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Bifurcation Phenomena in the Josephson Junction
Circuit Coupled by a Resistor
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SUMMARY  Bifurcation phenomena observed in a circuit
containing two Josephson junctions coupled by a resistor are in-
vestigated. This circuit model has a mechanical analogue: Two
damped pendula linked by a clutch exchanging kinetic energy of
each pendulum. In this paper, firstly we study equilibria of the
system. Bifurcations and topological properties of the equilib-
ria are clarified. Secondly we analyze periodic solutions in the
system by using suitable Poincaré mapping and obtain a bifur-
cation diagram. There are two types of limit cycles distinguished
by whether the motion is in S* x R® or 7% x R?, since at most two
cyclic coordinates are included in the state space. There is a typ-
ical structure of tangent bifurcation for 2-periodic solutions with
a cusp point. We found chaotic orbits via the period-doubling
cascade, and a long-period stepwise orbit.

key words: Josephson junction, pendulum, frictional clutch, bi-
furcation, chaos

1. Introduction

A circuit containing a Josephson junction (abbr. JJ) el-
ement composes a singular state space since its differen-
tial equation includes a sinusoidal function of the state
variable. From this strong nonlinearity the circuit con-
taining JJ elements exhibit a rich variety of nonlinear
phenomena. We have been investigated the phenomena
observed in JJ circuits; many heteroclinic orbits in a cir-
cuit containing a JJ element and an linear inductor with
a d.c. source [ 3], a strange periodic orbit called caterpil-
lar solution in an inductively coupled JJ circuit[4]. It
is also noteworthy that the equation of a JJ element can
be interpreted as a pendulum. Thus it might be possi-
ble that a mechanical system with rotational variables
is realized as a circuit containing JJ elements.

In this paper, we treat the resistively coupled cir-
cuit with two JJ elements. The mechanical analog of
this system is represented by two pendula connected by
a friction clutch. Each of the angular velocities affects
interactively to the other pendulum through the clutch.

To analyze the bifurcation phenomena of the sys-
tem, firstly we consider an invariant relationship and
classify qualitative properties of equilibria in the sys-
tem Secondly we investigate bifurcation of periodic so-
lutions by using the Poincaré mapping and obtain bi-
furcation diagrams. We clarify that there are two types
of limit cycles which distinguished by whether the mo-
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tion is in S* x R® or T? x R?, since at most two cyclic
coordinates are included in the state space. The former
is a periodic solution and the latter is a quasi-periodic
solution. We also clarify a typical structure of tangent
bifurcation for 2-periodic solutions with a cusp point,
chaotic orbits via the period-doubling cascade, and a
long-period stepwise orbit.

Since this model can be considered as a simplest
model which demonstrates the interactions between a
rotational-energy supply and a load in mechanical sys-
tems, it is important to clarify the principal bifurca-
tion structures of the periodic solutions observed in the
model. It is interesting that the chaotic vibration is ob-
served when the pendula are not perfectly in the clutch.

2. The JJ Circuit Coupled by a Resistor

Figure 1 shows the JJ circuit coupled by a resistor. It is
obtained from the circuit discussed in Ref.[4] by using
R instead of L as a coupling device. Assume that the
current-voltage characteristic of a JJ element is described
as:

where, I, e, /i are a threshold current associated with
the tunnelling current, the electron charge and Dirac’s
constant, respectively. ¢ is the phase difference of the
wave function at the center of the junction plane. If
¢ 1is considered as magnetic flux, then the JJ element
behaves as an nonlinear inductor which is controlled
by the magnetic flux. Usually a nonlinear conductance
is assumed for G. We treat it as a linear one for the
sake of mechanical interpretation, global behavior of
the system is, however, not changed by this assumption.

