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SUMMARY Some qualitative ‘properties of an inductively
coupled circuit containing two Josephson junction elements with
a dc source are investigated. The system is described by a four-
dimensional autonomous differential equation. However, the
phase space can be regarded as S! x R® because the system has
a periodicity for the invariant transformation. In this paper, we
study the properties of periodic solutions winding around S! as
a bifurcation problem. Firstly, we analyze equilibria in this sys-
tem. The bifurcation diagram of equilibria and its topological
classification are given. Secondly, the bifurcation diagram of the
periodic solutions winding around S* are calculated by using
a suitable Poincaré mapping, and some properties of periodic
solutions are discussed. From these analyses, we clarify that a
periodic solution so-called “vaterpillar solution™[1] is observed
when the two Josephson junction circuits are weakly coupled.

key words: Josephson junction, bifurcation, caterpillar solution

1. Introduction

The motivation of this research is to clarify the mecha-
nism of physical rotational systems; damped pendulum,
phase-locked loop, robot arms, and so on. In such sys-
tems, there are various nonlinear phenomena due to the
trigonometric characteristics of the state variable.

Since current-flux characteristics of a Josephson
junction (JJ) element is given by a sinusoidal curve, a
circuit containing some JJ elements and other linear el-
ements can be regarded as rotational dynamical system.
For example, a parallel circuit of a JJ element and a lin-
ear inductor is equivalent to a damped pendulum with
-elastic restoring force. We found previously that there
are many types of heteroclinic orbits in the circuit[2].

In this paper, we treat an inductively coupled cir-
cuit containing two JJ elements with a dc source. The
system is described by four-dimensional autonomous
differential equation, however, the phase space can be
regarded as S* x R® because the system has a periodicity
for the invariant transformation. We study the proper-
ties of periodic solutions winding around S as a bifur-
cation problem.

Firstly, we analyze equilibria in this system. The
bifurcation diagram of equilibria and its topological
classification are given. Secondly, the bifurcation dia-
grams of the periodic solutions winding around S* are
calculated by using a suitable Poincaré mapping, and
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properties of periodic solutions are discussed. In partic-
ular, we clarify that a periodic solution so-called “cater-
pillar solution”[1] is observed when the two Josephson
junction circuits are weakly coupled.

2. The Circuit Model

Figure 1 shows an inductively coupled circuit con-
taining two JJ elements with the same characteristics.
This circuit is equivalent to a SQUID (superconducting
quantum interference device) containing two junctions.
The characteristics of a JJ element are assumed as:

iJ:ICSinqéi, %:%Uz i:1,2. (1)
where, [, e, h are the critical current of a JJ element,
the charge of electron, and Planck’s constant, respec-
tively. ¢ is the phase difference of the wave function at
the center of the junction plane.

To normalize circuit equations, we introduce the
following new parameters and variables:
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where, ¢« = 1,2. For simplicity, we assume that G is
a linear conductance. If we rewrite 7 as £, we obtain
the following four-dimensional autonomous differential
equations:
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Fig. 1  The circuit with two Josephson junction elements cou-
pled by inductance L.
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Fig.2  Physical interpretation of the system (3). Both terminals
of the joint are free.
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The system (3) is equivalent to a paraliel pendula
connected by an elastic torsional joint with the grav-
ity force. Therefore, k is interpreted as a coefficient of
damping, ¢ as an elasticity constant, and By as an ex-
ternal torque. See Fig. 2.

= —~ky —sinz; — ¢(z1 — z2) + By
3
= Y2

= —k}yg - SiIl.’IJg - 6(132 — 1111).

3. Properties of the System
3.1 Invariance

Equations (3) are invariant for the transformation:

(1,91, 22, y2) — (@1 + 207,91, 22 + 207, y2), (4)

where, n is an integer. Note that x;, and z> cannot
be taken modulo 27 individually, but z; + z; can be.
Hence state space of this system can be considered as
51 x R®. To visualize a circle S in z1-z, plane, a new
coordinate (u,v) is introduced as follows:

uz%(ml + z2), v:%(wl—mz). (5)

From Egs. (4) and (5), we can find S* as the semi-open
interval [0,27) on w without information of y; and ys.
This transformation is useful to analyze periodic solu-
tions discussed in Sect. 5

3.2 Boundedness
The mechanical energy of Egs. (3) is follows:

E = —i(yf +y2) — cosxy — cos T2

1
—~Boz1 + §c(:c1 — z5)%. (6)

Any solution of Egs. (3) is bounded because dF/dt
is negative for £k > 0. This also shows that there is
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Fig. 3 The bifurcation diagram of equilibria of Egs. (3).
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Fig.4  Illustration of bifurcation diagram Fig. 3. Any sequence

means [#{00}, #{10}, #{20}].

no periodic solution homotopic to an equilibrium [3].
Thus, there exists a finite set M in the R%, and any orbit
started from arbitrary initial condition enters to M un-
til infinite time eventually, and it is captured by a stable
equilibrium, or a solution winding around cylinder.

