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Abstract

Consider the Cauchy problem for the non-degenerate Kirchhoff
type dissipative wave equations with the initial data belonging to
H2(RM) x HY(RY) in unbounded domains. When the coefficient
p or the initial energy E(0) is small at least, we show the global
existence theorem and derive decay estimates of energies in the L2-
frame. Moreover, when the initial data belong to L'(R™) x L}(RY)
in addition, we improve the decay rates of the solutions.
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1 Introduction

In this paper we consider the Cauchy problem for the non-degenerate Kirch-
hoff type dissipative wave equations :

,
pu” + (1+/ A1/2u(-,t)l2dm> Autu' =0 in RY x[0,00),
RN

u(z,0) =up(x) and u'(z,0) =uy(x) in RV,

(1.1)

where v = u(z,t) is an unknown real value function, " = 9/9t, A = —A =
- Zjvzl 9?/0a3 is the Laplace operator with domain D(A4) = H*(RY), p > 0
and v > 0 are positive constants.

Equations (1.1) describes small amplitude vibrations of an elastic string
when the dimension N is one (see Kirchhoff [9] for the original equation, and
also see Carrier [5], Dickey [6]). Equations including non-local terms like (1.1)
are called Kirchhoff type.
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When the initial data belong to Sobolev spaces, Arosio and Garavaldi [1]
have carried out detailed analysis about the existence of local solutions for the
Kirchhoff type equations (also see [2], [4], [6], [22], and the references cited
therein).

Yamada [21] and Brito [3] studied on the global solvability in suitable
Sobolev spaces using the energy method. Moreover, Yamada [21] derived some
decay estimates of the solutions like (1.10) in the L2-frame when v > 1 (see
Hashimoto and Yamazaki [7] for abstract cases). In previous paper [15], we
improved the decay rates in [21] and also derived the decay estimates (1.10)—
(1.11) when v > 1 and the initial data [ug,u;] € H2(RY) x HY(RY) are small
(see [17] for bounded domain cases).

On the other hand, in addition to the energy method in the L?-frame,
using the Fourier transform method in the L' N L?-frame, we can improve
the decay rates in (1.10)—(1.11) and in this paper we obtain the better decay
estimates (1.12)—(1.14) when any v > 0. Moreover, under the assumption that
the coefficient p > 0 or the initial energy E(0) is small at least, we will show
the global solvability for (1.1).

We define the energies E(t) and H(t) by

B(t) = pllu'(t)|* + Par(t) (1.2)
and
1A 24 (2)]]? 2
Ht)=p—++—+]4 1.
(0= ri g + 4wl (13
where || - || is the usual norm in L? = L?(R"Y) and
M(t) = [|AY2u(t)|? (1.4)
and
M(t) 1
Py(t) = T4 p) dp=——((L+M@)*" —1) . L
w= [ e de= = (A @) -1) )
Then, it is easy to see that
M(t) < Pu(t) < (1+M(t))" M(t), (1.6)
and in particular, when ¢ = 0 we have
.
E(0) < pller]? + (141147 2ug]|?) " |4 2uo 2 (L7)
and
H(0) < pllAY2u||? + || Auol|*. (1.8)

Our main result is as follows.
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Theorem 1.1 Let the initial data [ug,u1] belong to H?(RN) x HY(RY). Sup-
pose that the coefficient p > 0 and the initial data [ug,u1] satisfy

pE(0) (v*H(0)) < 1. (1.9)

Then the problem (1.1) admits a unique global solution u(t) in the class

C°([0, 00); H(R™)) N C([0, 00); H (RY)) N C%([0,00); L2(RY)) satisfying
1AV 2u()> < C(L+ )71, [ (O + [ Au()> < C(L+6)72, (1.10)
IAY2d @) + [ (@) < O+ )7 for t>0. (1.11)

Moreover, if the initial data [ug, u] belong to L (RYN) x LY(RYN) in addition,
the solution u(t) satisfies

N
|u(t)|? < C(1+t)™" with 1 = min {2,2} , (1.12)

A 2u(t)|? < OO+, W@ + [ Au()]® < C+5)720, (1.13)
|42 O + ()P < CO+07> for 120, (1.14)

where C' is some positive constant.

