Title:
A novel C-terminal nonsense mutation, Q315X, of the aryl hydrocarbon receptor-interacting protein gene in a Japanese familial isolated pituitary adenoma family

Authors:
Takeo Iwata¹, Shozo Yamada², Junko Ito³, Naoko Inoshita⁴, Noriko Mizusawa¹, Shinji Ono¹, Katsuhiko Yoshimoto¹

Affiliations:
¹Department of Medical Pharmacology, Institute of Health Biosciences, The University of Tokushima Graduate School, Kuramoto-cho 3-18-15, Tokushima City 770-8504, Japan
²Department of Hypothalamic and Pituitary Surgery, Toranomon Hospital, Toranomon 2-2-2, Minato-ku, Tokyo 105-8470, Japan
³Department of Pediatrics, Toranomon Hospital, Toranomon 2-2-2, Minato-ku, Tokyo 105-8470, Japan
⁴Department of Pathology, Toranomon Hospital, Toranomon 2-2-2, Minato-ku, Tokyo 105-8470, Japan

Corresponding author: Katsuhiko Yoshimoto

Department of Medical Pharmacology, Institute of Health Biosciences, The University of Tokushima Graduate School, Kuramoto-cho 3-18-15, Tokushima City 770-8504, Japan

Tel.: +81-88-633-9123
Fax: +81-88-633-7331
Abstract

Although the cause of familial isolated pituitary adenoma (FIPA) remains unknown in many cases, germ-line mutations in the aryl hydrocarbon receptor-interacting protein (AIP) gene were identified in approximately 20% of families with FIPA. We investigated the AIP gene mutation by a standard sequencing method in 12 members of a Japanese two-generation FIPA family, which includes 3 patients with early-onset acromegaly. Multiplex ligation-dependent probe amplification analysis in a tumor sample was attempted to examine the loss of heterozygosity (LOH) in the locus. The effect of the detected mutation on cell proliferation was investigated. A germ-line mutation of c.943C>T (p.Q315X) generating an AIP protein with the C-terminal end deleted was found in the FIPA family. Biallelic inactivation of AIP by a combination of the germ-line mutation and LOH at 11q13 was confirmed in the tumor. The nonsense mutation disrupted the ability to inhibit cell proliferation. We conclude that p.Q315X mutation in the AIP gene is a pathogenic variant and the C-terminal region of AIP plays an important role in the predisposition to pituitary adenomas.

Key words: familial isolated pituitary adenoma, acromegaly, aryl hydrocarbon receptor-interacting protein, loss of heterozygosity
Introduction

Pituitary adenomas that are relatively common in the general population are usually sporadic; however, familial adenomas have been identified in 3-5% of all cases [1, 2]. Multiple endocrine neoplasia type 1 (MEN1) and Carney complex are well-characterized familial syndromes forming multiple endocrine neoplasia including anterior pituitary tumors. In MEN1, germ-line mutations in the \textit{MEN1} gene have been found in most patients [3, 4]. In 60% of patients with Carney complex, germ-line mutations of the \textit{PRKAR1A} gene encoding the R1α regulatory subunit of cAMP-dependent protein kinase A on 17q22-24 were detected [5]. Familial isolated pituitary adenoma (FIPA) is defined as the occurrence of two or more related members of the pituitary adenomas outside of the setting of MEN1 or Carney complex in a kindred. In FIPA, pituitary adenomas present homogeneously or heterogeneously within the same family [6]. Mutations in the aryl hydrocarbon receptor-interacting protein (\textit{AIP}) gene located on 11q13 are reported to be associated with pituitary adenoma predisposition [7]. The \textit{AIP} mutations occur in 15-20% of FIPA and in 3-5% of sporadic pituitary adenomas, especially GH-secreting adenomas and prolactinomas, and are associated with the occurrence of large pituitary adenomas at a young age [8]. Gigantism is a particular feature of \textit{AIP} mutations and occurs in more than 30% of affected GH-secreting adenoma patients.

