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Wave Generators
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SUMMARY In this article, we propose a square wave gener-
ator whose switching threshold values are switched by external
inputs. This circuit is designed to simulate the synchronized lu-
minescence of coupled fireflies. We investigate the behavior of the
solutions in two coupled oscillators. The dynamics are demon-
strated by a linear autonomous equation piecewisely, therefore, a
one-dimensional return map is derived. We also prove the exis-
tence of stable in-phase synchronization in the coupled oscillator
by using the return map, and we show the existence of regions
of periodic solutions within a parameter space. Some theoretical
results are confirmed by laboratory measurements.

key words: square wave generator, piecewise linear system, syn-
chronization, periodic solution, hysteresis

1. Introduction

Cooperative behavior of living organisms can be re-
garded as one of nonlinear phenomena — synchroniza-
tion of biological oscillations. As is well known, chirp-
ing crickets in the fields and luminescence of numerous
fireflies around the riverside are typical biological syn-
chronization in the natural world[1]. It is important
to clarify these cooperative behavior in mathematical
point of view.

We develop an electric firefly (abbr. EFF) by using
a square wave generator. The EFF circuit has a photo-
transistor and a photo-diode as input/output devices,
so that a coupled EFF circuit is easily realized. Its dy-
namics is described by a simple mathematical model:
four linear differential equations whose parameters are
switched with threshold values. The system forms a
switched dynamical system, thus behavior of the system
looks like motion of billiard ball with moving rectan-
gular borders.

There are some studies of similar switched dynam-
ical systems. For example, Ref.[2] investigated neural
type oscillator. He found out the existence of chaotic
and fractal responses in the system by using an ana-
lytical method. In the following paper[3], Kohari et
al. analyzed a hysteresis oscillator whose thresholds are
varied periodically was investigated with a rigorous way.
They showed a bifurcation diagram of the system and
suggested the existence of a cantor-like set indicating
hysteresis characteristics for some dominant periodic so-
lutions.

Manuscript received September 8, 1997.

Manuscript revised November 20, 1997.

"The authors are with the Faculty of Engineering,
Tokushima University, Tokushima-shi, 770-8506 Japan.

The coupld EFF circuits has more complicate con-
ditions than the models treated above references. The
switching conditions are different form. To analyze
properties of the dynamics, we derive a one-dimensional
return map explicitly. When two equivalent EFF cir-
cuits are coupled, there exists in-phase synchronization.
We confirm the phenomenon with laboratory experi-
ment and give a proof of the existence. When each
EFF circuit has a different parameter, there exist vari-
ous periodic solutions.” We define the switching rate ~
by using input/output pulses and show a bifurcation
diagram corresponding to some values of . The hys-
teresis characteristics are also found out.

2. Electric Fireflies

We develop an EFF circuit shown in Fig.1. This is a
simple square wave generator with a photo-diode and
a photo-transistor. Note that the current does not flow
into the photo-transistor when it is charged negative
voltage.

If the photo-transistor is in OFF condition, then
the circuit equation is described as

dv
RQCE + v = o,
__ 1 _ (D
T 7 +R4v0 = awyg,

vo = F sgn(vy —v) = E sgn(avg — v).

By normalizing v and ¢ as

T=——t T=—. )

Fig. 1  Electric firefly circuit (square wave generator).
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Thus the first equation of Eqgs. (1) becomes
dz ‘

— =—z+1. 3
dr ‘ G)
The period o of the square wave oscillation is given by:
1
0o =2log 12, @
11—«
1
fa = (5)
T

When photo—transistor is in ON condition, v4 and
period o are given by:

R3Ry + RyRs
fme} = 6
V4 RaRa + Ralts +R4R5v0 Bug > avg,  (6)
05:210g1t'§. @)
Hence we obtain the following relationship:
oa—0g=2][1lo 1to —lo 1+5
S e T e
(1+o)(1—-B)
=2log ——-——+ < 0. (8)
(1+8)(1—0)

This means that, when photo-transistor is in ON condi-
tion, the frequency is lower than the natural frequency
Eq.(5) in OFF condition.

