B 8

b R W A

=
of
B
i
-
ofF
b
AV
©
\1
afo
b2
™

Space- and Time-Efficient String Dictionaries

FALHR 25 B 20 S 0 I TR 56 0> N 0 S B B

- In modern computer science, the management of massive data is a fundamental problem because
the amount of data is growing faster than we can easily handle them. Such data are often
represented as strings such as documents, Web contents and genomics data; therefore, data
structures and algorithms for space-efficient string processing have been developed by many
researchers. In this thesis, we focus on a string dictionary that is an in-memory data structure for
storing a set of strings. It has been traditionally used to manage vocabulary in natural language
processing and information retrieval. The size of the dictionaries is not problematic because of
Heaps’ Law. However, string dictionaries in recent applications, such as Web search engines, RDF
stores, geographic information systems and bioinformatics, need to handle very large datasets. As
the space usage of string dictionaries is a significant issue in those applications, it is necessary to’
develop space-efficient data structures.

If limited to static applications, existing data structures have already achieved very high space
efficiency by exploiting succinct data structures and text compression techniques. For example,
state-of-the-art string dictionaries can be implemented in space up to 5% of the original dataset
size. However, there remain trade-off problems among space efficiency, lookup-time performance
and construction costs. For example, Re-Pair that is a powerful compression technique for a text is
well used to obtain high space efficiency and fast lookup operations, but the time and space needed
during construction are not practical for very large datasets.

In our work, we attempt two approaches to solve the problems. One develops novel string
dictionaries based on double-array tries. The double-array trie can support the fastest lookup
operation, but its space usage is very large. We propose how to improve the disadvantage. The
novel string dictionaries can support very fast lookup operations, although the space usage is
somewhat larger compared to éxisting compressed ones. The other addresses to improve the high
construction costs of applying Re-Pair by introducing an alternative compression strategy using
dictionary encoding. Our strategy enables lightweight construction, while providing competitive
space efficiency and operation speed.

If allowing dynamic operations such as insertion and deletion, there are some sophisticated data
structures. While they improve the space efficiency by reducing pointer overheads, they still
consume much larger space than the static string dictionaries because some redundancy for
dynamic update is needed. In fact, the number of dynamic applications handling very large string
dictionaries is fewer than that of static ones; however, a part of applications as in Web crawler and
Semantic Web need to compact dynamic string dictionaries. In this thesis, we propose a new data
structure through path decomposition that is a technique for constructing cache-friendly trie
structures. Although the path decomposition has been utilized to static dictionary implementation,
we adopt it for dynamic dictionary construction with a different approach. From experiments, we
show that our data structure can implement the smallest dynamic string dictionary.

‘We also address problems of dynamic double-array trie dictionaries. The dynamic dictionaries
are well-used as in stream text processing and search engines, but the space efficiency tends to
decrease with key updates. Although we can still maintain high efficiency using existing methods,
these methods have practical problems of time and functionality. In this thesis, we present several
practical rearrangement methods to solve these problems. We show that the proposed methods can
support significantly faster rearrangement via read-world datasets.

As all our methods are heuristic and practical, we sometimes do not provide the theoretical
guarantees; however, we always show the practical performances through careful experiments
using large real-world datasets. Furthermore, most of our implementations are provided as open
source libraries under the MIT License.