To normalize the equation, we define the following
variables and parameters:

iy = Igsing;,

ig R
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Fig. 1  The JJ circuit coupled by a resistor.
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where 7 = 1,2. By rewriting 7 as ¢, we have a four-
dimensional autonomous differential equation:

dl?l
dt
dy
dt

dl‘g .
e Y2

=y1

= —ky1 —sinz; — c(y1 — y2) + Bo

dya

dt

System (3) can be regarded as parallel pendula con-
nected by a friction clutch. & is interpreted as the coeffi-
cient of damping, ¢ as frictional transmission constant,
and By as an input torque, see Fig.2. The input is
directly applied to the a primary pendulum P;. By the
clutch not only a part of kinetic energy of P; is transmit-
ted to a secondary pendulum P, but also both kinetic
energy of P; and P, affect each other. Thus ¢ — 0 (let
out the clutch) means that two pendula are independent,
i.e., the input drives only P, and then P, behaves as a
simple pendulum without an input, at last rests in the
origin. Otherwise, ¢ — oo (let in the clutch) means that
the P; and P, can be regarded as a single pendulum
because both pendula are connected equivalently by a
rigid rod.

There exists an invariant transformation in system
(3):

T : (21,91, T2,y2) — (z1 £ 2n7,y1, 22 &+ 2mm, y2)

C)

= —kyy —sinzy — c(y2 — y1). (3)

gravity

l

Fig. 2  Frictionally coupled pendula model.
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where, n, m are integers. Equation (4) suggests that xz;
and z can be added integral multiples of 27 indepen-
dently, i.e., there exist two cyclic coordinates S x S* =
T? in the system. It should be noted that the system is
very different from the case of Ref. [4] upon two points:
1) the state space can include 72, say, a coupling in-
ductor constructs S* x R®, and a coupling resistor can
construct not only S' x R? but also 72 x R?. 2) there
are very few equilibria in this system at all values of the
parameters. We consider the latter point in the follow-
ing section.

3. Equilibria in the System

Equilibria of the system are obtained from Eq. (3):

Sin_lBo
= { - Sin'B,, 10
0
Tg = { ) y2 =0 ()

where, 1,z are in [0,27). So we obtain a schematic
diagram of the torus phase space for equilibria in zy-z5.
See Fig. 3.

In the system, there exist only three types of equilib-
ria and at most four equilibria in the fixed parameters.
Figure 3 also shows directions of solution flow with re-
spect to each the equilibria on z1~xo plane and Table 1
indicate the classification for stability of the equilibria.
In Fig. 3, it is noted that 5O is regarded that each of the
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Fig. 3  Phase portrait of the system (3) in torus.

Table 1  Classification of equilibria in Eq. (3).
symbol | notation topological property |
® 00 completely stable
(3} 10 1-dimensionally unstable
Q 10 1-dimensionally unstable
O 20 2-dimensionally unstable
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pendula is on an unstable equilibrium (saddle point)
simultaneously. Note also that 30 does not exist in this
system.

The condition of the parameter region in which
there exist equilibria is |By| < 1. By = 1 is tangent bi-
furcation value of equilibria. In the other value of By,
there exists no equilibrium and at least one limit cycle
since the system is dissipative.

4. Bifurcation of Periodic Solutions

Equations (3) are rewritten as:

dx
= i) ©)

where, € = (z1,v1,Z2,y2). Suppose that the solution
of Eq. (6) is denoted by:

x(t) = p(t, zo),

We should notice that there is no periodic solu-
tion in R* if k # 0. The periodic solution we called
in this paper is a modified periodic solution defined in
Ref.[5]:

xo = z(0). (7

z1(to) = 71(0) + 27f

y1(to) = 41(0)

z2(to) = z2(0) + 2mm

ya(to) = y2(0) ®)

where t5 > 0 is a period and £ = 1,m = 0 are integers.
This definition means that P, must rotate to generate a
periodic solution. We classify periodic solutions with
respect to their behavior of the motions as follows:

1. (Type-1): P; is winding around the circle S' =
{0 < z; < 27}, but P is rolling about a constant
angular. Thus the motion is in S* x R>.

2. (Type-II): Each of the pendula is winding around
the circle St x S* = T2, The whole system behaves
as quasi-periodic motion in 72 x R?.

Type-I solution evolves to chaos by changing the system
parameters. In this paper, we mainly treat the bifurca-
tion of this type of solutions. In the following we fix
the system parameter k as 0.2.