3. Coupled EFF Circuit

In the following we consider synchronization of a cou-
pled EFF circuit shown in Fig.2. The frequency of the
output square wave can be controlled by the optical in-
put signal of the other EFF circuit. The luminescene of
the photo-diode can be considered as the fireflies’ one.
We recast Eq. (3) as the following:
dv
E:—ere(e:—lorl, vy =zaorf), (9
where e denotes output voltage of the operational am-
plifier of an EFF circuit. Thus the equation of the
coupled EFF circuit is described as:

d’l)l/dt = —v1 + €1

(61 =—1or 1, Vi1 = :i:OL]_ or 51) (10)
d’l)z/dt = —Ug + €9 !
(62 =—1or ]., Vy2 = ﬂ:az or ﬂz)

Fig. 2 A coupled EFF circuit.
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where v; and v, mean the voltage of the capacitor for
each EFF circuit. From the previous section, Eq. (10)
has the following relationship:

D<o <1 <1, O0<azs <P <. (1)

Figure 3 shows an example of wave forms v;(t) and
e;(i = 1,2). However, in vi-vy plane, a trajectory be-
comes a successive straight line because Egs. (10) are in-
dependent and first-order linear differential equations,
see Figs.4, 5, 6 and 7.

We enumerate some properties for the coupled EFF
circuit.

e The output voltage of the operational amplifier can
be written by
e; = sgn{vy; —v;) (2=1,2). (12)
When ey and ey are equal to unity, both capacitor
voltages of these circuits become unity. In this case,
vy, switches from «; to §; (1 = 1,2). In the other
cases vy stay o;(i = 1,2).

e When state becomes v; = (1, as < vy < B3 or
a1 £ v; £ B, vg = P2, the output switches from
(e1,e2) = (1,1) to (=1, —~1).

For the following analysis we define some objects as
follows:

Py = {(v1,v2)] — o1 Lv1, 0L an, 69 =—1,e5 =1},

U1 /e1

ﬂll'o

@y
—o
—-1.0 — E—
v €2
ﬁzldg \«2 :

—ag

-10

Fig. 3 An example of wave form. (o1 = 0.35, a2 = 0.6,
B =0.7,82 = 0.8).

U2
-L0) 1 @
B2

A

—ot]

-1 %§Z L,y

(-1,-1) -1 (1,-1)

Fig. 4 Phase portrait of an arbitrary trajectory in EFF circuits.
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Py ={(v1,v2)| — a1 L1, —ag S vg,e1 = —1,
es = —1},
Py = {(v1,v2) |1 Son, —az Svg,e1=1,e9=—1},
Py = {(v1,va)|vy < f1,v9 £ Ba,e1 = 1,65 = 1}
(13)

By using Eq.(13), Eq. (10) defines four linear differen-
tial equations on four half planes controlled by the op-
tical input signal to the operational amplifier.

Note that the switch of the output of the opera-
tional amplifiers are owned by v,;(i = 1, 2).

4. Return Map F

Since Eq. (10) is a piecewise linear autonomous system,
we can calculate the solution of a coupled EFF circuit
analytically, therefore, we can obtain a one-dimensional
return map explicitly. The similar analysis technique is
shown in Refs.[2],[3].

We define some intervals as follows:

Lo = {(vi,v2)] —a1 L1 £ By, 00 = —a,

(vi,v2) € P},

Iyo = {(v1,v2)|v1 = B, —0p < vy < [y,
(v1,v2) € P1},

Is0 = {(v1,02)] — o1 Lv1 < By, 03 = Po,
(v1,v2) € Ps},

Iso = {(v1,v2)[v1 = —au, —aa < vz < Py,
(v1,v2) € Pa},

Ip = {(v1,v2)| —ay L v < ay,v3 = —ag,
(v1,v0) € Py},

Iy = {(v1,v2)|vy = a1, —an < vg < B,
(v1,v2) € P},

I31 = {(v1,v2)] — a1 < w1 < f1,v2 = 0,
(v1,v2) € P},

Iy = {(v1,v2)|v1 = —a, —az L vy < ag,
(v1,v2) € Py},

Is1 = {(v1,v2)lv1 = B, 02 S v < fa,
(v1,v2) € Py},

Is1 = {(v1,va)|a1 < v1 < B1,v2 = B,

(v1,v2) € Py},
Ty = Lo U Iz Ul U Iy,
To = I3 Uy Ulsy Ulyy Ul U gy
Then any trajectory started from 7} must jump onto