Theorem 1.1 follows from Theorem 2.3, Theorem 3.6, and Theorem 4.5 in
the continuing sections.

The notations we use in this paper are standard. The symbol (-,-) means
the inner product in L? = L%(R") or sometimes duality between the space X
and its deal X’. The symbol || - || L» means the norm in LP = LP(RY) (we often
denote || - || = || - ||z2). Positive constants will be denoted by C' and will change
from line to line.

2 Existence

We obtain the following local existence theorem by standard arguments and
we omit the proof here (see [1], [14], [18], [19], [20], and the references cited
therein).

Proposition 2.1 Suppose that the initial data [ug,u1] belong to H*(RY) x
HY(RN). Then the problem (1.1) admits a unique local solution u(t) in the
class C°([0,T); H2(RN)) n C([0,T); HY(RN)) N C2([0,T); L2(RY)) for some
T =T(|luo|l g2, l|urllgr) > 0. Moreover, ||uo|| gz + ||ui||g1 < oo fort >0, then
we can take that T = oo.

Proposition 2.2 The solution u(t) of (1.1) satisfies

B(t) + 2/0 I ()| ds = E(0) (2.1)
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and
lu@®))?> < JO)  with J(0) = 2(2||ugl||* + 3pE(0)). (2.2)

Proof. Multiplying (1.1) by 2u/(t) and integrating it over RY we have

d , _
%E(t) +2||lu/(1)]|> =0, (2.3)

and integrating (2.3) in time ¢, we obtain the energy identity (2.1).
Multiplying (1.1) by 2u(t) and integrating it over RY, we have

I + 20+ QP 310 =20 (W OF - G O.u)) . @4

and integrating (2.4) in time ¢, we observe from the Young inequality that
t
Ju@®)[? + 2/ (14 M(s))"M(s)ds
0
t
= Jluol® +2p ((U07u1) — (u(t), ' (t)) +/ [/ ()12 d8>
0

1 t
< ol + (ol + s ) + (GO + 267 01 ) + 20 [ (o)
and from (2.1) that
1
SO < 2uoll* + 3pE(0)
which implies the desired estimate (2.2). O

Theorem 2.3 Let the initial data [ug,u1] belong to H?(RN) x HY(RY). Sup-
pose that the coefficient p > 0 and the initial data [ug,u1] satisfy

Y pE(0)H(0) < 1. (2.5)

Then, the problem (1.1) admits a unique global solution u(t) in the class
C°([0, 00); H(R™)) N C([0, 00); H' (RY)) N C%([0,00); L2(RY)) satisfying

|u(t)||* < J(0) and M(t) < E(t) < E(0) and H(t) < H(0) (2.6)
(see (2.2), (1.7), (1.8) for J(0), E(0), H(0), respectively).

Proof. Let u(t) be a solution of (1.1) on [0,7]. Since §H(0) < 1 with
§ =~2pE(0) by (2.5), putting

Ty =sup {t € [0,00) | 6H(s) <1for 0 < s <t}
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we see that Ty > 0. If T3 < T, then
0H(t) <1 for 0<t<T; and O0H(Ty)=1. (2.7)

Multiplying (1.1) by 2(1 + M (t))~7Au/(t) and integrating it over RY, we
have

dfﬂﬂ+2(1+7p M) )WM&W@W2_

dt 21+ M) ) (14 M(t)r
Since it follows from (2.1) and (2.7) that
v M) /
APl SV S T
1+ o = 1 el ) Aut)]

>1—y(pE(0))2H(t)? =1 — (6H(t))* >0
for 0 <t < Ty, we have

SHW<0 or H{) < H(0) (2:8)

for 0 <t < Tj. Then, we observe from (2.5) and (2.8) that
SH(t) <dH(0) <1

for 0 < ¢ < T) which is a contradiction to (2.7), and hence, we have that
T >T.

