INTRODUCTION

Some inflammatory biomarkers including Interleukin (IL) -6, IL-18 and C-reactive protein (CRP) have been shown to be associated with type 2 diabetes (1, 2), cardiovascular disease (3-5), and many types of cancer (6-9). Dietary factors can modulate inflammatory status by suppressing immune responses (10).

Consumption of soy foods has been shown to have beneficial effects on various aspects of human health including reduced risk of inflammation-related diseases, such as cardiovascular disease (11, 12), diabetes (13), and certain types of cancers (14, 15). Soy and soy isoflavone have been shown to inhibit cell adhesion molecule expression in cultured endothelial cells (16, 17), reduce production of proinflammatory cytokines, and decrease oxidative stress in animal models (18-22). Several recent clinical trials have shown that a soy-rich diet substantially lowers the levels of interleukin IL-6, CRP, and IL-18 (12, 23), although results are somewhat inconsistent (24, 25).

Soy foods are divided into fermented products (miso and natto) and non-fermented products based on their manufacturing process. Some studies have shown that components of fermented soy products maintain the functions of various organs and prevent coronary heart disease (26, 27). Fermented soy foods have been shown to contain greater amounts of polyamines including spermidine than the amounts in non-fermented soy products, and polyamines have been shown to be associated with cardioprotection and lifespan extension (28, 29). Recently, two cross-sectional studies were conducted in Japanese, and it was shown that natto intake had a significant inverse association with the risk of mortality from cardiovascular disease (30) and that intake of fermented soy foods (miso and natto) had an inverse association the development of high blood pressure in a population with normal blood pressure (31).

In this study, we examined the associations of soy foods (total, fermented soy foods, non-fermented soy foods, soy isoflavone) with high-sensitivity (hs) - CRP, IL-6, and IL-18 levels in workers in Tokushima Prefecture of Japan. We also examined associations between each soy food levels of and hs-CRP, IL-6 and IL-18.

MATERIALS AND METHODS

Study population

The study population consisted of participants in epidemiological research, including 1,460 men and women, who were recruited from Japanese workers in Tokushima Prefecture in 2010. We excluded participants who had missing data for potential confounders including history of stroke (n = 1), smoking habit (n = 1), drinking habit (n = 3), regular exercise (n = 4) and past or current history of allergic disease (n = 3). We also excluded participants who had missing data for inflammatory markers including hs-CRP (n = 1), IL-6 (n = 2) and IL-18 (n = 2). Two participants with missing data for

Keywords: Soy, Fermented soy food, Inflammation, Interleukin-6
HbA1c \((n = 1)\) and glucose \((n = 1)\) were also excluded. Fifteen participants with a total energy intake exceeding mean \(\pm 3\) standard deviations, \(\geq 3.513\) kcal/day for men \((n = 13)\) and \(\geq 2.947\) kcal/day for women \((n = 2)\), were also excluded. Finally, data for a total of 1,426 adults \((1,053\) men and 373 women\) aged 20-64 years were used for analysis.

All participants had valid data with a completed questionnaire, physical measurements and a written informed consent form. The study protocol was approved by institutional review board of the Tokushima University Hospital.

Measurement of biomarkers

A fasting blood sample was obtained from each participant by trained staff. Glucose level was determined by using the glucose oxidase-peroxidase method \((ADAMS\) glucose GA-1170, ARKRAY Inc. Kyoto, Japan). High-sensitivity hs-CRP concentration was determined by using a commercially available latex turbidimetric immunoassay \((LT\) CRP-HS II, Wako Pure Chemical Ltd., Osaka, Japan). HbA1c was determined by using the high-performance liquid chromatography method \((HLC-723G11,\) Tosoh Corp. Inc. Tokyo, Japan). IL-6 concentration was determined using the chemiluminescent enzyme immunoassay \((Human-IL-6\) CLEIA, Fujirebio, Inc., Tokyo, Japan). IL-18 concentration was determined by using the enzyme-linked immunosorbent assay \((Human\ IL-18\ ELISA\ Kit, Medical & Biological Laboratories Co., Ltd., Nagoya, Japan)\).