T5 and must return onto 7T7. So we can define the fol-
lowing mapping:

fl :Tl — TQ,
for Ty — T, (14)
[T — T, f=fofi

Also we define the following map.
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T — St
(vporwy) — =z’ (1)
where, S = {z € R mod 1} and
o1 + U1
forv, e T
2(0q + g + 81 + Ba) ' 10
ottt for vy € I
) 2(a fax £ 61+ ) 2
r= ap +og + 201+ 62 — vy forvi € I
B T
2(a1 + P1+ B2) +az —v2
for vy € I,
2(a; + ag + B1 + Ba) 2=
(16)
Finally we define the return map F as:
F=wgofoy ™t 8- 8t (17)

Consequently the dynamics of Eq. (10) can be in-
terpreted as behavior of a discrete map written by:

Figure 8 shows an examples of F' which corresponds to
the parameters used in Fig. 3. In this figure Dy and Dy
are:

ay + By + 204
Dl = )
2(C¥1+062+,31+52) (19)
D, — oz + 2061 + B2
o =

2(a +ag+ B+ Ba)’
and D3 and D, are assumed as:

e D3 = A point on I1o U I3 such that the trajectory
started from Dj hits (vy,v9) = (—aq, as)

e D, = A point on I3g U Iy such that the trajectory
started from Dy hits (vy, v2) = (a1, —a2)

Assume also that a point z,, is called an n-periodic
point of F' such that

F™(zp) :mp,Fk(zp) + 1z, (k <n). (20)

Theorem 1: [ has no fixed point.

Proof: Next two transitions have to be considered.

casel: IlO — 131 — IlO

case2: I20 — .[41 — 120

case3: [3g — I11 — I3g

cased: ]40 — I21 —* I40

We show only casel. Let zo be an initial point on
Ii0. = 18 transformed to a point ;1 € I3; and z; is
transformed to a point x5 € Ig.

= —2($0+1)—1. (21)

Here x5 < 21 < 9. Hence F' has no fixed point. Anal-
ogous manner is possible for the other cases. m|
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5. Analysis

Firstly, two EFF circuits are connected each other and
they have same parameters (o = ag, 81 = Ba).
Theorem 2: When two equivalent circuits are coupled,
the rhythm of luminescence between EFF circuits syn-
chronizes at in-phase.

Proof: We assume o = oy = a3, 0 = 31 = (2. When
an initial point z, is located in [p, it is possible below
three cases for F? or F*.

casel (F4): z, € lyg— xp € Iy1 — x, € T30 —
zq € Igy — T € Iyo — x5 € I —
g € Inp — xp € Iy

case2 (F*): x, € I1g — xp € I3 — 20 € T30 —
:L‘dEIzl—(‘:BeEL;oHQSfEIH—)
zg € Ing — xp, € Iy

case3 (F%): z,C Iy — ap € Iyy — @, € I3g —
zq € Iny

We show an explicit formulation in these cases.
casel:

_ (e=1)(A+1)2(a—1)—(8-1)(s111))
9(v1) = TED 2B I ) @D (FID(F-T ~ !

(. < vy < By),

case2:
_ (et De-DB+ (v +1)
9 = e Do+ D - (a— DRB+D)
(Bl <v < Bg))
case3:
_(a+1)(B-1) B
g(’l)]_) = m(@l + 1) 1
(32 <o < Oé),
where,
2
_ _(e-15+1)
B e ye-n "
Hence we obtain the return map with F2 and F*.
G=togoy™t : St — S (22)

The difference equation on S* is given by replac-
ing F' in Eq. (18) with G. In any cases, an initial point
xg € Iyg is larger than transformed the point z; =
G(zo) € Ijo. This means that any trajectory started
from zy € I1p include casel. The stable fixed point of
casel has z = 0. z = 0 is equal to (v1,v;) = (—a, — ).
That is to say, the rhythm of luminescence between EFF
circuits synchronizes at in-phase. O

In the following we analyze the coupled EFF cir-
cuit with different parameters (a1 + a9, 81 F 82). Two
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EFFs synchronize at in-phase when they have same pa-
rameter (a; = ay). Figure 5 shows this trajectory. For
characterize periodic trajectory, we show switching rate
~ as follows:

__ The number of ez pulses

¥ fort —oco. (23)

~ The number of e; pulses

~ corresponds to the next relation on one-
dimensional return map.

