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Abstract

In this paper, we study the Fourier transformation F of functions in
D and distributions in D′. Thereby we prove the structure theorems of
the Fourier images FD and FD′.
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Introduction

In this paper, we study the Fourier transformation F of functions in D and
distributions in D′ on the space Rd. Here we assume d ≥ 1. Thereby we
obtain the structure theorems of the Fourier images FD and FD′ by virtue
of the Paley-Wiener type theorems. These theorems are the main theorems in
this paper. Here we give the new type of Fourier transformation of tempered
distributions and distributions. Because the concept of distributions is a gen-
eralized concept of classical functions, we define the Fourier transformation of
distributions as in the same direction as the Fourier transformation of classical
functions. These are very new results. As for the details of these results, we
refer to Ito [2], chapters 6 & 7.

Here I show my heartfelt gratitude to my wife Mutuko for her help of
typesetting this manuscript.
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1 Spaces of functions and distributions

In this section, we give the definitions of several types of functions and
distributions on Rd.

1.1 Spaces D and D′

In this subsection, we define the space of functions D = D(Rd) and the
space of distributions D′ = D′(Rd).

Assume that the space C∞
0 = C∞

0 (Rd) is the vector space of all complex-
valued C∞-functions with compact support onRd. Assume thatN = {0, 1, 2,
· · · } is the set of natural numbers. We say that α = (α1, α2, · · · , αd) ∈ Nd

is a multi-index.
Then we say that a sequence of functions {fn} in C∞

0 converges to f ∈ C∞
0

if the following conditions (i) and (ii) are satisfied:

(i) 　 There exists some compact set so that its includes all supports of
fn, (n ≥ 1).

(ii)　 For any α ∈Nd, we have

sup
x∈Rd

|Dα(fn(x)− f(x))| → 0, (n→∞).

Here, for f ∈ C∞
0 , we denote

Dαf =
( ∂

∂x1

)α1
( ∂

∂x2

)α2 · · ·
( ∂

∂xd

)αd f.

When we define the concept of convergence in C∞
0 as above, we denote C∞

0 as
D = D(Rd). Then D is a topological vector space.

Assume that, for a compact set K in Rd, DK is the vector space of all
functions in D such that their supports are contained in K. Then DK is a
F-space.

Now, we choose an exhausting sequence of compact sets {Kj} ofRd. Namely,
the sequence of compact sets {Kj} satisfies the following conditions (i) and (ii):

(i)　We have K1 ⊂ K2 ⊂ · · · ⊂ Rd and Rd =
∞∪
j=1

Kj .

(ii)　We have Kj = cl(int(Kj)) and Kj ⊂ int(Kj+1) for j = 1, 2, 3, · · · .
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When we denote the strong inductive limit of the inductive system {DKj}
of F-spaces as

lim−→DKj ,

we have the isomorphism
D ∼= lim−→DKj .

Here the inclusion mapping DKj → DKj+1 is a compact mapping. Therefore,
D is a DFS-space.

We define that a continuous linear functional T : D → C is a distribution.
We also say simply that T is a distribution.

When fn → f in D, we have

T (fn)→ T (f).

Now we denote the vector space of all distributions on Rd as D′ = D′(Rd).
We define a sequence of distributions {Tn} converges to T ∈ D′ if, for any

f ∈ D, we have the equality

lim
n→∞

Tn(f) = T (f).

By virtue of this concept of convergence, D′ is a complete TVS. Thereby we
define the topology of weak convergence in D′. Namely, this topology of weak
convergence is the topology of pointwise convergence. The topology of D′ thus
defined coincides with the topology of the strong dual space of D. Here, the
topology of the strong dual space of D is the topology of the uniform conver-
gence on every bounded set in D. This is the topology of strong convergence.

Then, when we choose an exhausting sequence of compact sets {Kj} in Rd

as above, we define the projective limit lim←−(DKj
)′ of the projective system of

DF-spaces {(DKj )
′}. Thus we have the isomorphism

D′ ∼= lim←−(DKj )
′

as TVS’s. Then, because the restriction mapping (DKj+1)
′ → (DKj )

′ is a
compact mapping, D′ is a FS-space.