The human \textit{AIP} gene encodes a 37-kDa protein composed of 330 amino acids that has an N-terminal immunophilin-like domain and a C-terminal tetratricopeptide repeat (TPR) domain [9, 10]. The TPR domains consist of three sets of a consensus sequence of 34 amino acids forming two α-helices. \textit{AIP} has been reported to interact with various proteins such as chaperone proteins (heat shock protein 90 (HSP90), HSP70, and translocase of outer mitochondrial membrane 20), client proteins including nuclear
receptors (aryl hydrocarbon receptor (AhR), estrogen receptor-α, glucocorticoid receptor, peroxisome proliferator-activated receptor-α, and thyroid hormone receptor-β1), phosphodiesterase (PDE4A5 and PDE2A3), survivin, G proteins, RET, and Epstein-Barr virus-encoded nuclear antigen 3 [11]. Of note, a final C-terminal α-7 helix (Cα-7h) mediates molecular interactions with many proteins including a co-chaperone of HSP90 and AhR [12]. Approximately 75% of AIP mutations completely disrupt the C-terminal TPR domain and/or the Cα-7h [6, 11], suggesting that these domains have an important role in the function of AIP as a tumor suppressor. However, the exact mechanisms of tumor suppression by AIP are poorly understood.

We investigated the involvement of the AIP mutation in a Japanese FIPA family with pituitary adenomas and found a novel AIP nonsense mutation at the C-terminus. An effect of the mutated AIP on cell growth was also examined. In addition, a region of loss of heterozygosity (LOH) on 11q13 in AIP or MEN1-related pituitary adenomas is discussed.
Subject and methods

Case report

The index case was a 16-year-old female who was taken to hospital because of headache and visual disturbance in 2012. She showed diminished visual acuity and bitemporal hemianopsia by visual field and displayed a slightly enlarged nose. Her medical history included nothing notable. Her height and weight were 170 cm and 64 kg, respectively.

Magnetic resonance imaging (MRI) of the brain showed a pituitary adenoma with suprasellar extension (23 mm x 19 mm x 15 mm) (Figure 1).

Endocrine studies showed elevated serum basal GH level (47.1 ng/mL, normal range 0.28-1.64 ng/mL) and IGF-1 level (1,050 ng/mL, normal range for sex and age 262-510). The nadir GH level following a 75 g oral glucose tolerance test (OGTT) was 18.2 ng/mL, which was not suppressed. The plasma glucose was 152 mg/dL 120 min after the OGTT. After subcutaneous administration of 100 mg of octreotide, the serum GH level was moderately suppressed from 21.4 ng/mL to 12.9 ng/mL. The serum GH level upon oral administration of bromocriptine was suppressed from 23.9 ng/mL to 9.3 ng/mL. Serum PRL level was 58.5 ng/mL (normal range 4.9-29.3). No other hormonal abnormalities were present.

The patient underwent tumor resection through a transsphenoidal approach; the tumor was fully excised. The defect in the visual field disappeared, accompanied by normalization of GH, IGF-1, and PRL levels. A follow-up MRI showed no evidence of recurrence. After the operation, the nadir GH level after OGTT decreased to 0.2 ng/mL.
Family history

The father (subject II-2 in Figure 2C) of the index case underwent transsphenoidal surgery due to acromegaly at the age of 20, and re-surgery due to recurrence at the age of 35 at another institution. Postoperatively, he has received GH replacement therapy. Her paternal uncle (subject II-5) had a past history of transsphenoidal resection for the treatment of acromegaly at the age of 20 at another institution. His recent serum GH and IGF-1 levels were 0.15 ng/mL and 165 ng/mL (normal range for sex and age 67-318), respectively.

In addition, other family members, namely, paternal grandfather (subject I-1), paternal grandmother (subject I-2), paternal aunt (subject II-3), sister (subject III-2), and paternal cousins (subjects III-3, III-4, and III-5), were also studied with their informed consent. Blood samples were taken around 0900 h after an overnight fasting. Serum levels of anterior pituitary hormones and IGF-1 did not indicate the presence of pituitary adenomas. No family members showed acromegaly except for the father (subject II-2) and the paternal uncle (subject II-5) described above. This study was approved by the ethics committees of Toranomon Hospital and the University of Tokushima.