Thus, from (2.1), (2.2), and (2.8) we obtain that ||u(t)|| gz + [|v' (@) ||z < C
for 0 < t < T. Therefore, by the second statement of Proposition 2.1, we
conclude that the problem (1.1) admits a unique global solution, and also we
obtain (2.6). O

3 Decay

In this section we will derive some decay estimates of the solution u(t) of
(1.1) given by Theorem 2.3. The following generalized Nakao type inequality
is useful to derive decay estimates of energies (see [8], [12], [16] for the proof,
and also [11], [13]).

Lemma 3.1 Let ¢(t) be a non-negative function on [0,00) and satisfy

sup  ¢(s)" " < (kod(t)™ + ka(1+1)77) (6(t) — o(t + 1)) + ka(1+1) 77

t<s<t+1

with certain constants ko, k1, ko >0, a > 0, 8 > —1, and v > 0. Then, the
function ¢(t) satisfies

—0 . 1+6 Y
o(t) < Co(141t)77, Q—mln{a,1+a}

fort >0 with some constant Cy depending on ¢(0).
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Proposition 3.2 Under the assumption of Theorem 2.3, it holds that
M(t) < E@t)<C(1+t)"*'. (3.1)

Proof. Integrating (2.3) over [t,t 4 1], we have

2/t+1 [u/(s)|[>ds = E(t) — E(t+1)  (=2D(t)*). (3.2)
t
Then there exist two numbers ¢1 € [t,t+1/4] and t3 € [t+3/4,t+ 1] such that
I ()2 < 4D for j=1,2. (3.3)
On the other hand, since it follows from (1.2) and (2.4) that
E(t)+ (1+ M()")M(t) — Pa(t)
= 2p||u’(1)|* — P%(U'(t)w(t)) — (' (t),u(t)) , (3-4)

integrating (3.4) over [t1,t2], we observe from (1.6), (3.2), and (3.3) that

/:2 E(s)ds

2 / d !/ /
</ <2pu I = 9y (0 (5): ) = (/9. u(s) ) s
t+1

<o [ s \|2ds+pz||u M)+ [ 1 @lu(s) ) ds

< 2D’ +CD(t) sup g(s)  with g(t)? = [u(t)]?. (3.5)

t<s<t+1

Integrating (2.3) over [t,t2], we have from (3.2) and (3.5) that
to
E(t) < E(t2) +2/ [’ (s)||? ds
¢

to t+1
§2/ B(s) ds+2/ ! (5)|12 ds
t1 t

< CD(t)*+CD(t) sup g(s).
t<s<t+1

Since 2D(t)? = E(t) — E(t + 1) < E(t) by (3.2), we observe

B2 < (D0P+ sw ols?) Dt

t<s<t+1

<C <E(t) +  sup g(s)2> (B(t) — E(t+1)) . (3.6)

t<s<t+1
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Thus, since E(t) < E(0) and g(t) = |Ju(t)||* < J(0) by (2.1) and (2.2), we
observe

Et)*<C(E(t)-E(t+1)), (3.7)

and hence, applying Lemma 3.1 to (3.7), we obtain the desired estimate (3.1).
O

Proposition 3.3 Under the assumption of Theorem 2.3, it holds that
F(t) = pl| AV ()] + (1 + M ()" [|[Au(@®)|* < C(1+ )72, (3.8)

Proof. Multiplying (1.1) by 24w/ (¢) and integrating it over RY | we have from
(2.6) that

%F(t) + 2| AV ()7 = (1 + M ()~ M (8) ]| Au(t)]|? (3.9)

< CIAVPut)|[| A2 ()| Aut)]]?
and the Young inequality yields

%F(t) +AP @GP < CF@)? with f(1)° = M) Au(®)]*. (3.10)

Integrating (3.10) over [t,¢ + 1], we have

t+1
/ |AY24 (s)||?ds = F(t) — F(t+1)+C sup f(s)? (= D(t)?).
¢ 1<s<t+1
(3.11)
Then, there exist two numbers ¢ € [t,t+1/4] and to € [t +3/4,t+ 1] such that
|AY24/ (8;)||> < 4D(t)?  for j=1,2. (3.12)