4. Classification of Equilibria

Equilibria of (3) are calculated by solving equations:
flza) = sin(% sinzs 4+ z2) +sinzg = By (7
T1 = T + %sinmg. (8)

Note that f(z3) is a periodic function with period 2.
Thus tangent (saddle-node) bifurcations for equilibria
can be calculated at df(z;)/dze = 0in 0 £ z < 27.
Figure 3 shows the bifurcation diagram of equilibria.

Topological properties of an equilibrium is deter-
mined by roots of the characteristic equation corre-
sponding to the Jacobi matrix with respect to Egs. (3).
Using Routh-like criterion of stabilities, the topologi-
cal classification of equilibria is achieved in Bgy-c plane.
Figure 4 is illustration of Fig. 3 for ¢ < 0.5 with topo-
logical classification of equilibria.
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The following properties are found in Figs.3 and

1. In each region surrounded by bifurcation curves,
the number of equilibria is invariant.

2. For k > 0, we have only three types of equi-
libria: gO{completely stable), 1 O(1-dimensionally
unstable), 20O(2-dimensionally unstable). Other
types which are possible combinations; sO(3-
dimensionally unstable) and 4O (completely unsta-
ble), can not exist in the system. ;0 means that
either of the pendula is in an unstable equilibrium.
In Fig.4, we indicate the number of each type of
equilibria by [#{00}, #{,0},#{20}]. #(} indi-

cates the number of elements contained in the set

3. When parameters vary across any bifurcation
curves, #{10} changes by 1, and either of #{,0}
and #{oO} changes by 1.

4. By = 2.0 is an asymptotic line for bifurcation curve
labeled by A, because Eq. (7) tends to 2sinx2 = By
as ¢ — oo. In the circuit model, ¢ — oo means
L — 0. Then this is reduced to the circuit con-
taining a single JJ element with dc source or the
damped pendulum with constant torque.

5. When any parameter moves from [1,1,0] region to
[0,0,0] region, all equilibria are disappeared. From
the boundedness discussed in Sect. 3.2, we can ob-
serve that the orbit captured by this equilibrium
begins to move and tends asymptotically toward a
limit cycle (periodic solution winding around S*').

6. As ¢ — 0, many equilibria appear. Accordingly,
orbits started from any initial state tend to behave
independently. Just at ¢ = 0, the equilibrium con-
verges to (z1,x2) = (Sin"'By,0), then the system
(3) is split into two completely independent second-
order system (z1,y1), (Z2,¥y2)-

5. Bifurcation of Periodic Solutions

In this section, we show the bifurcation diagram to ex-
plain properties of periodic solutions of Egs. (3).

5.1 Poincaré Mapping

In order to discuss the properties of periodic solutions
and their bifurcations, we define the following Poincaré

mapping.
For simplicity, let Egs. (3) be rewritten as:
dex
= = A 9
= @) ©)

where, © = {z1,y1,22,¥%2}, A = {k,¢, Bo}. We denoted
also the solution of Eq.(9) with the initial value x( at
t =0 as:
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z(t) = p(t,20), x(0) = (0, xzq) = xo. (10)
Suppose that we have a periodic solution as:
o(t) = (L, ). (1)

We can choose a hyperplane II through & € R* trans-
verse to the solution of Eq.(9). For each point € U,
a small neighborhood of & in II, the solution (¢, x)
will intersect II after a finite time 7, i.e.,

o(r@) =, €Il (12)

Hence we define a mapping T called a Poincaré map-
ping from U into II as:

T:II>U — O

z — x =)

(13)

Note that the return time 7 depends on the initial value
x € U. For Egs. (3), we can consider 1l as:

II={xecR": z +z,=0} (14)
from the property of the transformation (4), however,
I={xcR": 2 =0} (15)

is chosen for the convenience of taking modulo 27 for
z1 and x. Thus, we can calculate the bifurcation values
of the parameters using by 7y and its derivative DT).
In the following, system parameter & is fixed at 0.2.

5.2 Bifurcation Diagram

Figure 5 shows a bifurcation diagram of periodic solu-
tions. For simplicity, we studied ¢ > 0.2 mainly because
this plane is almost covered by [1, 1, 0] region containing
two equilibria; a sink and a saddle.

We observed two types of bifurcation in this system;
local bifurcations and global bifurcations. The former
are tangent bifurcation and period doubling bifurcation
for periodic solutions, and the latter is the homoclinic
bifurcation for the trajectory.

The following properties are found in Fig. 5.

I. In the white region, there exists a periodic solu-

Fig. 5 Bifurcation diagram of periodic solutions. k = 0.2.
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Fig. 6 Magnification of Fig. 5.

tion corresponding to a fixed point of T. This
synchronous solution has constant and positive ve-
locities with a small phase shift. See Fig.7 (b).