Immunohistochemical study

Adenoma tissues were fixed in 10% formaldehyde, embedded in paraffin, and cut into 3-µm-thick sections for hematoxylin-eosin and immunohistochemical staining. Immunohistochemistry for paraffin-embedded tumor samples was performed by the avidin-biotin-peroxidase method. Sections were incubated with the following antibodies: anti-GH (Dako, Carpinteria, CA; A0570), anti-PRL (Dako; A0569), anti-adrenocorticotropic hormone (Dako; A0571), antibodies against each β-subunit of thyroid-stimulating hormone (Kyowa Medex Co., Ltd., Tokyo, Japan), follicle-stimulating hormone
(BioGenex, San Ramon, CA; MU026-UC), and luteinizing hormone (Nichirei Biosciences Inc., Tokyo, Japan), anti-cytokeratin CAM 5.2 (Becton Dickinson, San Jose, CA), and anti-Ki-67 clone MIB-1 (Dako; M7240).

Gene mutation analysis

Gene mutation analysis using PCR and sequencing was performed as described previously [13]. Briefly, genomic DNA isolated from leukocytes and a pituitary adenoma was subjected to 35 cycles of PCR using TaKaRa Ex Taq™ Polymerase (TaKaRa, Shiga, Japan) with each AIP exon primer set. PCR products were treated with ExoSAP-IT (USB Corporation, Cleveland, OH) and then subjected to direct sequencing in sense and antisense directions using an ABI PRISM BigDye™ terminator v3.0 cycle sequencing kit (Applied Biosystems, Foster City, CA) and analyzed on an ABI 3500xL sequencing analyzer (Applied Biosystems).

Multiplex ligation-dependent probe amplification (MLPA) analysis

MLPA analysis was performed using the SALSA MLPA probemix kit P244-B1 (MRC-Holland, Amsterdam, The Netherlands), according to the manufacturer’s instructions. Briefly, 50 ng of genomic DNA obtained from tumor tissues was denatured and hybridized with the SALSA probe-mix, containing probes for each AIP and MEN1 exon and 6 other genes in the 11q13 region. After treatment with Ligase-65 at 54°C for 15 min, PCR amplification was performed using each primer set attached to the kit. The PCR products were run on an ABI 3500 DNA sequencing analyzer (Applied Biosystems) together with Genescan-500LIZ size standard. The data were analyzed with the GeneMapper software (Applied Biosystems). For data normalization, relative peak areas for each probe were calculated as fractions of
the total sum of peak areas in each sample and then the fraction of each peak was divided by the average peak fractions of the corresponding probe in control normal male or female DNA (Promega, Madison, WI).

Construction of expression vectors

cDNA encoding full-length human *AIP* was generated by reverse-transcription PCR from total RNA extracted from 293FT cells. The PCR products were cloned into the expression vector pcDNA™3.1(+) containing a FLAG epitope at the N- or C-terminus. Construction of mutated AIP (Q315X)-expressing vector was carried out by standard PCR-based site-directed mutagenesis.

Cell proliferation assay

293FT cells were cultured in Dulbecco's modified Eagle's medium (WAKO, Tokyo, Japan) supplemented with 10% fetal calf serum and antibiotic reagent (Sigma, St. Louis, MO) in an atmosphere of 5% CO₂ at 37°C. Transfections were carried out using Effectene™ Reagent (Qiagen, Chatsworth, CA) as recommended by the manufacturer. Expression of transfected AIP was confirmed by Western blot analysis with antibodies against FLAG (Sigma) and β-actin (Sigma). Cell proliferation assays were carried out using a Cell Counting Kit-8 (Dojindo Labs, Kumamoto, Japan) according to the manufacturer's protocol. The absorbance at 450 nm of aliquots of cell supernatants was measured using an automatic plate analyzer (Bio-Rad Laboratories, Hercules, CA). Each experiment was performed three times in triplicate. Results are expressed as the mean ± SE. Two-sided Student's t-test was used for statistical comparisons. A *P*-value <0.05 was considered statistically significant.
Results