Food intake

Habitual soy food intake was estimated using a validated quantitative food-frequency questionnaire \((32)\). The questionnaire included 12 common soy food items: miso \((soybean\ paste)\), soy sauce, natto \((fermented\ soybean)\), tofu, soy milk, fried tofu, yuba \((dried\ bean\ cured)\), okara \((soybean\ cured\ refuse)\) and green soy bean, bean sprouts and kinako \((soy\ flour)\), gannmodoki \((fried\ bean\ cured\ with\ vegetable)\). We defined miso, soy sauce and natto as fermented soy foods. Other soy foods were defined as non-fermented soy foods. Nutritional calculation was performed according to the Standard Tables of Food Composition in Japan. The amount of total soy isoflavone intake was determined by using a database with isoflavone contents in soy foods \((33)\). Food and energy intake was estimated by the validated FFQ method \((34)\). The questionnaire included questions on 29 food items and 10 cooked meals. We estimated food intake for each of 18 food groups.

Other variables

We obtained covariates from the standardized questionnaires, including sociodemographic characteristics \((age, sex)\), lifestyle behaviors \((alcohol\ consumption, smoking, exercise\ habits, and intake of vegetables, fresh fruits, and fish)\), personal health and medical history \((hypertension, diabetes, allergy, and stroke)\).

Trained staff measured body weight, height, and blood pressure using calibrated instruments. Hypertension was defined as systolic blood pressure of more than 140 mm Hg, diastolic blood pressure of more than 90 mm Hg, or self-reports of hypertension medical usage. Allergy was self-reported diagnosis of an allergy. Prevalent diabetes was defined as a measured fasting blood glucose concentration of 126 mg/dL, HbA1c level of 6.5% or more, or self-reports of diabetes medical usage.

Statistical analysis

We performed analysis on the basis of energy-adjusted intake using the density method \((amount\ of\ food\ intake\ per\ 1,000\ kcal of\ energy)\) for all soy food items, vegetables, fruits, and fish. The subjects were divided into quintiles with almost the same number of subjects in each category. The values of inflammatory markers were log-transformed to be a normal distribution. Continuous variables are expressed as means and standard deviations, and categorical variables are expressed as proportion (%). ANOVA and the chi-square test were used to compare characteristics among the quintiles of dietary soy fermented intake.

General linear models were used to evaluate the associations of dietary total soy food, fermented soy food, non-fermented soy food and total soy isoflavone intake with inflammatory markers after adjusting for the following probable covariates in three different models. Model 1 was adjusted for age. Model 2 was model 1 plus adjustments for BMI \((logarithm)\), current smoker \((yes\ or\ no)\), current drinker \((yes\ or\ no)\), regular exerciser \((yes\ or\ no)\), diabetes \((yes\ or\ no)\), hypertension \((yes\ or\ no)\), allergic disease \((yes\ or\ no)\), and total energy intake. Model 3 was model 2 plus adjustments for vegetable intake, fruit intake and fish intake. Multiple regression analyses were used to evaluate the association between intake of each of the 12 soy food items and inflammatory markers. \(P\) values \(< 0.05\) were considered statistically significant using two-tailed tests. All analyses were conducted using IBM SPSS Statistics \((version\ 24.0)\).

RESULTS

Characteristics of men and women according to quintiles of total fermented soy food intake

The mean ages of the participants were 40.2 \(\pm\) 9.7 years for men and 38.7 \(\pm\) 9.8 years for women, and mean BMIs were 23.8 \(\pm\) 3.3 kg/m\(^2\) for men and 21.4 \(\pm\) 3.1 kg/m\(^2\) for women. The estimated daily energy levels were 1,848 \(\pm\) 443 kcal/day for men and 1,711 \(\pm\) 375 kcal/day for women. The characteristics of the 1,426 participants \((1,053\ men\ and\ 373\ women)\) according to quintiles of energy-adjusted soy fermented food intake are shown in Table 1. Regarding nutrient intake, men in the highest quintile of the fermented soy food group had less energy intake and higher intake levels of non-fermented soy food, vegetables, fruits and fish than did men in the lowest quintile. In addition, men in the highest quintile of the fermented soy food group were older than men in the lowest quintile. Women in the highest quintile of the fermented soy food group had lower percentage of current drinkers and higher intake levels of non-fermented soy food, vegetables, fruits and fish than did women in the lowest quintile \((Table\ 1)\). In the study population including men and women, there was a 7.9-fold difference in total soy fermented food intake between the highest and lowest quintiles \((median:\ 24.5\ g/d\ in\ the\ highest\ quintile\ vs.\ 3.1\ g/d\ in\ the\ lowest\ quintile)\).

