Pigmented villonodular synovitis of the knee joint in a 5-year-old girl treated with combined open and arthroscopic surgery: a case report

Subash Chandra Jhaa, Toshihiko Nishishoa, Tetsuya Matsuuraa, Makoto Takeuchid, Ryo Miyagia, Shoichiro Takaob, Naoto Suzuea, Shunichi Tokic, Akihiro Nagamachie and Koichi Sairyoa

Introduction

Pigmented villonodular synovitis (PVNS) is a rare, benign, proliferative lesion of synovial tissue and is most likely to be neoplastic [1–3]. It is most prevalent in young adults between 20 and 45 years of age, with no sex preference. It predominantly involves the knee joint, followed by the hip, ankle, elbow, and shoulder joints [4,5], and is a locally aggressive lesion that is categorized into localized/nodular and diffuse forms [1,2,6]. PVNS is extremely rare in children and may pose a diagnostic challenge, whereas delay in diagnosis has the potential to lead to early joint destruction and development of arthritis [2,6].

Here, we present a case of PVNS of the knee, in which combined open and arthroscopic surgery was successfully performed in a small child.

Case report

A 5-year-old girl had a 3-month history of spontaneous, gradually progressive, left knee pain and swelling. There were no other associated symptoms or other joint involvement and her general health was good. On physical examination, there was diffuse, soft-to-firm swelling of the left knee joint without any signs of inflammation (Fig. 1). The range of motion (ROM) of the left knee was 0–110°. Her laboratory findings were within normal limits. Plain radiography of her left knee showed no obvious abnormality (Fig. 2). MRI of the left knee revealed an intra-articular and periarticular mass with synovial fluid collection (Fig. 3a–d). T2*-weighted images showed a low-intensity area in the tumor, indicating hemosiderin deposition (Fig. 3c). The soft tissue mass had low-intensity on both T1-weighted and T2-weighted images, mostly confined to the suprapatellar and anterolateral aspects of the knee (Fig. 3f and g). On the basis of clinical examination and radiological findings, the working diagnosis was diffuse PVNS (DPVNS).

Complete surgical resection of the diseased synovial lining remains the standard management for disease eradication in either form of PVNS. Although surgical tumor resection is the treatment of choice at present, the best method of resection is under debate [1,6]. The disease outcome and surgical result are generally assessed in terms of recurrence rate, arthritic progress, and perioperative complications.

Keywords: combined open and arthroscopic surgery, pigmented villonodular synovitis, skeletally immature

Copyright © 2016 Wolters Kluwer Health, Inc. All rights reserved.

Journal of Pediatric Orthopaedics B 2016, 00:000–000

Keywords: combined open and arthroscopic surgery, pigmented villonodular synovitis, skeletally immature

*Department of Orthopedics, bDepartment of Radiologic and Technology, Division of Health Sciences, Institute of Biomedical Sciences, Tokushima University Graduate School, bDepartment of Orthopedics, Kochi Red Cross Hospital, Kochi, cDepartment of Orthopedics, Mitoyo General Hospital, Kagawa, Japan

Correspondence to Toshihiko Nishisho, MD, PhD, Department of Orthopedics, Institute of Health Biosciences, Tokushima University Graduate School, 3-18-15 Kuramoto, Tokushima 770-8503, Japan

Tel: + 81 88 633 7240; fax: + 81 88 633 0178;
e-mail: tnishisho@tokushima-u.ac.jp

Copyright © 2016 Wolters Kluwer Health, Inc. All rights reserved.

DOI: 10.1097/BPB.0000000000000293
The management strategy was planned according to the size, location, age, and type of lesion. Under general anesthesia, a tourniquet was applied and an intraoperative open biopsy was performed through a small incision to obtain the pathological diagnosis, which took around 30 min. A suprapatellar incision was then made for en-bloc resection of the diffuse mass that extended from the suprapatellar pouch to the lateral pouch. Following open resection, closure of capsule and suprapatellar incision was carried out. Arthroscopic survey of the intra-articular lesion was carried out and residual tumor was resected from the anterior and posterior horns of the lateral meniscus, intercondylar notch, and also from the posteromedial aspect of the knee (Fig. 4). There was no osteochondral defect in the knee joint, and other structures were normal. Meticulous closure of the capsule and the wound was carried out, and a suction drain remained in situ. The total duration of surgery was 184 min including 54 min of tourniquet time.

The final histopathological diagnosis was PVNS with small histiocyte-like cells and a few giant cells, which were CD68-positive, and hemosiderin deposition was identified (Fig. 5). The postoperative period was uneventful, and rehabilitation was started after drain removal on postoperative day 2. Her knee pain and limitation of ROM were disappeared at 4 months postoperatively. MRI at 8 months postoperatively showed no obvious signs of recurrence (Fig. 6) and her symptoms had continually improved. There was no obvious
Preoperative MRI of the left knee. Axial T2-weighted images from the proximal to distal ends: (a) superior extent of the mass with extracapsular invasion (arrow); (b) intra-articular mass in the suprapatellar aspect of the joint (arrow); (c) mass in the anterior aspect of the joint (red arrow) with significant joint effusion; and (d) mass in the posterior aspect of the joint (arrow). (e) Coronal T2*-weighted images showing a low-intensity area in the tumor (arrow), indicating hemosiderin deposit. (f) Sagittal T1-weighted and (g) T2-weighted images showing a low-intensity intra-articular mass in the anterior aspect of the joint (arrows).
recurrence in clinical examination and ultrasound at 18 months after operation.

