
INTRODUCTION

Insulin stimulates the cellular uptake of glucose and
subsequent glucose oxidation by suppressing free fatty
acid (FFA) levels and fat oxidation (1). Insulin also
activates pyruvate dehydrogenase (2, 3), which controls
the entry of carbohydrates into the tricarboxylic acid
cycle. Insulin-mediated glucose utilization is diminished in
the presence of elevated plasma FFA concentration in
patients with diabetes mellitus (4, 5). Fatty acid and its
oxidation stimulate gluconeogenesis, which inhibits
glucose uptake and glycolysis in liver (6, 7). In addition, a
positive correlation has been reported between plasma
FFA concentration or lipid oxidation and hepatic glucose
production in non-insulin-dependent diabetes mellitus
(NIDDM) patients (8, 9).
Elevated concentrations and the increased oxidation

of plasma FFA have been shown to induce insulin
resistance (10-12). Insulin resistance is a characteristic
feature of NIDDM (8, 13, 14). In contrast, insulin
resistance has not been demonstrated to be significant in
treated insulin-dependent diabetes mellitus (IDDM) (15).
However, it has been demonstrated that the cellular effect
of insulin is reduced in IDDM (16-18). In addition,

adolescents with poorly controlled IDDM have a
significant degree of hepatic insulin resistance (19).
In this study, the relationship between glycemic control

and indices of energy metabolism such as resting energy
expenditure (REE) and respiratory quotient (RQ) was
evaluated to compare the pattern of energy metabolism in
IDDM and NIDDM patients.

PATIENTS AND METHODS

Patients
The study population consisted of 18 IDDM children

who attended a summer camp for diabetic children and 19
NIDDM adult patients admitted to Tokushima University
Hospital for dietary education and glycemic control. The
physical characteristics of the subjects are shown in Table
1. Body mass index tended to be higher in NIDDM
patients. IDDM patients underwent dietary therapy and
received insulin. NIDDM patients were treated with either
diet alone or oral hypoglycemic agents or both. Four
NIDDM patients were re-studied after treatment for one
month. Informed consent in this study was obtained from
all subjects.

Energy metabolism studies
The REE was studied using open-circuit indirect

calorimetry (Calorie Scale, Chest MI, Tokyo) employing a
transparent ventilated hood system while the IDDM
children attended camp or on the second day of admission
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for NIDDM patients. The system was calibrated before
each test with a reference gas mixture (95% O2 and 5%
CO2). The REE was measured for 15 min between 7 : 00
and 8 : 00 after a 12-h overnight fast. Energy expenditure
was calculated from the respiratory gas exchange using a
standard equation (20). The RQ and protein oxidation rate
were calculated from measurements of daily urinary
nitrogen excretion. Urinary nitrogen production was
calculated from measured daily urinary urea elimination
(21). Fat and carbohydrate utilizations were calculated
from the nonprotein RQ (20). Percentages of the ratio
of REE to predicted REE which was obtained from
recommended dietary allowances for the Japanese (22),
were expressed as % REE.

Analysis
The plasma glucose concentration was measured by the

glucose oxidase method using a Beckman glucose
analyzer II (Beckman Instrument, Fullerton, CA). FFA
level was assayed by a fluorometric method (23).
Hemoglobin A1C (HbA1C) concentration in blood was
measured by high-pressure liquid chromatography and its
reference level for the assay was 5-7%. Body composition
including lean body mass was assessed by a bioelectric
impedance analysis. All data are presented as means±SD.
Statistical analyses were performed using Student's t test
for unpaired data and the Wilcoxon matched pairs test for
nonparametric data.

RESULTS

1) Physical and metabolic parameters in IDDM and
NIDDM patients (Table 1)
Fasting blood glucose (FBG) and HbA1C concentrations

in NIDDM individuals were not significantly different
from those of IDDM patients. In contrast, % REE and FFA
concentrations were higher while the RQ was lower in
IDDM patients than those of NIDDM. These results
indicated that the rates of energy expenditure and lipid
oxidation in IDDM were significantly elevated than those

of NIDDM patients. However glycemic control as
estimated by FBG and HbA1C concentrations were the
same in both IDDM and NIDDM patients.