Multivariate-adjusted mean \((and\ 95\%\ CI)\) of inflammatory markers by quintiles of soy food intake

We investigated associations between levels of inflammatory markers and soy food intake using the general linear models in men and women. A higher level of fermented soy food intake was associated with 10% lower IL-6 concentration between the highest and lowest quintiles \((Q1:\ 1.94\ pg/mL,\ Q5:\ 0.94\ pg/mL;\ P\ for\ trend = 0.019)\) in men. Further adjustment for smoking, alcohol consumption, exercise, diabetes, allergy and energy intake plus intake of vegetable, fruits and fish did not alter the results \((Q1:\ 1.03\ pg/mL,\ Q5:\ 0.94\ pg/mL;\ P\ for\ trend = 0.031)\). An inverse association was found between serum IL-6 concentration and fermented soy food intake, but this inverse association was not found for total soy food or non-fermented soy food in men. In addition, soy intake including total soy food, non-fermented soy food and soy isoflavone did not affect serum concentrations of hs-CRP, IL-6 and IL-18. In contrast to the results found for men, no difference was found for women \((Table\ 2)\).
Multiple regression analysis for inflammatory markers by intake of each soy food

We examined associations between 12 items of soy food and inflammatory markers using multiple regression analyses (Table 3). In men, after multivariable adjustment, IL-6 showed significant negative associations with miso (β = -0.068, p = 0.034) and soy sauce (β = -0.074, p = 0.018) intake, but hs-CRP and IL-18 showed no associations. For women, significant positive associations were found between tofu intake and IL-6 concentration (β = 0.107, p = 0.049) and between soy milk intake and serum hs-CRP concentration (β = 0.104, p = 0.049).

DISCUSSION

We found that intake of fermented soy foods including miso and soy sauce was associated with reduction of serum IL-6 level (Tables 2 and 3). The mechanisms by which fermented soy foods and their constituents affect inflammatory biomarkers in men remain to be clarified. Although human studies on anti-inflammatory effects of fermented soy products are limited, animal studies have shown anti-inflammatory properties of fermented soy products. *Meju* is a naturally fermented soy block used to produce soy paste and soy sauce in Korea. Feeding mice fermented soybean fibers from *meju* reduced plasma cholesterol and triglyceride levels, adipocyte size and hepatic lipid accumulation. Levels of plasma C-reactive protein, TNF-α and IL-6 were also significantly reduced in mice treated with *meju* components (35). Furthermore, two studies have shown that fermented soy products suppress inflammation in a gut inflammatory bowel disease model. Kawahara et al. examined the effect of fermented soy milk with *Lactococcus lactis subsp. Lactis* S-SU2 on dextran sodium sulfate-induced colitis and found that treatment with fermented soy milk reduced the clinical severity score in a colitis model (36). In another study, treatment with fermented soy germ extract improved the severity of colitis, the fatality score in a colitis model (37). In the present study, intake of fermented soy products was evaluated as the sum intake of miso, soy sauce and natto. Functional effects of fermented soy products have been studied. Soy sauce has anti-microbial activity, an anti-hypertensive effect, an anti-carcinogenic effect and anti-platelet activity (38). Natto contains inhibitors against the angiotensin-converting enzyme and thereby might have an anti-hypertensive effect (39). In an obese *db/db* mouse model, fermented soybean extracts reduced serum total cholesterol and LDL cholesterol levels (40). In a human study by Sapbamrer et al. on the effects of dietary traditional fermented soybean intake on BMI, reproductive hormones, lipids and glucose in postmenopausal women, it was found that treatment with fermented soybeans for 6 months had favorable effects on progesterone and cholesterol (42). In two prospective cohort studies targeting Japanese, it
Table 2 Multivariate-adjusted mean (and 95% CI) of inflammatory markers by quintiles of soy food intake

