Supporting Information

Development of an Anilide-Type Scaffold for the Thioester Precursor N-Sulfanylethylcoumarinyl Amide

Mitsuhiro Eto, ${ }^{\dagger, \$}$ Naoto Naruse, ${ }^{\dagger, \$}$ Kyohei Morimoto, ${ }^{\dagger}$ Kosuke Yamaoka, ${ }^{\dagger}$ Kohei Sato, ${ }^{\dagger,}$ Kohei Tsuji, ${ }^{\dagger, \perp}$ Tsubasa Inokuma, ${ }^{\dagger}$ Akira Shigenaga, ${ }^{*, \dagger, \hbar}$ and Akira Otaka*, ${ }^{\boldsymbol{\dagger}}$

\dagger Institute of Biomedical Sciences and Graduate School of Pharmaceutical Sciences, Tokushima University, Tokushima 770-8505,
Japan. \ddagger PRESTO Japan Science and Technology Agency (JST), Kawaguchi, Saitama 332-0012, Japan. \|Department of Applied
Chemistry and Biochemical Engineering, and Green Energy Research Division, Shizuoka University, Hamamatsu, Shizuoka 432
8561, Japan. \perp Chemical Biology Laboratory, National Cancer Institute National Institutes of Health, Frederick, MD 21702,
USA. §M.E. and N.N. contributed equally.
E-mail:
shigenaga.akira@tokushima-u.ac.jp aotaka@tokushima-u.ac.jp
Contents
Supplementary Table SI-1 and Figure SI-1 to SI-7 2
General methods 11
Preparation of N-sulfanylethylcoumarin linker 3 12
Preparation of Fmoc-Xaa- N -sulfanylethylcoumarin 8 14
Preparation of SECmide peptide $\mathbf{1 1}$ 27
Preparation of peptide thioester 13 28
Preparation of SECmide peptide 14 28
Examination of epimerization during $\mathrm{N}-\mathrm{S}$ acyl transfer mediated thioesterification of SECmide peptide 14 29
Preparation of SEAlide peptide 16 31
Preparation of N-terminal cysteinyl peptide 17 31
NCL between SECmide peptide 11, 14 or SEAlide peptide 16 and
N-terminal cysteinyl peptide $\mathbf{1 7}$ 32
Kinetics measurement 33
${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra 34
Reference 60

Table SI-1. Coupling of N-Fmoc-protected amino acids with N-sulfanylethylcoumarin linker 3

Fmoc-Xaa-OH	reaction time (h)	product	isolated yield (\%)
Gly	6	8a	95
Ala	18	8b	93
$\mathrm{Asp}(\mathrm{O} t-\mathrm{Bu})$	24	8 c	60*
$\mathrm{Glu}(\mathrm{O} t-\mathrm{Bu})$	6	8d	78
Asn(Trt)	6	8 e	87
$\mathrm{Gln}(\mathrm{Trt})$	6	$8 f$	83
$\operatorname{Ser}(t-\mathrm{Bu})$	6	8 g	87
$\operatorname{Thr}(t-\mathrm{Bu})$	6	8h	84
Cys(Trt)	6	$8 i$	79
Pro	24	8j	48**
Val	6	8k	86
Met	6	81	83
Leu	6	8 m	91
Ile	6	8n	85
$\operatorname{Tyr}(t-\mathrm{Bu})$	6	80	73
Phe	6	8p	81
$\mathrm{His}\left(\mathrm{MBom}{ }^{\text {\# }}\right.$)	6	8 q	70
Lys(Boc)	6	8r	70
Arg (Pbf)	12	8 s	74
Trp	6	8 t	87

\#4-methoxybenzyloxymethyl. ${ }^{\text {S1 }}$
*Recovery of substrate: 24%. **Recovery of substrate: 43%.