On the other hand, multiplying (1.1) by Au(t) and integrating it over R,
we have

(1 21(2))7 ) Au(t)
= o (42017 = (A0 0, 4u(0)) - (42 1), 4200

d
F(t) = 2p| A*d (8)]* — p

(A2 (1), AV2u(t) — (AV2 (1), AV Pu(t)),

(3.13)
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and integrating (3.13) over [ty, 2], we have from (3.11) and (3.12) that

/:2 F(s)ds

t+1 2
< QP/t |AY 2! (5)[1% ds + p Y I[AY 2/ (8) || A ult)|

j=1
t+1

+ / 1AV (3) ||| AY2u(s) ds
t

<2pD(t)* +CD(t) sup g(s)  with g(t)> = M(t). (3.14)
t<s<t+1

Moreover, there exists t, € [t1,t2] such that

F(ty) < Z/t2 F(s)ds. (3.15)

For 7 € [t,t+1], integrating (3.9) over [7,t.] (or [t.,7]), we have from (3.10)
and (3.15) that

) =F(t)+ [ (2147206 =1+ M) M ()] Au)]?) ds

to

<2 F(s)ds + /H_l (CHAl/2u’(s)||2 + Cf(s)2) ds
t

t1

and from (3.11) and (3.14) that
sup F(s) <COD(t)>+CD(t) sup g(s)+C sup f(s)?.

t<s<t+1 t<s<t+1 t<s<t+1
Since D(t)> = F(t) — F(t +1)+ C sup f(s)> < F(t)+C sup f(s)* by
t<s<t+1 t<s<t+1

(3.11), we observe

sup F(s)?<C (D(t)2 + sup g(s)2> D(t)*+C sup f(s)*

t<s<t+1 t<s<t+1 t<s<t+1
<o(FEP+ sw f67+ sw o(s?) (FO) - Fe+ 1)
t<s<t+1 t<s<t+1

LOF() sup f<s>2+c< sup f(s) + sup g<s>2) sup  f(s)?

t<s<t+1 t<s<t+1 t<s<t+1 t<s<t+1
or

sw PP <C(FP+ sw [P+ sw al9?) (F0) - F+1)

t<s<t+1 t<s<t+1 t<s<t+1

co( s foPe sw g6R) s f97 (G0

t<s<t-+1 t<s<t+1 t<s<t+1
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Since it follows from (3.10), (2.6), and (3.1) that

_ C+n7",
f(t)2 = M(t)HAu(t)Hz < {O(l )71F(t) ’ (317)
and from (3.13) and (3.1) that
g0 = M(H) < C(L+1)", (3.18)

we have

sup F(s)* < C(F(t)+ (L+8)7") (F(t) = F(t +1)) + C(1+1)72 sup F(s)

t<s<t+1 t<s<t+1

or

sup F(s)?<C(FO)+Q+t) ") (F(t)—F(t+1)+C(1+t)~". (3.19)

t<s<t+1
Thus, applying Lemma 3.1 to (3.19), we obtain the desired estimate (3.8). O
Proposition 3.4 Under the assumption of Theorem 2.3, it holds that
v )| <C+1)~2. (3.20)

Proof. Multiplying (1.1) by 2u/(t) and integrating it over RY, we have

p%IIU’(f)H2 +2[/ ()] = —2(1 + M (1)) (Au(t), u'(t)) ,

and using the Young inequality we observe from (2.6) and (3.8) that

o )P+ (1) < ()? (321)
with
h(t)? = (14 M) ||Au(®)||* < C(1 + )2 (3.22)

which gives the desired estimate (3.20). O
Proposition 3.5 Under the assumption of Theorem 2.3, it holds that

L(t) = plla” (O + (1 + M () [|AY>d/ (1)) + % (L+ M) M ()

<C@+t)73. (3.23)
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Proof. Multiplying (1.1) differentiated with respect to ¢ by 2u”(t) and inte-
grating it over RY, we have

d

L) + 2w (t)||? (3.24)
= 39(L+ M) M 1A ) + DD (a2 ar @)
<OF@?  with 70 = [/ (0] | Au() A (1)) (3.25)

Integrating (3.25) over [t,t + 1], we have

t41
2/t |u”(s)||*ds < L(t) — L(t +1) + C sup f(s)* (=2D(t)?). (3.26)

t<s<t+1
Then, there exist two numbers ¢, € [t,t+1/4] and t5 € [t +3/4,¢+ 1] such that
o’ (t)||* <4D(t)?  for j=1,2. (3.27)