<table>
<thead>
<tr>
<th></th>
<th>Men</th>
<th>Women</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Q1 Adjusted Means (95% CI)</td>
<td>Q3 Adjusted Means (95% CI)</td>
</tr>
<tr>
<td>Total soy food</td>
<td>n = 211</td>
<td>n = 223</td>
</tr>
<tr>
<td>hs-CRP, mg/dL</td>
<td>0.05 (0.04 - 0.05)</td>
<td>0.04 (0.03 - 0.05)</td>
</tr>
<tr>
<td>Medite 1</td>
<td>0.05 (0.04 - 0.05)</td>
<td>0.04 (0.03 - 0.05)</td>
</tr>
<tr>
<td>Medite 2</td>
<td>0.04 (0.03 - 0.05)</td>
<td>0.04 (0.03 - 0.05)</td>
</tr>
<tr>
<td>Medite 3</td>
<td>0.04 (0.03 - 0.05)</td>
<td>0.04 (0.03 - 0.05)</td>
</tr>
<tr>
<td>IL-6, pg/mL</td>
<td>1.05 (0.97 - 1.13)</td>
<td>1.00 (0.93 - 1.07)</td>
</tr>
<tr>
<td>Medite 1</td>
<td>1.05 (0.97 - 1.13)</td>
<td>1.00 (0.93 - 1.07)</td>
</tr>
<tr>
<td>Medite 2</td>
<td>1.04 (0.96 - 1.11)</td>
<td>1.01 (0.94 - 1.09)</td>
</tr>
<tr>
<td>Medite 3</td>
<td>1.04 (0.97-1.12)</td>
<td>1.02 (0.95-1.09)</td>
</tr>
<tr>
<td>IL-18, ng/L</td>
<td>210.4 (202.4-219.0)</td>
<td>205.6 (197.8-213.5)</td>
</tr>
<tr>
<td>Medite 1</td>
<td>210.4 (202.4-219.0)</td>
<td>205.6 (197.8-213.5)</td>
</tr>
<tr>
<td>Medite 2</td>
<td>208.4 (200.8-216.0)</td>
<td>205.8 (199.2-214.3)</td>
</tr>
<tr>
<td>Medite 3</td>
<td>207.5 (199.6-215.6)</td>
<td>205.5 (199.2-214.4)</td>
</tr>
<tr>
<td>Fermented soy food</td>
<td>n = 215</td>
<td>n = 221</td>
</tr>
<tr>
<td>hs-CRP, mg/dL</td>
<td>0.04 (0.04 - 0.05)</td>
<td>0.04 (0.04 - 0.05)</td>
</tr>
<tr>
<td>Medite 1</td>
<td>0.04 (0.04 - 0.05)</td>
<td>0.04 (0.04 - 0.05)</td>
</tr>
<tr>
<td>Medite 2</td>
<td>0.04 (0.04 - 0.05)</td>
<td>0.04 (0.04 - 0.05)</td>
</tr>
<tr>
<td>Medite 3</td>
<td>0.04 (0.04 - 0.05)</td>
<td>0.04 (0.04 - 0.05)</td>
</tr>
<tr>
<td>IL-6, pg/mL</td>
<td>1.04 (0.96 - 1.13)</td>
<td>0.94 (0.87 - 1.01)</td>
</tr>
<tr>
<td>Medite 1</td>
<td>1.04 (0.96 - 1.13)</td>
<td>0.94 (0.87 - 1.01)</td>
</tr>
<tr>
<td>Medite 2</td>
<td>1.03 (0.95-1.11)</td>
<td>0.95 (0.88-1.02)</td>
</tr>
<tr>
<td>Medite 3</td>
<td>1.03 (0.95-1.11)</td>
<td>0.95 (0.88-1.02)</td>
</tr>
<tr>
<td>IL-18, ng/L</td>
<td>213.3 (204.9-222.4)</td>
<td>195.9 (188.4-203.7)</td>
</tr>
<tr>
<td>Medite 1</td>
<td>213.3 (204.9-222.4)</td>
<td>195.9 (188.4-203.7)</td>
</tr>
<tr>
<td>Medite 2</td>
<td>212.8 (204.4-221.1)</td>
<td>197.2 (190.0-204.8)</td>
</tr>
<tr>
<td>Medite 3</td>
<td>211.8 (203.3-220.3)</td>
<td>197.0 (190.4-204.8)</td>
</tr>
<tr>
<td>Soy isoflavone</td>
<td>n = 209</td>
<td>n = 220</td>
</tr>
<tr>
<td>hs-CRP, mg/dL</td>
<td>0.03 (0.03 - 0.05)</td>
<td>0.03 (0.04 - 0.05)</td>
</tr>
<tr>
<td>Medite 1</td>
<td>0.03 (0.03 - 0.05)</td>
<td>0.03 (0.04 - 0.05)</td>
</tr>
<tr>
<td>Medite 2</td>
<td>0.03 (0.03 - 0.05)</td>
<td>0.03 (0.04 - 0.05)</td>
</tr>
<tr>
<td>Medite 3</td>
<td>0.03 (0.03 - 0.05)</td>
<td>0.03 (0.04 - 0.05)</td>
</tr>
<tr>
<td>IL-6, pg/mL</td>
<td>1.00 (0.93-1.08)</td>
<td>0.98 (0.91-1.05)</td>
</tr>
<tr>
<td>Medite 1</td>
<td>1.00 (0.93-1.08)</td>
<td>0.98 (0.91-1.05)</td>
</tr>
<tr>
<td>Medite 2</td>
<td>1.00 (0.93-1.07)</td>
<td>0.98 (0.91-1.05)</td>
</tr>
<tr>
<td>Medite 3</td>
<td>1.00 (0.93-1.08)</td>
<td>0.98 (0.91-1.05)</td>
</tr>
<tr>
<td>IL-18, ng/L</td>
<td>298.0 (200.0-216.5)</td>
<td>293.2 (195.7-211.3)</td>
</tr>
<tr>
<td>Medite 1</td>
<td>298.0 (200.0-216.5)</td>
<td>293.2 (195.7-211.3)</td>
</tr>
<tr>
<td>Medite 2</td>
<td>297.5 (196.6-215.1)</td>
<td>296.5 (196.6-214.6)</td>
</tr>
<tr>
<td>Medite 3</td>
<td>296.5 (196.6-214.5)</td>
<td>297.5 (196.5-215.8)</td>
</tr>
</tbody>
</table>