As for the definitions of the inductive limit and the projective limit of TVS’s,
we refer to Ito [1] “Theory of Hyperfunctions, I”.

Now, for g ∈ L1
loc, we define the linear functional Tg on D by the relation

Tg(f) =

∫
g(x)f(x)dx, (f ∈ D).

Then Tg is a distribution on Rd and the correspondence g → Tg is one to one .
Namely, we have the following theorem.
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Theorem 1.1.1(du Bois-Reymond’s Lemma)　 Assume that Ω is an
arbitrary open set in Rd and let g ∈ L1

loc. Then, if the condition∫
g(x)f(x)dx = 0

is satisfied for any f ∈ D(Ω), we have g(x) = 0, (a.e.x ∈ Ω).

We say that Theorem 1.1.1 is the fundamental lemma of the variational
problem.

In such a sense, we identify Tg with g and denote Tg as g.
Then, we have the following theorem.

Theorem 1.1.2　 If the sequence of functions {gn} in L1
loc converges to

a function g ∈ L1
loc in the sense of L1

loc-topology, gn also converges to g in the
sense of the topology of D′.

In general, we have the following corollary.

Corollary 1.1.1　 Assume 1 ≤ p ≤ ∞. If the sequence of functions {gn}
in Lp

loc converges to a function g ∈ Lp
loc in the sense of Lp

loc-convergence, gn
also converges to g in the sense of the topology of D′.

1.2 Spaces S and S ′

In this subsection, we define the space of functions S and the space of
distributions S ′.

A function φ(x) on Rd is said to be a rapidly decreasing C∞-function if
φ(x) is a C∞ -function, and, for any α, β ∈Nd, there exists a certain positive
constant C such that we have the condition

|xαDβφ(x)| ≤ C, (x ∈ Rd).

Here we put

x = t(x1, x2, · · · , xd), |x| =
√
x2
1 + x2

2 + · · ·+ x2
d

and
xα = xα1

1 xα2
2 · · ·x

αd

d

for α = (α1, α2, · · · , αd) ∈Nd.
We have φ ∈ S if and only if we have the condition

lim
|x|→∞

|xαDβφ(x)| = 0
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for any α, β ∈Nd.
We define a seminorm pα, β of S by the relation

pα, β(φ) = sup
x
|xαDβφ(x)|

for any α, β ∈ Nd. Then S is a Fréchet space by virtue of the system of
seminorms {pα, β ; α, β ∈Nd} of S.

We define that a sequence of functions {φn} in S converges to a function φ
in S in the topology of S if we have the condition

pα, β(φn − φ)→ 0, (n→∞)

for any α, β ∈Nd.
We say that a continuous linear functional T : S → C on S is a tempered

distribution in S ′.
Since we have the inclusion relation

D ⊂ S,

we have the inclusion relation
S ′ ⊂ D′.

Namely the set of all tempered distributions is the special class of distributions.
We define that a sequence of distributions {Tn} in S ′ converges to a distri-

bution T in S ′ in the topology of S ′ if we have the condition

Tn(φ)→ T (φ), (φ ∈ S).

Since we have the inclusion relation

S ′ ⊂ D′,

a partial derivative of a distribution in S ′ in the sense of distribution in S ′ is
the same as its partial derivative defined as a distribution in D′

1.3 Spaces E and E ′

In this subsection, we define the space of functions E and the space of
distributions E ′.

We denote the vector space of all C∞-functions on Rd as E = C∞(Rd).
Let φ ∈ E . For an arbitrary compact set K in Rd and any α ∈ Nd, we

define a seminorm pK, α of E by the relation

pK, α(φ) = sup
x∈K
|Dαφ(x)|.
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Then the function space E is a Fréchet space with respect to the topology de-
fined by the system of seminorms {pK, α;K is an arbitrary compact set inRd

and any α ∈Nd}.
We define that a sequence of functions {φn} in E converges to a function φ

in E in the topology of E if we have the condition

pK, α(φn − φ)→ 0, (n→∞).

for an arbitrary compact set K in Rd and any α ∈Nd.
Since we have S ⊂ E , a continuous linear functional T : E → C on E is

considered to be a continuous linear functional on S. Hence we have T ∈ S ′
and T is a tempered distribution. Therefore we have the inclusion relations

E ′ ⊂ S ′ ⊂ D′.