Immunohistochemical study

The resected tumor specimen showed a chromophobe-type adenoma. Immunohistochemical analysis revealed that the tumor consisted of possible double adenomas, which were not supported by findings in MRI and surgery. One was GH-PRL-secreting adenoma with a perinuclear pattern of cytokeratin. The other constituting a small fraction of the tumor was GH-secreting adenoma with a dot-like pattern of cytokeratin. The two adenomas were clearly separated in sections. Ki-67 labeling indexes were 1.5% and 3.5% in each GH-PRL-secreting and GH-secreting adenoma, respectively.

Nonsense mutation of the AIP gene in an FIPA family

Mutations of the AIP gene were screened for 5 overlapping PCR products with the corresponding primer sets covering the entire coding region and splice junctions. Direct sequencing of leukocyte genomic DNA from the index case (subject III-1 in Figure 2C) revealed a heterozygous nonsense mutation caused by a C to T nucleotide substitution in exon 6 (c.945C>T) of the AIP gene (Figure 2A). This mutation resulted in the replacement of a glutamine codon (CAG) with a stop codon (TAG) at amino acid position 315 (p.Q315X) in the Cα-7h region (Figure 2B). As shown in Figure 2C, the mutation was found in not only affected members (subjects II-2, II-5, and III-1), but also unaffected ones (subjects I-2, III-2, III-4, and III-5). Although her 72-year-old grandmother (I-2) has a mutated AIP, she was asymptomatic with normal serum GH and IGF-1 levels and declined MRI. Subjects II-2, III-4, and III-5, ranging from 14 to 2 years of age, were clinically and biochemically normal. The mutation was negative in subjects I-1, II-1, II-3, II-6, and III-3.
Sequencing of genomic DNA from a GH-secreting adenoma resected from the index case revealed that a peak of the wild-type allele C was lower than the peak in her leukocytes (Figure 3A). To quantify the relative copy number of the AIP gene in the 11q13 region in the pituitary adenoma, we performed MLPA analysis. It showed an approximately 40% decrease of copy numbers of genes located in the 11q13 region. A somatic monoallelic deletion of one copy of these loci, such as MEN1, SNX15, FAM89B, RELA, SART1, BRMS1, AIP, and CCND1, was observed in the pituitary adenoma (Figure 3B).

The mutation nullified the inhibitory effect of AIP on cell proliferation

The p.Q315X AIP protein shows a shortage of 16 amino acid residues at the C-terminus compared with wild-type AIP. To investigate whether the mutation contributes to the development of pituitary adenoma, the effect of the mutation on cell proliferation was examined. 293FT cells were transiently transfected with the expression vector inserted with cDNA encoding mutated AIP (p.Q315X) and wild-type AIP proteins tagged with FLAG peptide at the N- or C-terminus. Each expression was confirmed by Western blot analysis (Figure 4A), indicating that the mutant was not subjected to accelerated degradation of mRNA or protein. As shown in Figure 4B, 293FT cells overexpressing wild-type AIP with FLAG at the C-terminus showed significant inhibition of cell growth compared with cells transduced with the control vector. Overexpression of AIP with FLAG at the N-terminus showed the same result (data not shown). On the other hand, overexpression of p.Q315X AIP with FLAG peptide at the N- or C-terminus did not inhibit cell proliferation, suggesting loss of the property to inhibit cell proliferation.
Discussion

We found an AIP p.Q315X mutation within the Cα-7h at the C-terminus of AIP in a Japanese FIPA family. This nonsense mutation has not been described before in FIPA families or cases with sporadic pituitary adenomas and is the nearest to the C-terminus of the AIP protein among the reported AIP nonsense mutations.