Men (n = 1053), women (n = 737).
All values are adjusted mean inflammatory markers; 95% confidence interval in parentheses.
Model 1 : adjusted for age (continuous).
Model 2 : model 1 plus adjusted for BMI ((logarithm), current smoker (y/n), current drinker (y/n), regular exerciser (y/n), diabetes (y/n), hypertension (y/n), allergic (y/n), and energy intake (continuous).
Model 3 : model 2 plus adjusted for vegetables, fruits and fish intake (continuous).
was shown that intake of fermented soy foods including miso and natto was inversely associated with the development of high blood pressure in both men and women with normal blood pressure and that natto intake reduced the risk of cardiovascular disease mortality (30, 31).

Although intervention studies have been carried out to determine the relationships between soy, soy isoflavone and inflammation status, the results are not consistent. Reverri et al. examined the relationships of fermented soy food consumption and inflammatory markers (Table 2). Our study shows the associations between intake of fermented soy foods and/or soy isoflavone and inflammatory markers (Table 2). Considering previous studies and our study, soy foods and/or soy-derived constituents might influence each inflammatory makers differently.

The reason why the effects of fermented and non-fermented soy products on inflammatory makers are different is not clear. At least, soy isoflavones cannot explain the discrepancy because intake of soy isoflavone derived from non-fermented soy products is higher than that derived from fermented soy products. Kim et al. examined the relationships of fermented soy food consumption and non-fermented soy food consumption with gastric cancer by a meta-analysis. It was shown that a high intake of fermented soy foods was significantly associated with an increased risk of gastric cancer, whereas an increased intake of non-fermented soy foods was significantly associated with a decreased risk of gastric cancer (45). The results of that study indicate the possibility that the effects of fermented soy food are different from those of non-fermented soy food in some aspects.

Our study shows the associations between intake of fermented soy food and inflammatory markers, but our study has some limitations. First, because of the cross-sectional design, we cannot infer causality from our results. Second, despite extensive adjustments for potential confounding factors, we cannot rule out the possibility that part of the observed associations might be related to a healthy lifestyle and/or other bioactive compounds not examined in this study. In this study, high level of tofu intake and soymilk intake were associated with increased IL-6 and hs-CRP concentrations.
respectively (Table 3). These findings are unexpected. Third, we
used a food-frequency questionnaire to estimate participants’ die-
tary intake. The questionnaire is not a measure of absolute intake but is suited for classifying individuals into intake categories and is the most commonly used approach for assessing intake in epide-
miological studies. Measurement error in reporting might lead to random errors that could dilute the real associations between soy foods and inflammatory markers. Fourth, as with any observational study, observed associations might be in part due to residual con-
 founding despite extensive adjustment for known confounding fac-
tors. Lastly, the sample size was small and all of the subjects were Japanese, so applicability to other populations is unclear.

In conclusion, we found that high intake levels of fermented soy foods including miso and soy sauce in men were associated with a reduction in serum IL-6 level, which has been shown to be associ-
ated with many chronic diseases. We did not observe any effect of soy foods on IL-18 in level in men or women. Further study is needed to confirm the effects of fermented soy foods on inflamma-
tory markers.

CONFLICT OF INTEREST

The authors declare they have no conflict of interest.

ACKNOWLEDGEMENTS

This study was supported in part by The knowledge Cluster Initiative (Tokushima Health and Medicine Cluster) from Ministry of Education, Culture, Sports, Science and Technology of Japan (MF), by Grants-in-Aide for research from Tokushima Prefecture (MF), Central Miso Institute foundation (TS). We thank the partici-
pants and the staff of the Clinical Research Center for Diabetes of Tokushima University Hospital.