Discussion

Clinical presentation of PVNS depends on the morphological form of the disease. The majority of cases are monoarticular, occurring in the third and fourth decades of life [3,5]. Neubauer et al. [2] reported that only one of six children was diagnosed before surgery because PVNS occurs rarely in skeletally immature patients. The radiographic findings of the disease are often nonspecific, and commonly demonstrate an ill-defined, periarticular soft tissue mass that appears more opaque than the surrounding soft tissue because of hemosiderin deposition [3]. A multinodular intra-articular lesion with patchy areas that have the characteristics of hemosiderin are strongly suggestive of PVNS, particularly when a bleeding disorder like hemophilia has been excluded [3,7]. Its capacity to erode subchondral bone, resulting in cysts and erosion leading to secondary degenerative lesion of the joint, emphasizes the importance of early diagnosis [1,6].

The treatment of choice for PVNS is surgical excision of the lesion, performed either arthroscopically or through an open arthrotomy. Localized PVNS rarely recurs because complete marginal resection is often obtained [6,8,9]. However, treatment for DPVNS has not been clearly defined as the recurrence rate is especially high [1,6]. Regardless of the technique used, the treatment principle for either form remains the same: careful removal of the synovial tumor [6]. Some authors have suggested radiotherapy as adjuvant treatment to reduce the high rate of recurrence. However, the use of radiotherapy for such a benign tumor is controversial because of potential damage to the epiphyseal growth plate in children and postradiation sarcoma [6,10]. Moreover, radiotherapy or isotopic synoviorthesis has not shown promising results in controlling recurrence [10,11].

DPVNS of the knee remains a clinical challenge because of the high rate of local recurrence and propensity for causing pain, swelling, and arthritic progress. Total synovectomy is accepted as standard of care, but the literature describes multiple methods of accomplishing this, including open, all arthroscopy or combined open and arthroscopic surgery [1]. Each method has its own drawbacks. One major complication of the open technique in the knee is postoperative stiffness followed by decrease in ROM [4,12]. Extracapsular extension of the disease is a well-known absolute contraindication to only arthroscopic synovectomy [1]. Hence, the gold standard for achieving the lowest possible recurrence rate and morbidity remains unclear. In a literature review, Nakahara et al. [4] found a 23.2% recurrence rate with open synovectomy and a 39% recurrence rate with all arthroscopic synovectomy. Colman et al. [1] reported that
the overall recurrence rate of the combined open and arthroscopic group was lower compared with the all arthroscopic or open group (9 vs. 62 vs. 64%, respectively).

In our case, as there was extracapsular invasion in the suprapatellar and anterolateral portions of the knee, we decided to use the combined open and arthroscopic approach. En-bloc resection of a large lesion was possible through the open approach. Residual lesions were identified and resected by means of arthroscopy thorough inspection of the knee joint. Arthroscopy was useful for the lesion such as the posteromedial aspect of the knee, which was difficult to be observed by means of only open surgery. Hence, careful resection of the tumor was possible to prevent recurrence. This combined method appears to be suitable for DPVNS, especially in small children, to avoid joint complications.

Conclusion
Clinical suspicion of PVNS should be considered in children with chronic joint swelling. DPVNS of the knee has a high overall recurrence rate regardless of treatment. Nevertheless, combined open and arthroscopic synovectomy is a comprehensive approach associated with both a low recurrence and low postoperative complication rates.

Acknowledgements
The manuscript submitted does not contain information about medical device(s)/drug(s).

Conflicts of interest
There are no conflicts of interest.

Microscopic images of diffuse pigmented villonodular synovitis. (a) A photomicrograph showing proliferative mononuclear histiocyte-like cells with cleft-like spaces (arrow). Hematoxylin-eosin staining (x25; scale bar, 1 mm). (b) CD68-positive tumor cells (x25; scale bar, 1 mm). (c) Hemosiderin deposits (arrows). Hematoxylin-eosin staining (x200; scale bar, 200 μm). (d) A few multinucleated giant cells (arrow).
References

Postoperative MRI of the left knee at 8-month follow-up. (a–d) Axial images from the proximal to distal ends. (e) Coronal T2*-weighted images showing no abnormal tissue or other signs of recurrence.
Queries and/or Remarks

<table>
<thead>
<tr>
<th>QUERY NO.</th>
<th>Details Required</th>
<th>Author's Response</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q1</td>
<td>A running head short title was not supplied; please check if this one is suitable and, if not, please supply a short title of up to 40 characters that can be used instead.</td>
<td>PVNS in a 5-year-old girl</td>
</tr>
<tr>
<td>Q2</td>
<td>Please confirm whether consideration of “Subash Chandra” as forename and “Jha” as surname is correct. Please initialize only the middle names.</td>
<td>correct</td>
</tr>
<tr>
<td>Q3</td>
<td>Please confirm whether the changes made to the sentence “Although surgical tumor resection is the treatment of…” are correct.</td>
<td>correct</td>
</tr>
<tr>
<td>Q4</td>
<td>Please confirm whether the changes made to the sentence “Residual lesions were identified and resected…” are correct.</td>
<td>correct</td>
</tr>
</tbody>
</table>