) follows by the similar argument in [7, Theorem 5.3] since the
canonical map H, (m*M®@K)—H, (m*M/ms*!M®K) is injective for s=s,.
3) a). Since m*M is an inert R-module, we have

PYX, Y): Hyguemgio(X, Y)=PR™(X, Y)- TT (1+ XY4).

By applying Proposition 7, we get the desired formula.

b). By using 2), we can easily see that the map Torf (m'M, k)—
TorR  (ms7*M, k) is zero. Therefore, for s=so+1, the map Torf (m*M, k)—
TorR . (M, k) is also zero, since the map m*M—M is decomposed into the com-
posite maps msM—-m*"'M—M for s—1=s,.

Hence, the exact sequence 0—msM —M —M/msM —0 yields the exact sequence

(¥¥) 0—— Tor® (M, k) — TorR ,(M/mM, k) — Tork_, ,(m*M, k) — 0
for p=1,qg=0and s=s,+1. Put

b, (msM)=dim, Tor} , (m*M, k), b, (M/msM)=dim, Tor} ,(M/msM, k).
Then, (#*) implies that

b, M/msM)=b, (M)+b (msM) and b, (M/m*M)=b, (M)

p—1.4
for p=1, g=0and s=s,+1. Therefore, we have

PYImM(X, Y)y= 3 b, (M/mM)XrY4
p,q20

= q;obo,q(M/msM)Yq—}- > b, M/msM)XrY4

pz1l ¢

0
= ¥ b, (MXPYi+X- T b, (mM)XPY

>
p;q20 p,9z0
=PY(X, Y)+X -P¥M(X, Y)
for s=s,+ 1, which proves our assertion.

As a corollary of Theorem 6, we can easily deduce Theorem 4 [9] by using the
fact that the map f: R—R/m* is a homogeneous Golod homomorphism for suffi-
ciently large s.

Corollary 1. Let (R, m) be a s.g. local ring, then there is an integer s, such
that for any s=s,, we have

PR(X, Y)
—XTHMm) (=X, 1)-P5 (X, Y)

Pfl/ms (X’ Y)= 1
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Corollary 2. Let M be a s.g. R-module. Then, M is an inert R-module if and
only if M/msM is inert for sufficiently large s.

Proor. Since the induced homomorphism H(m*M®@K)—H(m* 'M®K) is
zero for sufficiently large s, the exact sequence 0—»msM—M —M/msM —0 yields the
exact sequence

00— HP"I(M®K) - Hp,q(M/msM@)K) - Hp—l,q(msM@)K) —0

for p>1, ¢=0.
Therefore, by using Proposition 7 and Theorem 6, it holds for sufficiently large s

Huymex(X, Y)=—X " Hyemex(X> V) +Hyormsue)(X, Y)
= X-PyM(X, Y). 131 (14 X Y9)PYX, V) + Hyomomen(Xs Y).
By using Theorem 6 again, we can easily see that
PKX, Y)- Hyer (X, Y)=PY¥(X, Y). gl (14X Y4)

if and only if

PR, Y)- Hyguosoro(X, Y)=P™(X, 1) [T (14X Y%)
for sufficiently large s. This completes the proof.

B) Inmert property of syzygy modules.

Let R be a s.g. local ring and M be a finitely generated s.g. R-module. Let Y
be a minimal R-free resolution of M and we denote the i-th syzygy module of M
by M; M;=Im (Y- Y;_,), (Mo=M).

Proposition 8. 1) Let R be a homogeneous Golod ring and M be a finitely
generated s.g. inert R-module. Then the syzygy modules M; of M are also inert.

2) Let f: S—>R be a surjective homogeneous Golod homomorphism and let M
be a finitely generated s.g. R-module which is inert by f. Then the syzygy modules
M; of M are also inert by f.

Proor. Since 1) is a special case of 2), we prove only the case 2).

Let x4,..., x, be a set of homogeneous generators of M, deg x;=d; (i=1,..., b).
Let 0-N—-F—->M—0 be an exact sequence of s.g. R-modules and homogeneous
homomorphisms of degree O where F is a finitely generated s.g. free R-module and
NcmF. Then it is enough to prove that N is inert by f if M is inert by f.

From the above exact sequence we get

PY(X, V)=yu(Y)+ X -PYNX, Y).
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Since f is small, the map (M, f),: Tor; ,(M, k)—»Torﬁ,‘,q'(M, k) is injective by
Theorem 1. Hence in the following commutative diagram

0 — T0r§+1’q (M, k) — TOI'R (M, k)

ptl,q
la

(

Tor; , (N, k) — Torg , (N, k)

the connected homomorphism ¢ is injective and therefore we have the following
exact sequence of s.g. S-modules:

0 — Tors,; ,(M, k) — Tor3 , (N, k)
— Tor$ (R, k)®---®Tors (R, k) —> 0.

p,q—dy p-9—dp

By calculating the Poincaré series we have

PY(x, )= PEE D =0y (v) [ PR(X, 7)- 11,

On the other hand, from the assumption we have

PL(X, Y)
T— X[ PX(X, Y)—1]

and
PKX, Y) -PY(X, Y)=P¥(X, Y)-P4X, Y).
From these relations we get
PKX, Y)-PY(X, Y)=P}X, Y)-PYX, Y)
which proves our result.
The following theorem is a slight generalization of Theorem 3.1 [3].

