論文審査の結果の要旨

報告番号	甲 先 第	프,	氏名	キム ド ヒョン 金 度 亨
	主査 直井	美貴		
審査委員	副査 永瀬	雅夫		
	副査 酒井	士郎		

学位論文題目

The research on p-type formation of AlGaN by Al_4C_3 and the application to light-emitting diodes Al_4C_3 によるp型AlGaN層の形成及び発光ダイオードの応用に対する研究

審査結果の要旨

本論文は、A1GaNOP型化を目指し、カーボン材料を新たな研究対象としたものである。まず、サファイア、SiC、Si基板上にA1C1 μm を積み、その物性を調べた。その組成は $A1_4C_3$ になっており、サファイア、SiC、Siの上に成長出来るのは1000-1350 C程度の温度であった。光を感知し、空気中で酸化することを示した。A1C の拡散、分解のメカニズムが記述された。A1GaN にA1Cを拡散あるいは分解でカーボンをA1GaNの中に入れることができ、それらはもともとはn型であったものがp型になっていた。さらに、サファイア上に400 nm のLEDを形成し、カーボンがp型化材料になっている事を示した。さらに、従来からのp型化材料、Mgで形成したものと同程度のV-I特性であった。

以上本研究は、AlGaN のp型がカーボンでできることを示した論文であり、本論文は博士(工学)の学位授与に値するものと判定する。

論 文 内 容 要 旨

報告番号	甲	先	第	203	号	氏	名	きむ金・	ど 度	ひょん 亨
The research on p-type formation of AlGaN by Al ₄ C ₃ and the 学位論文題目										

内容要旨

AlGaN material is used to fabricate a near-ultraviolet (300-350 nm) light-emitting diode (LED), but the maximum external quantum efficiency (EQE) is less than 8%. The reasons are AlGaN easily cracks and the p-type doping is low. The accepter magnesium (Mg) is difficult to use in x > 0.33 of $Al_xGa_{1-x}N$.

Recently, there is a report about carbon (C)-doping in AlGaN. Tetrabromomethane (CBr₄) was used as a C dopant. C-doped (0001) plane p-type $Al_xGa_{1-x}N$ (0.06 $\leq x \leq 0.55$) was reported and hole concentration (p) was in the range of (6-7) x 10^{18} cm⁻³. A light-emitting diode (LED) structure C-doped $Al_{0.27}Ga_{0.73}N/u$ -GaN/Si-doped $Al_{0.10}Ga_{0.90}N$ was also demonstrated.

Our research group studied aluminium carbide (Al₄C₃). C was detected in Al₄C₃ (0001)layer grown by metalorganic vapor phase epitaxy (MOVPE). Therefore, the research on p-type AlGaN with Al₄C₃ dopant was planned.

In this research, p-type doping characteristic of AlGaN with Al_4C_3 was confirmed by means of the diffusion and the doping methods. Also, the photo-induced current (PIC) of Al_4C_3 grown as a p-type dopant for AlGaN was reported.

At first, the growth experiment of Al_4C_3 was demonstrated by MOVPE. Then, the growth rate, the crystallite and the optical conduction of Al_4C_3 were investigated. The hexagonal structure Al_4C_3 was confirmed by X-ray diffraction (XRD). The oxidation of Al_4C_3 layer was analyzed by energy dispersive X-ray (EDX) spectroscopy. Photo-induced current in Al_4C_3 was confirmed. As a result, it was sensitive to the near-ultraviolet wavelength. But, it was degraded with an increase time in air.

 Al_4C_3 diffusion experiment in AlGaN was fulfilled at the low-pressure MOVPE. The experiment results were as follow. The conductivities of GaN and AlN with diffusion at 1000 °C were n-type and insulator. p- and n-type conductivities were detected in AlGaNwith diffusion experiment. The diffusion length of C was decreased by increasing in Al composition. The calculated diffusion coefficient was the same tendency. Also, the diffusion length of Al_4C_3 was observed at the surface of AlGaN.

The Al₄C₃ doping experiment in AlGaN was accomplished by the manufacture of C-doped p-AlGaInN LED. It was clearly proven that u-Al_{0.19}Ga_{0.81}N became p-Al_{0.19}Ga_{0.81}N. Manufactured LED device showed various electrical performances at a certain distance from the inserted Al₄C₃. The high concentration of C was founded at the edge of 2 inch substrate. Only edge of 2 inch grown wafer showed the electric performance of C-doped AlGaInN LED. The electroluminescence characteristic was almost the same as Mg-doped AlGaInN LED. In addition, the degraded Al₄C₃ layer was also investigated.