On the other hand, multiplying (1.1) differentiated with respect to ¢ by
u/(t) and integrating it over RY we have

(1+ M(0)[|AY2d ()] + %(1 + M) M (1)

—o (Il - §

(W00 - (0.0 ()

L(t) = 20l (1) — pos (" (1), (1)) — (), (1)), (3:28)

and integrating (3.28) over [t1, t2], we observe from (3.26) and (3.27) that

to
/ L(s)ds
ty
t+1

t+1 2
< 2p/ [ (s)I1* ds + p Y [lu” (t5) |1/ (25)]] +/ [[u” (s)||l|u'(s)|l ds
t =1 t

<2pD(t)* +CD(t) sup g(s)  with g(t)*> =[]/ (t)|*. (3.29)

t<s<t+1

Moreover, there exists t, € [t1,%2] such that

L(t.) < 2/t2 L(s)ds. (3.30)

t1
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For 7 € [t,t + 1], integrating (3.24) over [7,t.] (or [t.,T]), we have from
(3.25) and (3.30) that

L(r) = L(t.) +/ * < 2/[u” (s)[1? — 3y (1 + M(s))"~ M (s)| A%/ ()|

+L72’ 1)(1+M(s))72(M’(s))3> ds

ta t+1
§2/ L(s) ds+/ (Cllu(s)|2 + Cf(s)?) ds

t1 t

and from (3.26) and (3.29) that
sup L(s) <CD()? +CD(t) sup g(s)+C sup f(s)?

t<s<t+1 t<s<t+1 t<s<t+1
or
sup L(s)><C (D(t)2 + sup g(s)2> D(t)>+C sup f(s)*.
t<s<t+1 1<s<t+1 t<s<t+1
Since 2D(t)? = L(t) — L(t + 1) + C sup f(s)> < L(t)+C sup f(s)* by

t<s<t+1 t<s<t+1
(3.26), we observe

sup L<s>2s0(L<t>+ sup f(s)?+ sup g<s>2) (L(t) — Lt + 1))

t<s<t-+1 t<s<t+1 t<s<t+1

+ CL(t) sup f(8)2+C( sup  f(s)®+ sup 9(8)2> sup  f(s)’
t<s<t+1 t<s<t+1 t<s<t+1 t<s<t+1
or

sup L<s>2gc(L<t>+ sup s+ sup g<s>2) (L) — L(t 1 1))
t<s<t+1 1<s<t+1 t<s<t41

—|—C< sup f(s)*+ sup g(s)Q) sup  f(s)*.  (3.31)

t<s<t+1 t<s<t+1 t<s<t+1

Since it follows from (3.25), (3.8), and (3.20) that

2 1y v 12,7 ()12 CL+t)~4,
02 = o O Aut) 424 1) < { ey, G
and from (3.28) and (3.20) that
gt =l @)|* <C1+1)72, (3.33)

we have

sup 1L(s)2 SO(L@A)+(L+6)72) (L) — L+ 1)+ C1+ 1)~ sup 1L(s)
t<s<t+ t<s<t+
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or

sup L(s)> < C (L) + (L+4)72) (L(t) — Lt + 1))+ C(1+1)"®. (3.34)

t<s<t+1
Thus, applying Lemma 3.1 to (3.34), we obtain the desired estimate (3.23). O

Gathering Propositions 3.2-3.5, we conclude the following theorem.

Theorem 3.6 Suppose that the assumption of Theorem 2.3 is fulfilled. Then,
the solution u(t) of (1.1) satisfies

|AY2ut)|? < C1+1)7", (3.35)
[’ ()]1* + [[Au®)|* < C(1+1)72, (3.36)
JAY2 @) + W' @) < C(L+8)2  for t>0, (3.37)

where C' is some positive constant.