Theorem 7. ([3], [7]). Let (R, m) be a s.g. local ring with homogeneous ideals
J,cJ,s---cJ,Sm and let x,,..., X, are homogeneous elements of m. Put Ro=R
and R;=R/x,J;+ - +x;J; for i>0. If x; is regular on R;_, for each i, then the
natural map f;: R—R; is a homogeneous Golod homomorphism.

Moreover, if M is a finitely generated s.g. R-module such that J,M =0, then
M is inert by f; and

PY(X, Y)
= X[ PE:(X, Y)—1]

PE (X, Y)= i=0,1, ..., n).

Proor. The Golod homomorphism of f; is easily seen by the similar argument
as in [7, Theorem 6.6] in view of Corollary of Theorem 5 and Proposition 7.

In the next place, since M is considered as a s.g. R;_;-module such that J;M =0,
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M isinert by g;: R,_;—R,; from Corollary of Theorem 5. Hence M is inert by f; by
Theorem 4.

The formula for the Poincaré series P(X, Y) now follows from the fact that
fi: R—R,; is a Golod homomorphism and M is inert by f;.

C) Fibre product of semigraded rings.

Let (R{, m;) and (R,, m,) are two s.g. local rings with isomorphic residue
fields k= R{/m; = R,/m, and let (R, m) be a fibre product of R, and R, over k which
is a subring of R;®R, defined by R={(x, y)|s,(x)=s,(y)}, where s; (i=1, 2) are
canonical surjective maps from R; onto k. Put n=dim, m/m?2, n,=dim, m,/m3,
n,=dim, m,/m3 and let let f;: R—R,; are canonical projective maps from R to R;
(i=1,2). Since n=n,+n,, we can choose a minimal homogeneous generators
Xi5..., X, Of m, degx;=d; (i=1,...,n), such that f,(x,),...,fi(x,) is a minimal
homogeneous generators of m; and f5(X,,+y),..., f2(x,) is a minimal homogeneous
generators of m, and that f,(x;)=0 for i>n, and f,(x;)=0 for i<n,. Let K=
R(Ty,..., T,; dTi=x», K;=R((T4,..., T, ; dT;=f(x;)) and K,=R,{T, sy...,
T, +nys AT j=f5(x;)> are Koszul complexes of R, R, and R, constructed by each
minimal homogeneous generators of maximal ideals.

Under these notations we have the following theorem which is a semigraded
version of the result of Lescot [8].

Theorem 8. The fibre product R of s.g. local rings R, and R, over k is a homo-
generous Golod ring if and only if R, and R, are homogeneous Golod rings. In
this case, we have

L1 Xy (V) 1] 1= Xy (X =11
Pi(X, Y) T (1+XY%) TT (14 XY%)

i=1 i=ni+1

1.

Proor. Put K,=R{(Ty,..., T,; dT;=x;> for 1<r<n, then the complexes of
s.g8. R-modules K; ®@gnt; and K;®g,m, are isomorphic and in particular we have
H, (K, ®gm;)=H, (K;®g,m,;) for each p, ¢=0.

Since x;€ Ann zm, for i>n;, we get the following exact sequence of s.g. R-
modules:

0 - Hp,q(K:'®RTnl) - Hp,q(K:'-i-l@le) —_ Hp—l,q-—dﬂ.l(K;-@RnIl)
— 0 forn,Sr<r+1=n, p=0, ¢=0.

If we write K™ for K®gm,; and KF'=K;®m; (i=1, 2), then we have from the
above sequence that

n
Hygmy(X, Y)=Hygmy(X, Y)- TI (1+XY%).

i=ny+1
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By similar arguments we see that

Hym(X, YV)=Hpgr(X, Y)- I (1+XY%).

i=1

Consequently, we get from mm, ®m,

Hym(X, Y)=Hpygm(X, Y)+ Hygmy(X, Y)

=Hyqpn (X, V) TT (14 XY + Hygepa(X, V) TT (14X Y4,
On the other hand, from Proposition 1 and from the proof of Satz 3.3 [10], we have
the following two inequalities:

@ PR(X, V) [T (1+XY)SPYX, ) Huge(X, ¥)- TT (1+XY4)

i=ni+1
() PRX, Y) IT (14 XY4)S PR, Y)- Hygern(X, ¥)- TT (14 X Y4)
i=1 i=1

with equalities if and only if R, and R, are homogeneous Golod rings in (a) and (b)
respectively by virtue of Theorem 3 (II).

Since Pu(X, Y)=Pu(X, Y)+ Pp(X, Y), it holds the equality
PRX, ¥)- IT (14 XY4)=PKX, ¥)- Hygem(X, V)

if and only if the equality holds in (a) and (b) respectively. This establishes the
first part of the Theorem.

The formula for the Poincaré series is easily deduced from Satz 3.3 of [10] by
using Proposition 2.
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