2) Relationship between FBG or HbA1C and % REE or RQ
in IDDM and NIDDM patients
% REE demonstrated a positive correlation with both

FBG (r=0.490, p<0.05) and HbA1C (r=0.477, p<0.05) in
IDDM individuals. These parameters also showed same
values in NIDDM patients although they were not
significant (Figure 1 A and 1 B). RQ was found to have an
inverse correlation with HbA1C in NIDDM (r=-0.652,
p<0.01) but was not remarkable in IDDM (Figure 2 A).
Moreover, RQ had an inverse correlation with the FBG in
both IDDM (r=-0.718, p<0.001) and NIDDM (r=-0.580,
p<0.01) (Figure 2 B). The linear regression was similar
for both IDDM and NIDDM patients. However, RQ values
in IDDM individuals were always 0.07 lower than those in
NIDDM, indicating a 17% higher lipid oxidation rate
in IDDM than in NIDDM patients at various FBG
concentrations.

3) Relationship between FFA and FBG in IDDM and
NIDDM patients (Figure 3)
FFA concentrations in IDDM were more widely

Table 1. Physical and metabolic parameters in IDDM and NIDDM
patients

1. IDDM, insulin-dependent diabetes mellitus ; NIDDM,
non-insulin-dependent diabetes mellitus ; BMI, body mass index ;
FBG, fasting blood glucose ; HbA1C, glycohemoglobin ; FFA, free
fatty acid ; % REE, resting energy expenditure(REE)/predicted
energy expenditure (BEE)x 100 ; RQ, respiratory quotient.
2. x±standard deviation (SD).
3-5. Significant difference between IDDM and NIDDM, 3, p<0.02 ;
4, p<0.001 ; 5, p<0.005.

Fig. 1. Relationship between A) HbA1C (IDDM : r=0.477, p<0.05,
NIDDM : ns.) and B) FBG (IDDM : r=0.490, p<0.05, NIDDM : ns.)
and % REE in IDDM (■ - - - - and) and NIDDM (△ and )
patients.

IDDM1

(n=18)
NIDDM1

(n=19)

Age (y)
BMI (kg/m2)
FBG (mg/dl)
HbA1c (%)
FFA (μEq/l)
% REE (%)
RQ

11.9±2.72

18.9±2.9
175±99
8.64±1.6
928±421
133±25
0.707±0.06

54.4±12.9
24.1±4.8
186±84
9.29±2.2
628±4183

115±144

0.768±0.065
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distributed than those in NIDDM. FFA concentrations
were positively related with FBG (r=0.655, p<0.01) in
IDDM, although this relationship was not significant in
NIDDM.

4) Relationship between % REE and RQ in IDDM and
NIDDM patients (Figure 4)
A remarkable inverse relationship between % REE and

RQ was observed in both IDDM (r=-0.670, p<0.01) and
NIDDM patients (r=-0.520, p<0.05) (Figure 4). However,

the slope between those parameters was steeper in IDDM
than in NIDDM. The lines corresponding to IDDM and
NIDDM values crossed at 122 of % REE and 0.740 of RQ.
In marked contrast, RQ values were found to be less than
0.7, which indicated the production of ketone bodies (24),
in 8 (44%) of 19 IDDM patients and 2 (11%) of 19 NIDDM
patients, respectively.

5) Effects of treatment on % REE and RQ in NIDDM
patients
As shown in Table 2, a one-month period of treatment

of 4 NIDDM patients resulted in improvement of FBG,
HbA1C and FFA values. Likewise, % REE decreased
remarkably while RQ slightly increased. Thus, all the
biochemical and metabolic parameters improved with
treatment.