Proof.  (3.35) follows from (3.1). (3.36) follows from (3.8) and (3.20). (3.37)
follows from (3.23). O

4 Improved Decay

Under the additional condition that the initial data [ug, u;] belong to L (RY)
x LY (RY), we will improve the decay rates (3.35)(3.37) given by Theorem 3.6.
In order to achieve our purpose, first we need to derive the decay estimate of
L2-norm of the solution u(t).

We denote the Fourier transform of g(x) by

Flale)©) =ite) = (2m ¥ [ e <gla)da.

N
where £ -z = ijl ISEZY
Through the Fourier transform, we can rewrite (1.1) to the following equa-
tion :

pi’ + i+ [€%0 = f(M(t)Au  in RY x[0,00), (1)
a(§,0) =up(§) and @'(&0)=ui(¢) in RY, '
where f(M)=1— (1+ M)7. Then, we obtain the integral form for (4.1) :
(g, t) = ur(&,t) +un(s,t) (4.2)
where
TEED) = 5 (41(60) + ba(E D) T(E) + e DT, (43)

av(Et) = / bo(E,t — 5)(M(s)) Au(€, 5) ds (4.4)
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and we set

2¢™ % cosh ;‘% if €] <1/(2y/p),

2e™ 37 cos %; it [¢] =1/(2y/p),

2e7% Lsinh 3 if |¢] < 1/(2y/p),
)

1
_ X
¢2<e,t>—{2€;;smg; it (6> 1/(2y

and A = /1 — 4p[€]2 and o = \/4p[€]2 — 1.

Proposition 4.1 Under the assumption of Theorem 2.3, if the initial data
[ug,u1] belong to L' (RN) x LY(RY), it holds that

d)l(gvt) = {

©

)

@2 < CL+6)""  with n:mm{];f@}. (4.5)

Proof. By the standard argument for the linear dissipative wave equation (see
Matsumura [10] and Kawashima et al. [8] for the proof), concerning the linear
part (4.3) in the integral form (4.2), we have

_N
4

luz @I < CQ+H)77F (luoll + llusll + fuoll s + ullzr) . (4.6)

Next, in order to estimate the nonlinear part (4.4) in the integral form (4.2),
we set that for j = 1,2, 3,4,

, . 1 if £€Xj,
Xj(g)—{o i gng’

where

Xi={e|lEl<1/(@vp)}, Xo={¢|1/4vp) <€l <1/(2VP)}
Xy={€]1/2vp) <€l <1/vp}, Xa={¢|1/Vp<Iel} .

Using the Parseval identity together with (4.4), we observe
t
Jun ()] < /O l[¢2(€,t — s)Au(E, s)[I|f (M (s))| ds

and

p2(&,t — ) Aulé, s)|
< [Ixa(€)pa(E,t — s)lePale, )l + D Ix; (€)da (€, t — 5)Au(€, 5))|

=2

4
= Cgseu)lg EPIg2(&,t = s)ll[u(s)] +C Y sup [¢2(&, 1 — s)|[| Au(s)]| -

j=2 £EX;
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(a) When € € Xy, since v/3/2 < A < 1 and (—1+ \)/(2p) < —2|¢|?, we have

sup [€[2]¢2(€,1)| < C sup |¢[2e 2" < o1 + 1)~
£eXy £EX,
(b) When € € Xo, since 0 < A < +/3/2, we have

9 1
sup |p2(&,t)] < Cte™ % sup b / ;0( inh AtG) dQ‘
0

£EX> £EX> At

< Cte % sup
£eXs

p

(c) When £ € X3, since 0 < o < v/3, we have

bd ( ot ) ’
— | sin—0 ) df
/0 do 2p

1
/ cos Jtﬁdﬂ‘ < Cte_ﬁ .
0 2p

2
sup [¢2(€,0)| < Cte™% sup =2
€EXs ¢ex; ot

< Cte_%ﬂ sup
£eXs

(d) When £ € Xy, since o > v/2, we have

1
bup lp2(&,t)] < Ce™ 2 sup —
£eXx £eXy O

51n2—; < (e~ 2 .
Thus, we obtain
t
HmﬁNSCA(H%—@*WM@MM@W%
+c/e%W%ﬂM@mm$mw
0

with some § > 0.
Therefore, the estimates (4.2), (4.6), and (4.7) yield

+cAe”WwﬂMwmmwmw&

On the other hand, since it follows from (3.35) that

FMO) =11 +ME) 1 <CME) <CA+1)7"