Figure SI-1. HPLC chart of crude model SECmide peptide. Analytical HPLC conditions: Cosmosil $5 \mathrm{C}_{18}$ AR-II column ($4.6 \times 250 \mathrm{~mm}$) with a linear gradient of $0.1 \%(\mathrm{v} / \mathrm{v}) \mathrm{TFA}-\mathrm{MeCN}$ in $0.1 \%(\mathrm{v} / \mathrm{v})$ TFA aq. (1:99-30:70 over 30 min) at a flow rate $1.0 \mathrm{~mL} / \mathrm{min}$, detection at 220 nm .
a) $t=0 \mathrm{~h}$
b) $t=6 \mathrm{~h}$

c) $t=12 \mathrm{~h}$

Figure SI-2. HPLC monitoring of N-S acyl transfer of SECmide peptide in $0.1 \% ~(\mathrm{v} / \mathrm{v}$) TFA-MeCN: $0.1 \% ~(\mathrm{v} / \mathrm{v})$ TFA aq. (1:4, (v/v)). Analytical HPLC conditions: Cosmosil $5 \mathrm{C}_{18}$ AR-II column (4.6×250 mm) with a linear gradient of $0.1 \%(\mathrm{v} / \mathrm{v})$ TFA -MeCN in $0.1 \%(\mathrm{v} / \mathrm{v})$ TFA aq. (1:99-30:70 over 30 min) at a flow rate $1.0 \mathrm{~mL} / \mathrm{min}$, detection at 220 nm . *Internal standard (benzenesulfonic acid).

Figure SI-3. HPLC monitoring of preparation of peptide thioester 13. Analytical HPLC conditions: Cosmosil $5 \mathrm{C}_{18}$ AR-II column ($4.6 \times 250 \mathrm{~mm}$) with a linear gradient of $0.1 \%(\mathrm{v} / \mathrm{v}) \mathrm{TFA}-\mathrm{MeCN}$ in 0.1% (v/v) TFA aq. (1:99-30:70 over 30 min) at a flow rate $1.0 \mathrm{~mL} / \mathrm{min}$, detection at 220 nm . *MPA.
a) $t=0 \mathrm{~h}$

Figure SI-4. HPLC monitoring of preparation of peptide thioester 15. Analytical HPLC conditions: Cosmosil $5 \mathrm{C}_{18}$ AR-II column ($4.6 \times 250 \mathrm{~mm}$) with a linear gradient of $0.1 \%(\mathrm{v} / \mathrm{v}) \mathrm{TFA}-\mathrm{MeCN}$ in 0.1% (v/v) TFA aq. (10:90-30:70 over 30 min) at a flow rate $1.0 \mathrm{~mL} / \mathrm{min}$, detection at 220 nm .
*Nonpeptidic compounds. **Internal standard (benzenesulfonic acid).

Figure SI-5. Verification of epimerization of C-terminal chiral amino acids during N-S acyl transfer mediated thioesterification. a) Peptide thioester 15 obtained via N-S acyl transfer of SECmide peptide 14. b) Reference peptide thioesters S4 and $\mathbf{S 5}$ prepared using Boc SPPS. Analytical HPLC conditions: Cosmosil $5 \mathrm{C}_{18}$ AR-II column $(4.6 \times 250 \mathrm{~mm})$ with a linear gradient of $0.1 \%(\mathrm{v} / \mathrm{v})$ TFAMeCN in $0.1 \%(\mathrm{v} / \mathrm{v})$ TFA aq. (10:90-30:70 over 30 min$)$ at a flow rate $1.0 \mathrm{~mL} / \mathrm{min}$, detection at 220 nm. Only a critical retention time region of the HPLC charts was enlarged. *Substrate 14.