Besides the p.Q315X mutation, a nonsense mutation of p.R304X [7, 14-21] and missense mutations of p.R304Q [15, 17, 20, 22, 23], p.E319K [24], p.R323W [24], p.R325Q [25, 26], and p.G326R [24] at the Cα-7h of AIP have been reported (Table 1). The p.R304 residue of AIP is a hotspot for truncating mutation (c.910C>T) and missense mutation (c.911G>A), owing to it being a CpG site; several families with these mutations have been described. p.R304Q, which was shown to destabilize slightly the PDE4A5 interaction, has been considered to be pathogenic [17]. The missense variants may affect the three-dimensional structure of Cα-7h, which is involved in protein interactions. p.E319K, p.R323W, and p.G326R found in Chinese patients with sporadic pituitary adenomas were considered to be pathogenic by Cai et al. [24]. However, the effect of missense mutations on tumorigenesis is difficult to predict. In vitro studies such as on the effect of an AIP mutant on cell growth will reveal the functional role of the missense variants of AIP. Furthermore, deletion of the last 5 amino acids from the C-terminus of AIP (AIP-325) abolishes AhR-AIP binding, whereas AIP-325 binds HSP90 in vitro, while its effect on cell growth was not shown [27]. Accordingly, p.Q315X mutation should affect the interaction with AhR and may lead to the loss of inhibition of cell growth.

Loss of the wild-type allele on chromosome 11 spanning at least from MEN1 to CCND1 in the GH-secreting adenoma of the present case was observed, which has been reported in other AIP-
MEN1-related pituitary adenomas (Table 2). According to our previous LOH analysis using microsatellite markers, loss of the wild-type allele spanning at least from PYGM to D11S527 in pituitary adenomas with p.V96PfsX32 of AIP [4, 28], from D11S1883 to D11S1889 in the pituitary adenoma with p.P71PfsX46 of MEN1 [4], and from D11S480 to D11S527 in the pituitary adenoma with somatic p.P71PfsX46 mutation of MEN1 [29] was observed. At least a 2 Mb deletion on 11q13 in pituitary adenomas with AIP mutations has also been reported [18, 30-32]. Furthermore, MLPA analysis on pituitary adenomas with AIP mutations showed at least a 2.5 Mb deletion on 11q13 in a Japanese pituitary adenoma (unpublished result) and in 3 out of 4 Chinese pituitary adenomas [24]. Table 2 shows that concomitant deletions of normal AIP and MEN1 alleles were observed in most AIP- or MEN1-related pituitary adenomas. Furthermore, all parathyroid adenomas with deletion at the MEN1 gene showed deletion of the gene AIP [33]. In these adenomas, the possibility of loss of the whole of chromosome 11 as a result of mitotic nondisjunction remains to be elucidated.

A number of single-exon and partial/whole-gene deletions have been detected in the MEN1 and AIP genes at the germ-line level. Large germ-line deletions of 1.5 kb, 5.8 kb, and the whole locus in the AIP gene [17, 34] and 312 bp [35], 1,453 bp [33], approximately 5 kb [36], 29 kb, and 68 kb spanning the whole locus in the MEN1 gene [37] have been reported. Thus, deletion of the normal alleles of MEN1 and AIP at the somatic level in tumors seems to span a larger region than deletion at the germ-line level. However, the underlying molecular mechanism of such large somatic deletions is unknown.

Results of immunohistochemistry showed the possibility of double adenomas consisting of GH-PRL and GH adenomas, however, two tumors in the pituitary were not demonstrated by the brain MRI and operative findings. Although heterozygous Aip mice develop multiple pituitary adenomas [38], double pituitary adenomas have not been reported in human pituitary adenomas with AIP mutation.
MLPA analysis showed the approximately 40% decrease, rather than 50%, of signals at the \(AIP \) loci (Figure 3B), suggesting existence of cells without LOH in the tumor. However, we could not demonstrate whether the cells without LOH were derived from another adenoma with biallelic retention of \(AIP \) or from normal tissue contaminated in the tumor sample.