1
AL )
/ cosh 20d0‘ < Cte= 1555
0
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we observe from (3.36) that
¢

+C ; (14t —8) " (14 5) " |u(s)| ds

¢
+ C/ e 0= (1 4 5) 3 ds
0

N
4

lu(®) <C(A+1)”

t
< C( 4 )~ mind¥ 3} +c/ (L+1— )" (14 5) Y u(s)] ds
0

and since ||u(t)|| is bounded (see (2.6)) we have
lu)ll < C(1+)7mntED
which implies the desired estimate (4.5). O

Proposition 4.2 Under the assumption of Proposition 4.1, it holds that

M) <E() <CO+6~"  with n=min {;V , 2} L (48)

Proof. We derive (4.8) by the same way as in the proof of Proposition 3.2.
Instead of (2.6), we use

gt = u@®* < CA+1)77,
and we observe from (3.6) that
E{t)<C(Et)+1+t)7") (E(t) - E(t+1)). (4.9)
Thus, applying Lemma 3.1 to (4.9), we obtain the desired estimate (4.8). O
Proposition 4.3 Under the assumption of Proposition 4.1, it holds that
F(t) = pll AV (07 + (1+ M) |Au(t)|> < CL+8)72" (4.10)

and

v (8))* < O +1)=27" with 7 = min {];] , 2} : (4.11)

Proof. We derive (4.10) by the same way as in the proof of Proposition 3.3.
Instead of (3.17) and (3.18), we use

CL+t)~m,

f)? = M(t)HA“(t)H4 < {C(l +1)"1F (),



52 Kosuke ONno

and
g(t)? = M(t) < C(1+1)7'77,
and we observe from (3.16) that

sup F(s)?<C(F(t)+1+¢t)"'"")(F(t) — F(t+1))
t<s<t+1
+C(L+t)"27 sup F(s). (4.12)
t<s<t+1

Thus, applying Lemma 3.1 together with the Young inequality to (4.12), we
obtain the desired estimate (4.10).

Moreover, we derive (4.11) by the same way as in the proof of Proposition
3.4. Instead of (3.22), we use

h(t) = (1+ M) Au(®)| < C(1+ )77,
and we observe from (3.21) that

4
Pt
which gives the desired estimate (4.11). O

[’ @I + ' (D> < C(1+ )77

Proposition 4.4 Under the assumption of Proposition 4.1, it holds that

0 _
L(t) = pllu" (O] + (1 + M®)7 | 4w’ @)1 + 5 (1+ M(#))? M)
<C(L+t)73m. (4.13)
Proof. 'We derive (4.13) by the same way as in the proof of Proposition 3.5.
Instead of (3.32) and (3.33), we use

C(L+t)~42n,

70 = Il ()l Au()]| A2 (1) < {0(1 L.

and
g = W' <C+4)7>7",
and we observe from (3.31) that

sup  L(s)*> < C (L(t) + (1 +t)7>7") (L(t) — L(t + 1))
t<s<t+1
+C(1+t)7*2 sup L(s). (4.14)
t<s<t+1

Thus, applying Lemma 3.1 together with the Young inequality to (4.14), we
obtain the desired estimate (4.13). O

Gathering Proposition 4.1-4.4, we arrived the following theorem.
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Theorem 4.5 In addition to the assumption of Theorem 2.3, suppose that the
initial data [ug,u;] belong to L*(RN) x LY(RN). Then, the solution u(t) of
(1.1) satisfies

lu(t)|? < C(1+t)™" with 7 = min {];[, 2} , (4.15)
|AY2u(t)]]? < C(1 + 1)+, (4.16)
[u ()17 + [[Au(t)[|* < C(141)7>77, (4.17)
JAY2 @) + [l @))* < C(L+8)%"  for >0, (4.18)

where C' is some positive constant.

Proof.  (4.15) follows from (4.5). (4.16) follows from (4.8). (4.17) follows from
(4.10) and (4.11). (4.18) follows from (4.13). O
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