entry	additive	pH	half-life of $\mathbf{1 1}(\mathrm{h})$
1	4-mercaptobenzyl phosphonic acid	6.0	1.38
2	$\prime \prime$	7.0	1.42
3	diphosphoric acid	6.0	0.80
4	$\prime \prime$	7.0	1.01
5	sodium phosphate	6.0	1.03
6	$\prime \prime$	7.0	0.94
7	sodium phosphite	6.0	1.30
8	$\prime \prime$	7.0	2.38
9	methylphosphonate	6.0	1.63
10	$\prime \prime$	7.0	1.62
11	sodium hypophosphite	6.0	11.42
12	$\prime \prime$	7.0	${ }^{*}$
13	potassium carbonate	6.0	5.18
14	$\prime \prime$	7.0	7.36
15	imidazole	6.0	4.53
16	$\prime \prime$	7.0	2.08
17	citric acid	6.0	10.82
18	"	7.0	$*$
19	ethylenediaminetetraacetic acid	6.0	7.91
20	$\prime \prime$	7.0	${ }^{\prime}$
21	glycine	6.0	26.67
22	$\prime \prime$	7.0	$*$

entry	additive	pH	half-life of $\mathbf{1 1}(\mathrm{h})$
23	none	6.0	39.95
24	$\prime \prime$	7.0	$*$
25	ammonium sulfate	6.0	19.58
26	$\prime \prime$	7.0	$*$
27	boronic acid	6.0	$*$
28	$\prime \prime$	7.0	$*$
29	mannose	6.0	$*$
30	$\prime \prime$	7.0	$*$
31	sodium nitrate	6.0	$*$
32	$\prime \prime$	7.0	$*$
33	hexamethylphosphoric triamide	6.0	$*$
34	$\prime \prime$	7.0	$*$
35	sodium sulfate	6.0	$*$
36	$\prime \prime$	7.0	$*$
37	tartaric acid	6.0	$*$
38	$\prime \prime$	7.0	$*$
39	oxalic acid	6.0	$*$
40	tricine	7.0	$*$
41	$\prime \prime$	6.0	$*$
42		7.0	$*$
		Half-life of $\mathbf{1 1}$ was over 50 h	

Figure SI-6. Exploration of N-S acyl transfer promoters of SECmide peptide 11.

Figure SI-7-1. HPLC monitoring of NCL of SECmide or SEAlide peptide with N-terminal cysteinyl peptide. a) NCL condition: Table 2 entry 2, b) NCL condition: Table 2 entry 5, c) NCL condition: Table 2 entry 8, d) NCL condition: Table 2 entry 11. Analytical HPLC condition for a): Cosmosil $5 \mathrm{C}_{18}$-AR-II analytical column $(4.6 \times 250 \mathrm{~mm})$ with a linear gradient of solvent B in solvent $\mathrm{A}, 1 \%$ to 30% over 30 min . Analytical HPLC conditions for b), c) or d): Cosmosil 5C18-AR-II analytical column ($4.6 \times 250 \mathrm{~mm}$) with a linear gradient of solvent B in solvent A, 5% to 35% over 30 min . *Nonpeptidic compounds.
a)

Figure SI-7-2. Verification of Epimerization of C-terminal chiral amino acids during NCL. a) Ligation product 19 obtained NCL between SECmide peptide 14 and N-terminal cysteinyl peptide 17. b) Reference peptide $\mathbf{S 6}$ or $\mathbf{S} 7$ prepared NCL between peptide thioester $\mathbf{S} 2$ or $\mathbf{S 3}$ and N-terminal cysteinyl peptide 17. Analytical HPLC conditions: Cosmosil 5C18-AR-II analytical column ($4.6 \times$ 250 mm) with a linear gradient of solvent B in solvent A, 5% to 35% over 30 min . Only a critical retention time region of the HPLC charts was enlarged. *Nonpeptidic compounds.