To calculate bifurcation parameter we define the
Poincaré mapping 7" and its section II as:

T:1II — 1II
z — {pto,x) | z1 — 2m,
if x5 227 then =z — 27
if 2 <27 then } ©)

where to is the time of first return of the initial state
x to II. Because all types of periodic solutions have at
least an S for z1, we choose the Poincaré section as:
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O={xeS'xR*CR*:z, =0} (10)

Thereby we can calculate the bifurcation values of the
parameters by Newton’s method using 7" and its deriva-
tives.

Figure 4 shows bifurcation diagram of the system
(3) in Bg-c plane. The following properties are found:

1. I*, G%, i = 1,2 indicate period-doubling and tan-
gent bifurcation of the Type-I i-periodic solution,
respectively. In the shaded region edged by I' and
G, there exists stable periodic solution with the
fixed point, z; winds around S' and z, tumbles
around a constant angle, see Figs.5(a-1), (a-2).
One of 2-periodic orbits bifurcated by I' is shown
in Figs. 5 (b-1), (b-2).

2. Every solution bifurcated by I? evolves to chaos
via period-doubling cascade. Figures 5 (c-1), (c-2)
show the a chaotic orbit and the Poincaré mapping
of the chaotic attractor.

3. In whole parameters, there exist quasi-periodic
(Type-II) solutions. Figures 5(d-1) and (d-2) show
the orbit and an invariant closed curve of the
Poincaré mapping on the cylindrical phase space.
As ¢ increases, the solution bind to a synchronized
orbit.

4. I? curves are overhung each other by G? with a
cusp point. In this region, we can observe coexis-
tent 2-periodic and higher-periodic solutions. This
is a typical structure of the higher-periodic bifur-
cation set. ‘

5. The end-points of all bifurcation curves are caused
by touching the homoclinic orbits. Also the chaotic
orbits are frequently disappeared by meeting this
global bifurcation and attracted into Type-II or-
bits.

6. The equilibrium is disappeared in By = 1.0. Just
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Fig. 4 Bifurcation diagram for periodic solutions.
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(b-2) (c-2)
Fig. 5 Phase portraits. (a-1), (a-2): periodic orbit (Type I) with a fixed point. Bp = 1.3,
¢ = 0.7. (b-1), (b-2): 2-periodic orbit bifurcated by I, By = 0.97, ¢ = 0.66. (c-1), (c-
2): Chaotic orbit via a period-doubling cascade and its Poincaré mapping By = 1.12,
¢ = 0.73. (d-1), (d-2): Quasi-periodic (Type II) orbit, (d-2) shows the Poincare mapping
of xr2, Bo = 0.7, c=0.7.
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Fig. 6 Periodic orbit with a fixed point near the disappearance of the equilibria,
Bg=c=1.0.
at this parameter, the orbit stopped at a stable equi- 5. Conclusions
librium begins to start and approaches the neigh-
borhood of the point in which the equilibrium ex- Some properties of system (3) are investigated. The re-
ists originally. This orbit shown in Fig. 6 resembles sults of this analysis compared with Ref.[4] suggests
Shil’nikov type homoclinic orbit, but this orbit is that the coupling element governs the structure of phase
only a periodic solution because the manifolds of space without changing its order of the circuit equa-
saddle-type equilibrium is also disappeared. It is tions. In the mechanical analog, we observe the chaotic
interesting that the solution has a long period and vibrations in S! x R? at typical value of the parameter,
a stepwise response. i.e., they are caused when the pendula are not perfectly
) ) o ) . in the clutch. Our future researches are as follows:
7. Figure 7 illustrates the schematic bifurcation dia-
gram. There exist chaotic orbits in the dark shaded e to investigate the bifurcation diagram for higher-
region, however all of them are disappeared by ho- periodic solutions in detail. In case that & is small,

moclinic orbits by changing the parameter toward it might have more complex phenomena.
the center of the island edged by I%. It is empha-
sized that a simple mechanical transmission can be-
have chaotically by controlling the clutch.

e to obtain the homoclinic orbits in this system. Par-
ticularly the relationship with disappearance of
chaotic attractor is interesting.
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homoclinic orbits
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Fig. 7  Schematic diagram of bifurcations. The sheets shown in the area edged by G2

indicate the manifolds of 2-periodic orbits.
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