The number of z,+1 <z,

¥ fort — oo. (24)

"~ The number of Tnt1 > Tn
Followings properties are known [4].

1. v exists and depends on the initial point z.

2. v is rational if F' has a stable periodic trajectory.

Property: If v = n/m, the switch of output of the oper-
ational amplifier has m+n switching. F' has (m+n)/2
periodic point and m + n denotes the number of line
segmentations of a trajectory on vi-ve plane.

This means that F' is twice switching of output.
For example, Fig.9 shows phase portrait of 3 periodic
point. This trajectory is symbolized by v = 4/2 and
the number of line segmentations is 6. Note that, when
state becomes v1 = (7 and as < vy < (9, the output
switches from (1,1) to (—1,—1).

Figure 10 shows the graph of the switching rate
for az = 0.7, f1 = 0.7, B2 = 0.8. This figure
means that Eq.(10) have many periodic trajectories. If
ag < ay < 1, v is larger than 1, and if ay < as < 2,
~ 1s smaller than 1. In some cases, if v is irrational, F
has an aperiodic trajectory.

Hereafter, we focus on the following range:

1+az,

T3_; > log ———,

1—a3_;
1+ 5 25)

=5

When the output voltages of the operational ampli-
fier (vi0) are switched, we initialize T; = 0. This means
that « corresponds to 2/n or n/2. F has stable n + 1
periodic points and 2(n+ 1) denotes the number of line
segmentations of a trajectory on vi-vy plane.

Figure 11 shows « for various a;;. We can see hys-
teresis characteristic and it is caused recursively.

We symbolize the periodic point by using the po-
sition of line segmentations of trajectory for obtaining
more detailed information.

(i =1,2).

Definition:
0 for (’Ul,’l)z) € I1o or Iy
_ 1 for (7)1,'02) € Iy or I
w(’Ul,'Ug) a 2 for (Ul,’Uz) S 130 or I31 ’ (26)
3 for (vy,v2) € Iy or Iy

Under the condition Eq.(25), let us enumer-
ate all possible cases for the solution of Eq.(10).



660

+ —

Fig. 5

Fig. 6 Laboratory measurement. a; =~ 0.2,8; =~ 0.7(R; >~ 10kQ, Ry ~
10kQ, Ry ~ 24kQ,Rs ~ 1.2kQ, 7 ~ 10092), a0 =~ 0.5,082 =~ 0.8(R1 =~ 10kQ, Ry

t ——=

t—hv
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Laboratory measurement. o3 =~ 0.2,81 =~ 0.7(R; =~ 10kQ, Ry =~ 10k, R3
10kQ, Ry =~ 2.4kQ,Rs =~ 1.2kQ, 7 ~ 100Q),az o

10k, Ry ~ 10kQ, Ry ~ 24kQ, Rs ~ 680%,r
10[v/div], phase portrait: 5[v/div], 5[v/div]).

0.2,8; =~ 0.8(Ry =~ 10kQ, Ry o
100€2), (waveforms: 2[ms/div],

~
~

1

10k, Rs

[l 1R

10kQ, Ry ~ 10kQ, Ry o2 10k, Rs =~ 3.3kQ, 7 = 100 Q).

Fig. 7 Laboratory measurement. «; =~ 0.5,81 ~ 0.7(R; ~ 10kQ, R
10kQ, Ry =~ 10kQ, Rs = 7.5kQ,7 =~ 1009),00 =~ 0.65,8; ~ 0.8(R;

A

Ivz

10kQ, R3 o~
10 kQ, Ry >~

IR 12

10k, R =2 10k, Ry o 18.4kQ, Ry =~ 9.1k, r = 100 Q).

v = 2/2n have 031(31)"~!, 301(31)"~1, 032(31)"1,
302(31)"~! and v = 2n/2 have (02)"~1031, (02)"~*301,
(02)"~'032, (02)" 1302, where a sequence (e.g.
031(31)"~') means the order of w(vi,vs) hit by a pe-
riodic trajectory. Figures 6, 9 and 12 show examples
of wave form and phase portrait corresponds to 03131.
This sequence 03131 is a kind of v = 4/2.

The parameter regions of v = 2/(n — 1) and
v = 2/n are overlapped each other at any n. In such
regions, some trajectories are coexist and they depend

on the initial point. The regions v = (n — 1)/2 and
v = n/2 have similar structure. Figure 13 shows an
example of return map for v = 2/2 and 2/4.