General Methods

Reactions except for peptide synthesis were carried out under a positive pressure of argon. Mass spectra were recorded on a Waters MICROMASS ${ }^{\circledR}$ LCT PREMIER $^{\text {TM }}$ (ESI-TOF). For HPLC separation, a Cosmosil 5C C_{18}-AR-II analytical column (Nacalai Tesque, $4.6 \times 250 \mathrm{~mm}$, flow rate 1.0 $\mathrm{mL} / \mathrm{min}$), a Cosmosil $5 \mathrm{C}_{18}$-AR-II semi-preparative column (Nacalai Tesque, $10 \times 250 \mathrm{~mm}$, flow rate $3.0 \mathrm{~mL} / \mathrm{min}$), or a Cosmosil 5C C_{18}-AR-II preparative column (Nacalai Tesque, $20 \times 250 \mathrm{~mm}$, flow rate $10 \mathrm{~mL} / \mathrm{min}$) was employed, and eluting products were detected by UV at 220 nm . A solvent system consisting of 0.1% TFA aqueous solution (v/v, solvent A), 0.1% TFA in MeCN (v/v, solvent B), 10 mM aqueous ammonium acetate (pH 6.7) (solvent C) and MeCN (solvent D) was used for HPLC elution. For column chromatography, silica gel (KANTO KAGAKU N-60) was employed. Thin layer chromatography was performed on precoated plates (0.25 nm , silica gel Merck $K G a A 60 F_{245}$). NMR spectra were recorded using Bruker AV400N at 400 MHz frequency for ${ }^{1} \mathrm{H}$, and JEOL JNM-AL300 at 75 MHz frequency for ${ }^{13} \mathrm{C}$. The fluorescence intensity (FI) was measured on a Perkin Elmer Enspire ${ }^{\circledR}$ Multimode Plate Reader with an excitation wavelength of 373 nm and an emission wavelength of 465 nm (microplate: FlUOTRAC ${ }^{\mathrm{TM}} 600$ (Greiner Bio-One))

Preparation of N -sulfanylethylcoumarin linker 3

[2-(7-aminocoumarin-4-acetylamino)]-acetic acid allyl ester (5)

To a solution of H-Gly-OAllyl $\cdot \mathrm{HCl}(10.3 \mathrm{~g}, 68.2 \mathrm{mmol})$ in DMF $(150 \mathrm{~mL})$ was slowly added DIPEA $(24.3 \mathrm{~mL}, 141 \mathrm{mmol})$ at an ice-salt bath temperature. The resulting solution was stirred for 15 min . Then, $4(9.96 \mathrm{~g}, 45.4 \mathrm{mmol})$, DMAP ($5.55 \mathrm{~g}, 45.4 \mathrm{mmol})$ and EDC•HCl ($13.1 \mathrm{~g}, 68.2 \mathrm{mmol}$) were added and the mixture was warmed up to room temperature and stirred for another 16 h . After removal of the solvent in vacuo, water was added to the residual mixture. The yellow precipitate was collected by filtration and washed with water to afford $5(12.0 \mathrm{~g}, 37.9 \mathrm{mmol}, 83 \%)$ as a yellow powder: ${ }^{1} \mathrm{H}$ NMR (DMSO- $\left.d_{6}, 400 \mathrm{MHz}\right) \delta=3.63(2 \mathrm{H}, \mathrm{s}), 3.91(2 \mathrm{H}, \mathrm{d}, J=5.9 \mathrm{~Hz}), 4.57(2 \mathrm{H}, \mathrm{ddd}, J=5.2,1.5$ and 1.5 $\mathrm{Hz}), 5.20(1 \mathrm{H}$, ddt, $J=10.6,1.5$ and 1.5 Hz$), 5.30(1 \mathrm{H}, \mathrm{ddt}, J=17.2,1.5$ and 1.5 Hz$), 5.88(1 \mathrm{H}$, ddt, $J=17.2,10.6$ and 5.2 Hz$), 5.99(1 \mathrm{H}, \mathrm{s}), 6.13(2 \mathrm{H}, \mathrm{s}), 6.41(1 \mathrm{H}, \mathrm{d}, J=2.2 \mathrm{~Hz}), 6.54(1 \mathrm{H}, \mathrm{dd}, J=8.7$ and 2.2 Hz), $7.42(1 \mathrm{H}, \mathrm{d}, J=8.7 \mathrm{~Hz}), 8.67(1 \mathrm{H}, \mathrm{t}, J=5.9 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR (DMSO- $\left.d_{6}, 75 \mathrm{MHz}\right) \delta=$ $38.4,40.9,64.8,98.5,108.2,108.7,111.1,117.9,126.3,132.3,151.1,153.0,155.6,160.7,168.6$, 169.4; HRMS (ESI-TOF) m / z calcd for $\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{NaO}_{5}\left([\mathrm{M}+\mathrm{Na}]^{+}\right) 339.0957$, found 339.0935 .