Fig. 2. Relationship between A) HbA1C (IDDM : ns, NIDDM :
r= -0.652, p<0.01) and B) FBG (IDDM : r= -0.718, p<0.001, NIDDM :
r= -0.580, p<0.01) and RQ in IDDM (■ - - - - and) and NIDDM (△
and ) patients.

Fig. 3. Relationship between FBG and FFA in IDDM (■ - - - - and,
r= -0.655, p<0.01) and NIDDM (△ and , ns.) patients.

Fig. 4. Relationship between % REE and RQ in IDDM (■ - - - - and,
r= -0.670, p<0.01) and NIDDM (△ and , r= -0.520, p<0.05)
patients.

Table 2. Effects of glycemic control on % REE and RQ in NIDDM
patients

1. FBG, fasting blood glucose ; HbA1C, glycohemoglobin ; FFA,
free fatty acid ; REE, resting energy expenditure ; RQ, respiratory
quotient.
2. x±standard deviation (SD).
3. Significantly different than before treatment, p<0.05.

Before
(n=4)

After
(n=4)

FBG (mg/dl)1

HbA1c (%)1

FFA (μEq/l)1

% REE (%)1

RQ1

183±912

10.1±2.8
667±309
119±15
0.753±0.05

153±73.
8.7±1.7
593±236
108±93

0.779±0.05
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DISCUSSION

The negative correlation between FBG or FFA and
RQ suggests that low insulin levels exert their regulatory
effect on intracellular glucose and fat metabolism by
controlling the availability of FFA substrate for fat
oxidation, which in turn inhibits glucose oxidation. In
diabetic patients, FFA oxidation consumes nicotinamide
adenine dinucleotide, thereby resulting in an accumula-
tion of acetyl CoA, a powerful allosteric inhibitor of
pyruvate dehydrogenenase (25, 26). A prolonged effect of
decreased glucose oxidation is an increase in pyruvate
dehydrogenase kinase activity, which in turn leads
to enhanced phosphorylation and inactivation of the
pyruvate dehydrogenase complex (27). On the other
hand, the accumulation of acetyl CoA activates pyruvate
carboxylase, the first enzymatic step in the gluconeo-
genesis pathway (25), thus making more pyruvate
available for gluconeogenesis (28). Furthermore, oxidation
of FFA provides energy for gluconeogenesis and
stimulates it in an FFA concentration dependent manner
(29). It is conceivable that increased FFA concentration
contributes to the excessive rates of gluconeogenesis in
IDDM and NIDDM patients. Therefore, increased REE is
associated with a degree of glucose intolerance in both
IDDM and NIDDM (30). The reduction in REE after
improved glycemic control was also observed in
association with an increase in RQ, reflecting reductions
of lipid oxidation and hepatic glucose production (31).
RQ in IDDM was 0.07 lower than that of NIDDM patients
at various FBG concentrations. These results indicate that
the lipid oxidation rate was 17% higher in IDDM than
NIDDM. Since the RQ of ketogenesis is zero, a measured
nonprotein RQ of less than 0.70 is conceivable when a net
synthesis of ketone bodies occurs without further
oxidation but with subsequent retention and/or excretion
(24). Thus, ketone bodies appear in plasma as products of
increased FFA oxidation in poorly controlled diabetic
patients. IDDM patients have a greater tendency to
manifest ketoacidosis than NIDDM because % REE is
inversely correlated with RQ to a much greater degree in
IDDM than NIDDM. Thus, the pattern of energy
metabolism in IDDM patients is quite different from that
in NIDDM patients. This may result from a propensity by
IDDM patients to synthesize ketone bodies.
Skutches et. al. have demonstrated a reduced respon-

siveness of adipose tissue to insulin-stimulated glucose
oxidation in the presence of acetone, acetol, and 1,2-
propanediol which was not readily reversible after the
withdrawal of acetone from drinking water (32). These
results indicate that time is required in order to return to
maximum insulin sensitivity after the onset of diabetic
ketoacidosis. Therefore, our study suggests that more
intensive treatment is required to adequately control
blood glucose levels in IDDM.
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