Assume T ∈ D′. Then we define that the closed set F in Rd is the support
of T when it is the smallest closed set such that we have the condition

< T, φ >= 0, (φ ∈ D(F c)).

Then we denote the support of T as supp(T ). We have T ∈ E ′ if and only if
we have T ∈ S ′ and supp(T ) is a compact set. Further, this is equivalent to
the condition that we have T ∈ D′ and supp(T ) is a compact set.

We define a sequence of distributions {Tn} in E ′ converges to a distribution
T in E ′ in the topology of E ′ if we have the condition

Tn(φ)→ T (φ), (φ ∈ E).

Further, since we have E ′ ⊂ D′, a partial derivative of a distribution of E ′
in the sense of distributions in E ′ is as the same as its partial derivative defined
as a distribution in D′.

2 Fourier transformation

In this section, we define the Fourier transformations of several types of
functions and distributions for the preparation of the main results in the section
3.

6



2.1 Fourier transformation of functions in S

In this subsection, we define the Fourier transformation of functions in
S and study their properties. We put S = S(Rd). We define the Fourier
transformation of φ ∈ S by the relation

Fφ(p) = 1

(
√
2π)d

∫
φ(x)e−ipxdx, (p ∈ Rd).

Here we use the usual notation as follows:

x = t(x1, x2, · · · , xd), p = t(p1, p2, · · · , pd),

px = p1x1 + p2x2 + · · ·+ pdxd,

|x| =
√
x2
1 + x2

2 + · · ·+ x2
d, |p| =

√
p21 + p22 + · · ·+ p2d.

When we denote Fφ = φ̂, we have φ̂ ∈ S.
Then we have the following theorem.

Theorem 2.1.1　 For α ∈ Nd and φ ∈ S, we have the following (1) and
(2):

(1)　 F
(
(−ix)αφ

)
= Dα

pFφ(p) holds.

(2)　 F
(
Dα

xφ
)
= (ip)αFφ(p) holds.

For φ ∈ S, we define the Fourier inverse transformation by the relation

(F−1φ)(x) =
1

(
√
2π)d

∫
φ(p)eipxdp, (x ∈ Rd).

We put F∗ = F−1 and call it to be the dual Fourier transformation or
the Fourier inverse transformation.

Here we denote
F(S) = FS = {φ̂; φ ∈ S},
F∗(S) = F−1(S) = {F−1φ; φ ∈ S}.

Then we have the following.

Corollary 2.1.1　 For φ ∈ S, we have the equalities

F−1Fφ = φ, FF−1φ = φ.

Therefore, F : S → S is a topological isomorphism.

Corollary 2.1.2　We have the topological isomorphisms

F(S) ∼= S, F∗(S) = F−1(S) ∼= S.
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2.2 Fourier transformation of distributions in S ′

In this subsection, we study the Fourier transformation of distributions in
S ′.

Let S ′ = S ′(Rd) be the space of tempered distributions on Rd.
Now assume T ∈ S ′. Then, for φ ∈ S, we have F−1φ ∈ S. Therefore we

can define a continuous linear functional

S : φ→< T, F−1φ >, (φ ∈ S)

and we have S ∈ S ′. Namely, we have the equality

< S, φ >=< T, F−1φ >, (φ ∈ S).

Then we say that S is the Fourier transform of T and denote it as S = FT .
This is the new definition of the Fourier transformation of S ′. Since a

Schwartz distribution is a generalized concept of classical functions. So that,
we had better to define the Fourier transformation of Schwartz distributions as
in the same direction as the Fourier transformation of classical functions. Thus
we define the new type of Fourier transformation of Schwartz distributions.

Namely, for the Fourier transform FT ∈ S ′ of T ∈ S ′, we have the equality

< FT, Fφ >=< T, φ >, (φ ∈ S).

This is a generalization of Parseval’s formula for L2-functions.
Then the Fourier transformation F of distributions in S ′ is an automor-

phism of S ′ onto S ′. Therefore, we have the isomorphism

FS ′ ∼= S ′.