\{2-[7-N-(2-nitrobenzenesulfonylamino)coumarin-4-acetylamino]\}-acetic acid allyl ester (6) ${ }^{\text {S2 }}$

To a solution of compound $5(4.00 \mathrm{~g}, 12.6 \mathrm{mmol})$ in pyridine (63 mL) was added 2Nitrobenzenesulfonyl chloride $(5.61 \mathrm{~g}, 25.3 \mathrm{mmol})$. The reaction mixture was stirred at room temperature for 5 h . After, removal of the solvent in vacuo followed by addition of $5 \%(\mathrm{w} / \mathrm{v}) \mathrm{KHSO}_{4}$ aq, the resulting mixture was extracted with EtOAc. The organic phase was washed with 5% (w/v) KHSO_{4} aq. followed by brine, filtered and concentrated in vacuo. The residue was purified by column chromatography $\left(\mathrm{CHCl}_{3} / \mathrm{MeOH}=100 / 0\right.$ to $100 / 7$ then $0 / 100(\mathrm{v} / \mathrm{v})$) to yield $\mathbf{6}(4.84 \mathrm{~g}, 9.65 \mathrm{mmol}, 77 \%)$ as a pale orange powder: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{DMSO}-d_{6}, 400 \mathrm{MHz}\right) \delta=3.72(2 \mathrm{H}, \mathrm{s}), 3.89(2 \mathrm{H}, \mathrm{d}, J=5.9 \mathrm{~Hz})$, $4.54(2 \mathrm{H}, \mathrm{ddd}, J=5.3,1.5$ and 1.5 Hz$), 5.17(1 \mathrm{H}, \mathrm{ddt}, J=10.6,1.5$ and 1.5 Hz$), 5.27(1 \mathrm{H}, \operatorname{ddt}, J=$ $17.2,1.5$ and 1.5 Hz$), 5.85(1 \mathrm{H}, \mathrm{ddt}, J=17.2,10.6$ and 5.3 Hz$), 6.36(1 \mathrm{H}, \mathrm{s}), 7.05-7.12(2 \mathrm{H}, \mathrm{m}), 7.68$
$(1 \mathrm{H}, \mathrm{d}, J=8.4 \mathrm{~Hz}), 7.82-7.92(2 \mathrm{H}, \mathrm{m}), 8.01-8.04(1 \mathrm{H}, \mathrm{m}), 8.07-8.11(1 \mathrm{H}, \mathrm{m}), 8.68(1 \mathrm{H}, \mathrm{t}, J=5.9 \mathrm{~Hz})$, $11.44(1 \mathrm{H}, \mathrm{s}) ;{ }^{13} \mathrm{C}$ NMR (DMSO- $\left.d_{6}, 75 \mathrm{MHz}\right) \delta=38.2,40.9,64.8,105.6,114.4,114.7,115.1,117.8$, $124.9,126.8,129.9,130.9,132.2,132.9,135.1,140.3,147.9,150.3,153.7,159.5,168.2,169.3 ;$ HRMS (ESI-TOF) m / z calcd for $\mathrm{C}_{22} \mathrm{H}_{19} \mathrm{KN}_{3} \mathrm{O}_{9} \mathrm{~S}\left([\mathrm{M}+\mathrm{K}]^{+}\right) 540.0479$, found 540.0473.
(2-\{7-[N-(2-nitrobenzenesulfonyl)- N-(2-tritylsulfanylethyl)amino]coumarin-4-acetylamino\})acetic acid allyl ester (7)