In conclusion, p.Q315X nonsense mutation in the \(AIP \) gene is a pathogenic variant and the present study reinforces the importance of the C-terminal region of AIP for pituitary tumorigenesis.

Acknowledgement

This work was supported in part by a Grant-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science and Technology of Japan and a grant from the Foundation for Growth Science.

The authors declare no conflicts of interest.
References

are found in a subset of young patients with macroadenomas. Eur J Endocrinol 157: 1-8. doi: 10.1530/EJE-07-0181

37. Fukuuchi A, Nagamura Y, Yaguchi H, Ohkura N, Obara T, Tsukada T (2006) A whole MEN1 gene...

Figure legends

Figure 1. Preoperative coronal T1-weighted enhanced MRI of the index case showed a macroadenoma with a suprasellar extension.

Figure 2. An AIP germ-line mutation found in a family. A. A nonsense mutation, c.945C>T (p.Q315X), in exon 6 of the AIP gene was found in genomic DNA extracted from a blood sample. B. Schematic description of the position of the nonsense mutation in AIP. C. A pedigree of the family with pituitary adenomas. The index case is indicated by an arrow. Family members are indicated by generation (Roman numerals) and individuals (Arabic numerals). Individuals are represented as male (squares) and female (circles). Filled symbols denote patients with pituitary adenoma. Sequencing of the AIP gene showed the presence of a mutation (mut). wt, wild type; nd, not determined.

Figure 3. Loss of wild-type allele of the AIP in a pituitary adenoma. A. The wild-type allele (C) at c.915 in a pituitary tumor showed reduced signal compared with a peak in her leukocytes. B. MLPA analysis in genomic DNA extracted from a tumor sample. Probe signals from exons 1 to 6 of the AIP gene were significantly decreased, indicating the presence of deletion across those exons. Furthermore, deletion of other loci on 11q13 was also observed in the tumor.

Figure 4. Effect of overexpression of mutated AIP (p.Q315X) on cell proliferation. A. A representative image of Western blotting of 293FT cell lysates overexpressing each indicated plasmid vector. β-actin was used as an internal control. B. The proliferation of cultured cells transiently
transfected with each indicated vector was assayed. The graph is representative of three independent experiments. Each value represents the mean ± SE (n=3). The asterisk indicates significant difference ($P<0.05$) compared with data from cells overexpressing the control vector pcDNA$^\text{TM}3.1(+)$.
<table>
<thead>
<tr>
<th>Mutations</th>
<th>Identified in familial, sporadic or both</th>
<th>Reduced ability of mutant AIP to inhibit cell growth</th>
</tr>
</thead>
<tbody>
<tr>
<td>p.R304X</td>
<td>both</td>
<td>observed</td>
</tr>
<tr>
<td>p.R304Q</td>
<td>both</td>
<td>NA</td>
</tr>
<tr>
<td>p.Q315X</td>
<td>familial</td>
<td>observed</td>
</tr>
<tr>
<td>p.E319K</td>
<td>sporadic, GH-secreting adenoma</td>
<td>NA</td>
</tr>
<tr>
<td>p.R323W</td>
<td>sporadic, nonfunctioning adenoma</td>
<td>NA</td>
</tr>
<tr>
<td>p.R325Q</td>
<td>both</td>
<td>NA</td>
</tr>
<tr>
<td>p.G326R</td>
<td>sporadic, GH-secreting adenoma</td>
<td>NA</td>
</tr>
</tbody>
</table>

NA, not analyzed
Table 2. Region of allelic loss on 11q12.1-13.5 in AIP- or MEN1-related pituitary adenomas