2. I' shaping the dark shaded island is a period dou-
bling bifurcation curve for the fixed point.

3. G? indicating the tangent bifurcation curve for the
2-periodic point is connected to I' curve. See
Fig.6. The 2-periodic point bifurcated from the
upper portion of I' disappears by the lower por-
tion of G2.

4. G* is the tangent bifurcation curve for the fixed
points. In the region surrounded by this curve,
there exist two stable fixed points.

5. The line labeled by ‘H.O.” indicates homoclinic or-
bit meaning global bifurcation, i.e., a periodic or-
bit and a separatrix loop for ;O coalesce at this
parameter. Thus there is no periodic solution in
hatched region. ‘

5.3 The Caterpillar Solution

We observe a periodic solution called “caterpillar so-
lution” defined by Levi[1] as a periodic points for 7.
We recall the definition of the caterpillar solution from
Ref.[1]:
Definition: (Levi) A periodic solution ¢ =
(<p,<p,¢,¢) of Egs.(3) is called a caterpillar solution
if its period consists of two intervals during the first of
which ¢ increases by 2mm + Ry, m being an integer and
0 < Ry < m/2, while ¢ changes by less than 7/2; dur-
ing the second time interval ¢ and ¢ exchange roles: ¥
increases by 2mm + R, and ¢ changes by less than /2.
This definition gives only the quantity correspond-
ing to its wave form, however, to calculate accurate re-
gion satisfying the definition is not our goal. We assert
that bifurcations for the periodic solutions are the es-
sential reason why the caterpillar solution is involved.
In practical, if the distance between upper and lower
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Fig. 7  Time response of periodic solution with fixed point for
Ty. (a) States, (b) Velocities, (¢) Cylindrical phase portrait. A
circled point indicate a periodic point. ¢ = 1.2, Bp = 1.0, 7 =
2.503.

G? curves is separated sufficiently, then the wave form
of 2-periodic points bifurcated by I' is distorted as ¢
tends to 0. See property 6 in Sect. 4

Figure 8 shows a caterpillar solution. 71 and 72
are periods for Poincaré mapping. Note that velocities
y1 and yz can be observed as the almost out-of-phase
synchronous motions. To obtain another explanation
for caterpillar solutions, we observe the motion of or-
bits in x;-z2 plane. Figure 9 illustrates the coordinate
introduced by Eq. (5) containing a circular space S* on
u. The period of the orbit corresponds to the number of
black circles indicating intersectional points of the orbit
and v-axis using by Poincaré section (14). In this figure,
two orbits with 2-periodic points are drawn. (o) is an or-
bit whose periodic points are located nearly on v. This
orbit is just branched by I' in Fig.5 and runs almost
parallel to the coordinate u. The orbit (&) considered as
a caterpillar solution whose parameters are equal to the
solution drawn in Fig.8 and which is transmuted from
(@ as c decreases. It is clear that the caterpillar solution
moves like a step function for the coordinate 1 or z,.

In Fig. 6, the periodic solution bifurcated by G*
also can be regarded as a caterpillar solution. See
Fig.10. In ¢ < 0.5, therefore, we conclude that bifur-
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Fig. 8  Time response of 2-periodic caterpillar solution. (a)
States, (b) Velocities, (¢) Cylindrical phase portrait. A circled
point indicates a periodic point. ¢ = 0.48, By = 1.36, 7 =
5.056, ™ = 1.5217.
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Fig. 9 Two types of 2-periodic orbits in z1-z2 plane.

cations for a periodic solution and small value of ¢ are
closely related to the generation of caterpillar solutions.

5.4 Other Solutions

There are so many bifurcation curves and periodic so-
lutions in the region surrounded by I', G! and GZ.
Some of these periodic solutions satisfy the condition
of caterpillar solution.

Figure 11 shows a chaotic solution caused by a pe-
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Fig. 10  Time response of periodic solutions with fixed point.
c=0.4, Bog=1.0, 7 =7.0195.
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Chaotic solution. ¢ = 0.48, By = 0.86.

Fig. 11

riod doubling cascade, but this solution does not satisfy
the definition of the caterpillar solution.

6. Concluding Remarks

In this paper, properties for equilibria and periodic so-
lutions observed in the inductively coupled JJ circuit are
investigated and their bifurcation diagram are obtained.
Firstly, the parameter region in which equilibria exist
is given. We clarify that the topological properties of
equilibria using by the bifurcation diagram and suitable
classifications. Secondly, the bifurcation diagram of pe-
riodic solutions winding around S are obtained. This
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explains some properties of periodic solutions. Partic-
ularly, it is clear that the caterpillar solution are caused
by a small parameter ¢ and bifurcations.

Further study is needed to obtain a detailed bifur-
cation diagram for ¢ < 0.2. Moreover, investigations of
the properties of the circuit in non-autonomous system
and a circuit with JJ elements coupled by a resistor are
future objectives of research.
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