To a stirred suspension of compound $6(663 \mathrm{mg}, 1.32 \mathrm{mmol})$, triphenylmethyl-sulfanylethyl alcohol ($846 \mathrm{mg}, 2.64 \mathrm{mmol}$) and $\mathrm{Ph}_{3} \mathrm{P}(692 \mathrm{mg}, 2.64 \mathrm{mmol})$ in THF (25 mL) was added $40 \%(\mathrm{v} / \mathrm{v})$ DEAD/toluene $(1.20 \mathrm{~mL}, 2.64 \mathrm{mmol})$ at $0^{\circ} \mathrm{C}$. After being stirred at room temperature for 17 h , the reaction mixture was diluted with EtOAc , sat. $\mathrm{NH}_{4} \mathrm{Cl}$ aq. The solution was extracted with EtOAc, washed with sat. $\mathrm{NH}_{4} \mathrm{Cl}$ aq., brine, dried over NaSO_{4}, filtered and concentrated. The residue was purified by column chromatography (hexane/EtOAc $=1 / 2$ to $1 / 4(\mathrm{v} / \mathrm{v})$) then $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{EtOAc}=5 / 2\right.$ (v/v)) to yield 7 ($614 \mathrm{mg}, 0.764 \mathrm{mmol}, 58 \%$) as orange amorphous solid: ${ }^{1} \mathrm{H}$ NMR (DMSO- $d_{6}, 400$ $\mathrm{MHz}) \delta=2.18(2 \mathrm{H}, \mathrm{t}, J=6.9 \mathrm{~Hz}), 3.68(2 \mathrm{H}, \mathrm{t}, J=6.9 \mathrm{~Hz}), 3.84(2 \mathrm{H}, \mathrm{s}), 3.96(2 \mathrm{H}, \mathrm{d}, J=5.9 \mathrm{~Hz}), 4.54$ $(2 \mathrm{H}, \mathrm{ddd}, J=5.3,1.5$ and 1.5 Hz$), 5.17(1 \mathrm{H}, \mathrm{ddt}, J=10.6,1.5$ and 1.5 Hz$), 5.28(1 \mathrm{H}, \operatorname{ddt}, J=17.2$, 1.5 and 1.5 Hz$), 5.86(1 \mathrm{H}, \mathrm{ddt}, J=17.2,10.6$ and 5.3 Hz$), 6.56(1 \mathrm{H}, \mathrm{s}), 7.09(1 \mathrm{H}, \mathrm{dd}, J=8.5$ and 2.2 $\mathrm{Hz}), 7.11-7.26(16 \mathrm{H}, \mathrm{m}), 7.70(1 \mathrm{H}, \mathrm{dd}, J=8.0$ and 1.3 Hz$), 7.73-7.81(2 \mathrm{H}, \mathrm{m}), 7.88(1 \mathrm{H}, \mathrm{td}, J=8.0$ and 1.3 Hz), $9.96(1 \mathrm{H}, \mathrm{dd}, J=8.0$ and 1.3 Hz$), 8.81(1 \mathrm{H}, \mathrm{t}, J=5.9 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR (DMSO- $d_{6}, 75$ $\mathrm{MHz}) \delta=29.8,38.2,40.9,49.5,64.8,66.2,116.0,116.4,117.8,118.6,124.3,124.5,126.0,126.6$, $127.9,128.9,129.4,130.4,132.2,132.3,135.2,139.6,144.0,147.6,150.1,153.0,159.2,168.1,169.3$; HRMS (ESI-TOF) m / z calcd for $\mathrm{C}_{43} \mathrm{H}_{37} \mathrm{KN}_{3} \mathrm{O}_{9} \mathrm{~S}_{2}\left([\mathrm{M}+\mathrm{K}]^{+}\right) 842.1608$, found 842.1626.
(2-\{7-[N-(2-tritylsulfanylethyl)amino]coumarin-4-acetylamino\})-acetic acid allyl ester (3)

