論文の要約

報告番号 甲・乙 第423号

氏名 乾志帆子

学位論文題目 Volume magnetic susceptibility design and hardness of Au-Ta alloys and Au-Nb alloys for MRI-compatible biomedical applications

【目的】
磁気共鳴画像検査（MRI）の際，体内に金属製デバイスが留置されていると，生体組織（体積磁化率，χv ≈ -9×10⁵）との磁化率差により磁化率アーチファクトが生じ，診断に支障をきたす。その回避には，χv ≈ -9×10⁵である金属製のデバイスが必要である。本研究では，χv が負のAuと，生体為害性の低いTa, Nbで試作したAu-Ta合金，Au-Nb合金のχvと硬さを評価するとともに，合金の磁化率設計手法を検討した。

【材料および方法】
異なる組成のAu-γTa合金（γ=10-58mass%，以下同じ），Au-γNb合金（γ=4-19%）を溶製後，300℃で圧延して板材を作製し，1000℃で焼純および均質化を行った。相構成の影響を調べるため，Au-Ta合金は600℃で，Au-Nb合金は800℃で時効処理を行った。χvは磁気天秤で，相構成はX線回折法（XRD）で評価し，ピッカース硬度（Hv）を測定した。

【結果と考察】
均質化後のAu-Ta合金のχvはTa濃度増分に比例して増加し，15Ta付近で目標値を示した。時効処理によりAu-15Ta合金中にβ相（Au₅Ta₅，磁化率約61×10⁵）を析出させてもχv，Hv共に変化せず，Hvは約120と低かった。相構成の制御でχv制御が制御できず，目標磁化率を示す組成のHvが低い点から，Au-Ta合金は実用化困難と考えられた。

均質化後のAu-Nb合金のχvは，12NbまでではNb濃度増分に比例して増加し，それ以上ではγ相（Au₅Nb，χv ≈ -23×10⁵）の析出により減少した。また，Nb濃度増加にともないHvは増加し，時効処理によりγ相を増加させるとHvはさらに増加した。以上より，Au-Nb合金では，Hv増加のためにNb濃度を増加させるとχvが目標値を超える可能性があるため，時効処理により目標値まで減少させることが可能であり，同時にHvをさらに増加させることができた。試作した範囲では，Au-12Nb合金が時効処理後に目標磁化率と，純Tiより高い約220HVを同時に示し，また熱処方が可能である点からも実用化に適していると期待できた。

上記2合金では，構成相の体積比およびχvと合金全体のχvとの間に複合則が成立しており，合金の磁化率設計の指針となりうることがわかった。