REFERENCES

2. Fischer CP, Perstrup LB, Berntsen A, Eskildsen P, Pedersen BK : Elevated plasma interleukin-18 is a marker of insulin-
tein and other circulating markers of inflammation in the pre-
1397, 2004
5. Verma S, Devaraj S, Jialal I : Is C-reactive protein an innocent bystander or proatherogenic culprit? C-reactive protein pro-
 motes atherothrombosis. Circulation 113 : 2135-2150, 2006
7. Aleksandrova K, Jenab M, Boeing H, Jansen E, Bueno-de-
Mesquita HB, Rinaldi S, Riboli E, Overvad K, Dahm CC,
Olsen A, Tjønneland A, Boffetta P, Khaw KT, Wareham N, Allen NE,
Spencer E, Romaguera D, Norat T, Pischon T : Circulating C-
reactive protein concentrations and risks of colon and rectal cancer : A nested case-control study within the European Prospective Investigation into Cancer and Nutrition. Am J
Epidemiol 172 : 407-418, 2010
8. Erlinger TP, Platz EA, Rifai N, Helzlsouer KJ : C-reactive pro-
tein and the risk of incident colorectal cancer. JAMA 291 : 585-
590, 2004
10. Giugliano D, Ceriello A, Esposito K : The effects of diet on
inflammation : emphasis on the metabolic syndrome. J Am
Coll Cardiol 48 : 677-685, 2006
W : Soy food consumption is associated with lower risk of
coronary heart disease in Chinese women. J Nutr 133 : 2874-
2878, 2003
12. Clerici C, Setchell KD, Battezzati PM, Pirro M, Giuliano V,
Asciutti S, Castellani D, Nardi E, Sabatino G, Oriandi S,
Baldoni M, Morelli O, Mammarino E, Morelli A : Pasta natu-
really enriched with isolavone aglycons from soy germ re-
duces serum lipids and improves markers of cardiovascular
13. Clerici C, Nardi E, Battezzati PM, Asciutti S, Asciutti S,
Castellani D, Corazza S, Giuliano V, Gizzi S, Perilli G, Di
Matteo G, Galli F, Setchell KD : Novel soy germ pasta im-
proves endothelial function, blood pressure, and oxidative
stress in patients with type 2 diabetes. Diabetes Care 34 : 1946-
1948, 2011
Zheng W : Prospective cohort study of soy food intake and colo-
15. Lee SA, Shu XO, Li H, et al. Adolescent and adult soy food
intake and breast cancer risk : Results from the Shanghai
IC, Minihane AM, Weinberg PD, Rimbach G : Effect of ge-
nistein and daidzein on platelet aggregation and monocyte
17. Mukherjee TK, Nathan L, Dinh H, Reddy ST, Chaudhuri G :
17-epi-estriol, an estrogen metabolite, is more potent than
estradiol in inhibiting vascular cell adhesion molecule 1
(VCAM-1) mRNA expression. J Biol Chem 278 : 11746-11752,
2003
18. Raschke M, Rowland IR, Magee PJ, Pool-Zobel BL : Genistein
protects prostate cells against hydrogen peroxide-induced
DNA damage and induces expression of genes involved in
the defence against oxidative stress. Carcinogenesis 27 : 2322-
233, 2006
19. Dia VP, Berhow MA, Gonzalez De ME : Bowman-Birk inhibi-
tor and genistein among soy compounds that synergistically
inhibit nitric oxide and prostaglandin E2 pathways in lipopo-
lysaccharide-induced macrophages. J Agric Food Chem 56 :
2878, 2003
E : Anti-inflammatory effects of flavonoids : Genistein, kaempherol, quercetin, and daidzein inhibit STAT-1 and NF-

cappaB activations, whereas flavone, isor-hamnetin, naringin,
and pelargonicin inhibit only NF-kappaB activation along with their inhibitory effect on iNOS expression and NO
production in activated macrophages. Mediators Inflammm
21. Rimbach G, Weinberg PD, de Pascual-Teresa S, Alonso MG,
Ewins BA, Turner R, Minihane AM, Botting N, Fairley B,
Matsugo S, Uchida Y, Cassidy A : Sulflation of genistein alters
its antioxidant properties and its effect on platelet aggregation and endothelial function. Biochim Biophys Acta 1670 : 229-237, 2004