To a solution of compound $7(4.90 \mathrm{~g}, 6.10 \mathrm{mmol})$ in $\mathrm{MeCN}(50 \mathrm{~mL})$ were added $\mathrm{K}_{2} \mathrm{CO}_{3}(1.68 \mathrm{~g}, 12.2$ mmol) and thiophenol $(3.11 \mathrm{ml}, 30.5 \mathrm{mmol})$ at $0^{\circ} \mathrm{C}$. The resulting solution was stirred for 15 min . Then the mixture was warmed up to room temperature and stirred for another 12 h . After evaporation, hexane was added to the residual mixture. The yellow precipitate was collected by filtration and washed with hexanes. The residue was dissolved in CHCl_{3} and THF, and concentrated in vacuo. The residue was purified by column chromatography (hexane/EtOAc $=1 / 1$ to $1 / 2$ then $0 / 100(\mathrm{v} / \mathrm{v})$, and THF) to yield $3(3.15 \mathrm{~g}, 5.09 \mathrm{mmol}, 84 \%)$ as a pale yellow powder: ${ }^{1} \mathrm{H}$ NMR (DMSO- $d_{6}, 400 \mathrm{MHz}$) $\delta=2.38(2 \mathrm{H}, \mathrm{t}, J=6.7 \mathrm{~Hz}), 3.04(2 \mathrm{H}, \mathrm{dt}, J=6.7 \mathrm{and} 6.7 \mathrm{~Hz}), 3.65(2 \mathrm{H}, \mathrm{s}), 3.92(2 \mathrm{H}, \mathrm{d}, J=5.9 \mathrm{~Hz})$, $4.57(2 \mathrm{H}$, ddd, $J=5.3,1.5$ and 1.5 Hz$), 5.20(1 \mathrm{H}, \mathrm{ddt}, J=10.6,1.5$ and 1.5 Hz$), 5.30(1 \mathrm{H}$, ddt, $J=$ $17.2,1.5$ and 1.5 Hz$), 5.88(1 \mathrm{H}, \mathrm{ddt}, J=17.2,10.6$ and 5.3 Hz$), 6.02(1 \mathrm{H}, \mathrm{s}), 6.24(1 \mathrm{H}, \mathrm{d}, J=2.1 \mathrm{~Hz})$, $6.43(1 \mathrm{H}, \mathrm{dd}, J=8.8$ and 2.1 Hz$), 6.74(1 \mathrm{H}, \mathrm{t}, J=6.7 \mathrm{~Hz}), 7.22-7.36(15 \mathrm{H}, \mathrm{m}), 7.43(1 \mathrm{H}, \mathrm{d}, J=8.8$ $\mathrm{Hz}), 8.68(1 \mathrm{H}, \mathrm{t}, J=5.9 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR (DMSO- $\left.d_{6}, 75 \mathrm{MHz}\right)=30.7,38.4,40.9,41.2,64.8,66.3,96.5$, $108.4,108.9,110.0,117.9,126.1,126.8,128.0,129.1,132.3,144.4,151.0,151.6,155.7,160.6,168.5$, 169.4; HRMS (ESI-TOF) m / z calcd for $\mathrm{C}_{37} \mathrm{H}_{34} \mathrm{KN}_{2} \mathrm{O}_{5} \mathrm{~S}\left([\mathrm{M}+\mathrm{K}]^{+}\right)$657.1826, found 657.1829.

Preparation of Fmoc-Xaa- N -sulfanylethylcoumarin 8

Typical procedure of coupling of Fmoc-Xaa-OH with 3

To a stirred solution of compound $3(300 \mathrm{mg}, 0.480 \mathrm{mmol})$ in THF (15 mL) were added Fmoc-Gly$\mathrm{OH}(721 \mathrm{mg}, 2.42 \mathrm{mmol})$, DIPEA ($422 \mu \mathrm{~L}, 2.42 \mathrm{mmol}$) and $\mathrm{POCl}_{3}(226 \mu \mathrm{~L}, 2.42 \mathrm{mmol})$ at $0{ }^{\circ} \mathrm{C}$. After being stirred at $50{ }^{\circ} \mathrm{C}$ for 6 h , the reaction was quenched by the addition of sat. NaHCO_{3} aq. After extraction with EtOAc, the obtained organic layer was washed with sat. NaHCO_{3} aq., water, sat. $\mathrm{NH}_{4} \mathrm{Cl}$ aq., and brine. The obtained solution was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated in vacuo. The product was purified by column chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{EtOAc}=5 / 1\right.$ to $\left.5 / 2(\mathrm{v} / \mathrm{v})\right)$ to yield $\mathbf{8 a}(414$ $\mathrm{mg}, 0.461 \mathrm{mmol}, 95 \%$) as white amorphous solid.