Now we denote the dual mapping of the Fourier transformation F : S → S
as F∗ : S ′ → S ′. Then we have the equality

F∗F = the identity mapping of S ′.

Namely we have the equality
F−1 = F∗.

Because we have E ′ ⊂ S ′, we remark that the Fourier transformation of
distributions in E ′ is the same as the Fourier transformation of S ′.

Then we have the following theorem.

Theorem 2.2.1　 For α ∈ Nd and T ∈ S ′, we have the following (1) and
(2):

(1)　 F
(
(−ix)αT

)
= Dα

p (FT ) holds.

(2)　 F(Dα
xT ) = (ip)α(FT ) holds.
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2.3 Fourier transformation of functions in D

In this subsection, we study the Fourier transformation of functions in D.
Because we have the inclusion relation D ⊂ S, we define the Fourier trans-

formation of functions in D by restricting the Fourier transformation of func-
tions in S to D. Namely, for φ ∈ D, we define the Fourier transform Fφ of φ
by the relation

Fφ(p) = 1

(
√
2π)d

∫
φ(x)e−ipxdx, (p ∈ Rd).

Then, because the Fourier transformation

F : S → S

is a topological isomorphism, we have the commutative diagram:

F : S → S
∪ ∪

F : D → FD.

Because D is a closed subspace of S by virtue of the topology of S, the Fourier
transformation

F : D → FD

is a topological isomorphism.
Then we have the following theorem.

Theorem 2.3.1　 For α ∈ Nd and φ ∈ D. Then we have the following
(1) and (2):

(1)　 F
(
(−ix)αφ

)
= Dα

p (Fφ)(p) holds,

(2)　 F(Dα
xφ) = (ip)α(Fφ)(p) holds.

2.4 Fourier transformation of distributions in D′

In this subsection, we study the Fourier transformation of distributions in
D′.

Assume that D′ = D′(Rd) is the space of Schwartz distributions on Rd.
Now assume T ∈ D′. Then, because F−1φ ∈ D holds for φ ∈ FD, we can
define a continuous linear functional

S : φ→< T, F−1φ >, (φ ∈ FD)
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and we have S ∈ (FD)′. Namely, we have the equality

< S, φ >=< T, F−1φ >, (φ ∈ FD).

Then we say that S is a Fourier transform of T and denote it as S = FT . This
is the new definition of the Fourier transformation of distributions of D′ as in
the case of distributions in S ′. Namely, the Fourier transform FT ∈ FD′ ∼=
(FD)′ of T ∈ D′ satisfies the relation

< FT, Fφ >=< T, φ >, (φ ∈ D).

This is a generalization of Parseval’s formula as in the case of S ′.
Then the Fourier transformation F of distributions in D′ is the topological

isomorphism of D′ onto FD′.
Therefore, if we denote the dual mapping of the Fourier transformation

F : D → FD as F∗ : (FD)′ → D′, we have the equality

F∗F = the identity mapping ofD′.

Then we have the following theorem.

Theorem 2.4.1　 For α ∈Nd and T ∈ D′, we have the following (1) and
(2):

(1)　 F
(
(−ix)αT

)
= Dα

p (FT ) holds.

(2)　 F(Dα
xT ) = (ip)α(FT ) holds.

3 Paley-Wiener type theorems and structure
theorems

In this section, we prove the Paley-Wiener type theorems for functions in
D and distributions in D′. Thereby we prove the structure theorems of FD
and FD′. These are the main results of this paper.

3.1 Fourier image of the space D

In this subsection, we prove the Parlay-Wiener type theorem for D and the
structure theorem of the Fourier image FD.
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We denote a point ζ on Cd as follows:

ζ = t(ζ1, ζ2, · · · , ζd),

ζj = ξj + iηj , (ξj , ηj ∈ Rd, j = 1, 2, · · · , d),

Im ζ = t(Im ζ1, Im ζ2, · · · , Im ζd) =
t(η1, η2, · · · , ηd).

Then a function F (ζ) on Cd means a function F (ζ) = F (ζ1, ζ2, · · · , ζd).
Further, for x = t(x1, x2, · · · , xd) ∈ Rd, we denote

ζx = ζ1x1 + ζ2x2 + · · ·+ ζdxd.