The stable fixed points disappear on (vq,v2) =
(B1,2) or (a1,02). Figure 14 shows an example
of return map and its wave form. This return map
is constructed on z-F2(z) plane. When Fig. 14 (b)
forms the boundary, it has totally different state be-
tween Figs.14(a) and (c). The output of the oper-
ational amplifier switches from (ej,es) = (1,1) to



KOUSAKA et al: SYNCHRONIZATION OF ELECTRIC FIREFLIES BY USING SQUARE WAVE GENERATORS

Dy Dy Dy Dy

1.0

0 1 . L : 1 1 H
0 02 04 06 08 10

Lr—>

Fig. 8 An example of return map.

06 -

04

02

10 L 1 L ! I L I I 1
-10-08 -06 -04 02 0 02 04 06 08 10

V)——

Fig. 9 An example of phase space (03131). (@1 = 0.2,
Qy — 0.5, ﬂ]_ = 0.77 ,32 = 08)

10
08 — /
06 L =

04t -

02

0 L L 1 ! 1 1
o 0.1 0.2 03 0.4 05 06 0.7

Q] —————

Fig. 10  «;-y characteristic. F™(z), n = 3000, is used for the
calculation of «.

(e1,e2) = (—1,—1) in Fig.14(a). But in Fig.14(c),
the output of the operational amplifier switches from
(61,62) = (1, 1) to (61,62) = (1, —1) or (61,62) = (1,1)
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1.0

0.8; ¥ 4

w

?\ L
02} /UJ]’H

0 L L L
0 0.1 02 03

A}

Fig. 11  Hysteresis characteristic. (az = 0.5,
B1 =07, B2 =0.8).

1.0— — — —

a1

—o A

o

1.0
Bo

N \ \

—Q9 [

-1.0 L—

N

Fig. 12  An example of wave form (03131). (a7 = 0.2,
as = 05,8 =0.7,8 = 0.8)

08

02+

0 I ] L L
0 0.2 0.4 0.6 08 1.0

T ——
Fig. 13 A Return map. There are two periodic trajectories cor-
responding to v = 2/2 and 2/4. oy = 0.2, ag = 0.47, 81 = 0.7,
B2 = 0.8.

to (e1,ea) = (—1,1). When parameter changes from
Fig. 14 (a) to Fig.14(c), in general, the return map
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) D >
A WY >
3 ¢ 2 P 3 P
E\E: ( Ry v &y //
/
/ /\ / g
/
L/ x / x . X
Bif; A
ol N N
—1 t
RPN
IS AV N

V1=B1, V2=0 U1=f1, Ua<0y

(2) (b) (©

Fig. 14  An example of return map and wave form near a sin-
gular bifurcation. This return map is constructed on z-F?(z)
plane.

U= ﬁl , Ug>0y

1.0

0.8

06

04

)/ R——
o

o ~

T T

1.0 ) 1 1 1 I I I ! |
-10 -08 -06 -04 -02 0 02 04 08 08 10

Ul—»

Fig. 15 Asynchronous trajectory. (o1 = 0.5, as = 0.63,
By = 0.7, Bz =0.8)

forms the laminar phases. So a non-periodic trajec-
tory like an intermittent solution is observed (See. Fig. 7,
Fig. 15).

It is possible to derive existence region of these pe-
riodic trajectory. Figure 16 shows region of existence
for several . v = 2/2 have 013, 031, 032 and v = 2/4
have 30131, 03231, 03131 in this parameter. When a
denominator or a numerator of v is equal to 2, the tra-
jectory never draw the double loop on a return map.
In this case, showing the region of periodic trajectory
is comparatively easy.
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N

N

@2

S

03 0.4 0.5 06 7

Fig. 16  Bifurcation diagram. (81 = 0.7, B2 = 0.8)

6. Conclusion

In this paper, we propose EFF circuit and analyze a
coupled EFF circuit. They are described by piecewise
linear autonomous equations, so that we derive one-
dimensional return map explicitly. We prove the rhythm
of luminescence between EFF circuits with same pa-
rameters synchronizes at in-phase. Also we show pa-
rameter regions for various kinds of periodic trajecto-
ries which includes hysteresis due to coexistence of tra-
jectories. Some of theoretical results are confirmed by
laboratory measurements.
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