<table>
<thead>
<tr>
<th>Markers</th>
<th>Genomic position</th>
<th>Pituitary adenoma</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Chr11-64-A-C110</td>
<td>AIP</td>
</tr>
<tr>
<td>D11S956</td>
<td>58.49</td>
<td>NA</td>
</tr>
<tr>
<td>D11S4076</td>
<td>61.12</td>
<td>NA</td>
</tr>
<tr>
<td>D11S1765</td>
<td>62.47</td>
<td>NA</td>
</tr>
<tr>
<td>D11S1883</td>
<td>63.13</td>
<td>NO</td>
</tr>
<tr>
<td>D11S480</td>
<td>63.06</td>
<td>NA</td>
</tr>
<tr>
<td>chr11-64-A-C110</td>
<td>64.26</td>
<td>NA</td>
</tr>
<tr>
<td>pygm</td>
<td>64.27</td>
<td>NA</td>
</tr>
<tr>
<td>men1</td>
<td>64.57</td>
<td>NA</td>
</tr>
<tr>
<td>snx15</td>
<td>64.79</td>
<td>NA</td>
</tr>
<tr>
<td>chr11-64-TG-110</td>
<td>64.97</td>
<td>NA</td>
</tr>
<tr>
<td>D11S4941</td>
<td>65.02</td>
<td>NA</td>
</tr>
<tr>
<td>D11S4191</td>
<td>65.02</td>
<td>NA</td>
</tr>
<tr>
<td>fam90b</td>
<td>65.34</td>
<td>NA</td>
</tr>
<tr>
<td>rela</td>
<td>65.41</td>
<td>NA</td>
</tr>
<tr>
<td>sart1</td>
<td>65.73</td>
<td>NA</td>
</tr>
<tr>
<td>D11S913</td>
<td>65.9</td>
<td>NA</td>
</tr>
<tr>
<td>BRS51</td>
<td>66.11</td>
<td>NO</td>
</tr>
<tr>
<td>D11S1249</td>
<td>67.12</td>
<td>NA</td>
</tr>
<tr>
<td>aip</td>
<td>67.25</td>
<td>NA</td>
</tr>
<tr>
<td>D11S1889</td>
<td>67.31</td>
<td>NA</td>
</tr>
<tr>
<td>D11S987</td>
<td>68.1</td>
<td>NA</td>
</tr>
<tr>
<td>D11S1337</td>
<td>68.14</td>
<td>NA</td>
</tr>
<tr>
<td>D11S4905</td>
<td>68.97</td>
<td>NA</td>
</tr>
<tr>
<td>ccnd1</td>
<td>69.46</td>
<td>NA</td>
</tr>
<tr>
<td>D11S4316</td>
<td>71.81</td>
<td>NA</td>
</tr>
<tr>
<td>D11S534</td>
<td>75.19</td>
<td>NA</td>
</tr>
<tr>
<td>D11S527</td>
<td>76.42</td>
<td>NA</td>
</tr>
<tr>
<td>Germ-line mutation</td>
<td></td>
<td>AIP: p.V96PfsX32</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AIP: p.C258Y</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AIP: p.E24X</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AIP: p.R81X</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AIP: p.R304X</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AIP: p.R31X</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AIP: p.D36E</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AIP: p.D36E/VUS</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AIP: p.Q315X</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AIP: p.L251P</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AIP: p.T719x46</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AIP: p.P256NPx14</td>
</tr>
</tbody>
</table>

Regions of allelic loss are shown in gray. NA, not analyzed; NI, not informative; NO: no LOH; VUS, variant of unknown significance.

Figure 2

A. Leukocyte DNA sequence showing mutations at positions 314, 315, and 316. The sequence reads C G G C A G A A G T.

B. Diagram showing the PPlase like domain with Q315X mutation.

C. Pedigree diagram showing the inheritance of mutations. Individual I-1 is wild type (wt), I-2 is mutated (mut), II-1 is wt, II-2 is mut, II-3 is wt, II-4 is nd, III-1 is mut.
Figure 3
Figure 4

A

1: pcDNA3.1
2: AIP (WT)-pcDNA3.1(CFLAG)
3: AIP (Q315X)-pcDNA3.1(CFLAG)
4: AIP (Q315X)-pcDNA3.1(NFLAG)

B

- Vector
- AIP (WT)-CFLAG
- AIP (Q315X)-CFLAG
- AIP (Q315X)-NFLAG

OD 450 nm

Day(s)

* indicates statistical significance.