Then we have the following Paley-Wiener type theorem.

Theorem 3.1.1 (Paley-Wiener type theorem)　 Let B be a certain
positive constant. Then the following conditions (1) and (2) are equivalent:

(1)　 An entire function F (ζ) on Cd satisfies the condition that, for an arbi-
trary natural number N , there exists a certain positive constant CN such
that we have the inequality

|F (ζ)| ≤ CN (1 + |ζ|)−NeB|Im ζ|, (ζ ∈ Cd).

(2) A function F (ζ) is equal to the Fourier-Laplace transform

F (ζ) =
1

(
√
2π)d

∫
φ(x)e−iζxdx, (ζ ∈ Cd)

of a certain function φ ∈ D which satisfies the condition supp(φ) ⊂ {|x| ≤
B}.

Now we put

Kj = {x ∈ Rd; |x| ≤ j}, (j = 1, 2, 3, · · · ).

Then the sequence of compact sets {Kj} is an exhausting sequence of compact
sets in Rd. Therefore we have the isomorphism

D ∼= lim−→DKj

as TVS’s. Here lim−→DKj denotes the strong inductive limit of the inductive
system of F-spaces {DKj}. Therefore, by virtue of the Fourier transformation
F of D, we can define the Fourier transform Fφ of a function φ in each DKj .

Then we denote

FD = D̂, FDKj = (DKj )̂, (j = 1, 2, 3, · · · ).
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Further we have the inclusion relations

DK1 ⊂ DK2 ⊂ · · · ⊂ DKj ⊂ · · · ,

(DK1 )̂ ⊂ (DK2 )̂ ⊂ · · · ⊂ (DKj )̂ ⊂ · · · .

Here, we remark that , for every j ≥ 1, a function of (DKj )̂ is characterized by
Theorem 3.1.1.

Then we have the following theorem.

Theorem 3.1.2　We use the notation in the above. Then we have the
following isomorphisms (1) ∼ (4):

(1)　 D ∼= lim−→
j

DKj .

(2)　 D̂ ∼= lim−→
j

(DKj )̂.

(3)　 DKj
∼= (DKj )̂, (j = 1, 2, 3, · · · ).

(4)　 D ∼= D̂.

3.2 Fourier image of the space D′

In this subsection, we prove the Paley-Wiener type theorem for D′ and the
structure theorem of the Fourier image FD′.

When the support of T ∈ S ′ is included in the compact setKB = {|x| ≤ B},
we can consider that T ∈ (DKB

)′ holds. Therefore, this means that we have
T ∈ D′ such that its support is included in the compact set KB . Thus we have
the following theorem.

Theorem 3.2.1 (Paley-Wiener type theorem)　 Assume that B is a
certain positive constant. Then the following conditions (1) and (2) are equiv-
alent:

(1)　 An entire function F (ζ) on Cd satisfies the condition

|F (ζ)| ≤ C(1 + |ζ|)NeB|Im ζ|, (ζ ∈ Cd)

for a certain positive constants C and N .
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(2)　 A function F (ζ) is equal to the Fourier-Laplace transform

F (ζ) =
1

(
√
2π)d

< Tx, e
−iζx >, (ζ ∈ Cd)

of a certain distribution T ∈ D′ which satisfies the condition

supp(T ) ⊂ KB = {|x| ≤ B}.

Thus we remark that, for every j ≥ 1, a distribution of F(DKj )
′ ∼= (FDKj )

′

is characterized by Theorem 3.2.1.
Then we have the following theorem.

Theorem 3.2.2　We use the same notation as in Theorem 3.1.2. Then
we have the following isomorphisms (1) ∼ (4):

(1)　 D′ ∼= lim←−
j

(DKj )
′.

(2)　 FD′ ∼= lim←−
j

F(DKj )
′.

(3)　 (FD)′ ∼= lim←−
j

(FDKj )
′.

(4)　 D′ ∼= FD′ ∼= (FD)′.

In Theorem 3.2.2, the symbol lim←−
j

(DKj )
′ denotes the projective limit of the

projective system of DF-spaces {(DKj )
′}.
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