(2-\{7-[N-(Fmoc-Gly)- N-(2-tritylsulfanylethyl)amino]coumarin-4-acetylamino\})-acetic acid allyl ester (8a)

White amorphous solid; yield: $95 \%(414 \mathrm{mg}) ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta=2.41(2 \mathrm{H}, \mathrm{t}, J=7.3$ $\mathrm{Hz}), 3.51(2 \mathrm{H}, \mathrm{br} \mathrm{t}, J=7.3 \mathrm{~Hz}), 3.61(2 \mathrm{H}, \mathrm{br} \mathrm{s}), 3.75(2 \mathrm{H}, \mathrm{s}), 4.08(2 \mathrm{H}, \mathrm{d}, J=5.2 \mathrm{~Hz}), 4.18(1 \mathrm{H}, \mathrm{t}, J=$
$7.1 \mathrm{~Hz}), 4.31(2 \mathrm{H}, \mathrm{d}, J=7.1 \mathrm{~Hz}), 4.63(2 \mathrm{H}, \mathrm{d}, J=5.9 \mathrm{~Hz}), 5.25(1 \mathrm{H}, \mathrm{ddt}, J=10.6,1.2$ and 1.1 Hz$)$, $5.31(1 \mathrm{H}, \mathrm{br}$ ddt, $J=17.2,1.2$ and 1.2 Hz$), 5.67(1 \mathrm{H}, \mathrm{br} \mathrm{t}, J=4.3 \mathrm{~Hz}), 5.88(1 \mathrm{H}, \mathrm{ddt}, J=17.1,10.6$ and 5.9 Hz$), 6.44-6.54(2 \mathrm{H}, \mathrm{m}), 6.89-7.00(2 \mathrm{H}, \mathrm{m}), 7.11-7.41(19 \mathrm{H}, \mathrm{m}), 7.57(2 \mathrm{H}, \mathrm{d}, J=7.4 \mathrm{~Hz}), 7.67$ $(1 \mathrm{H}, \mathrm{d}, J=8.4 \mathrm{~Hz}), 7.75(2 \mathrm{H}, \mathrm{d}, J=7.5 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta=29.6,40.0,41.7,43.7$, $47.2,49.0,66.4,67.3,116.9,117.9,119.2,119.4,120.1,124.3,125.2,126.9,127.2,127.8,128.0$, 129.6, 131.4, 141.4, 143.2, 143.9, 144.5, 148.3, 154.4, 156.2, 159.6, 167.4, 167.8, 169.3; HRMS (ESITOF) m / z calcd for $\mathrm{C}_{54} \mathrm{H}_{47} \mathrm{KN}_{3} \mathrm{O}_{8} \mathrm{~S}\left([\mathrm{M}+\mathrm{K}]^{+}\right) 936.2721$, found 936.2723 .
(2-\{7-[N-(Fmoc-L-Ala)- N-(2-tritylsulfanylethyl)amino]coumarin-4-acetylamino \})-acetic acid allyl ester (8b)

White amorphous solid; yield: 93% (206 mg); $[\alpha]^{26}{ }_{\mathrm{D}} 89.6$ (c 1.03, CHCl_{3}); ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400\right.$ $\mathrm{MHz}) \delta=1.12(3 \mathrm{H}, \mathrm{br} \mathrm{d}, J=6.0 \mathrm{~Hz}), 2.25-2.38(1 \mathrm{H}, \mathrm{m}), 2.45-2.59(1 \mathrm{H}, \mathrm{m}), 3.32-3.43(1 \mathrm{H}, \mathrm{m}), 3.47-$ $3.59(1 \mathrm{H}, \mathrm{m}), 3.72(1 \mathrm{H}, \mathrm{d}, J=15.7 \mathrm{~Hz}), 3.78(1 \mathrm{H}, \mathrm{d}, J=15.7 \mathrm{~Hz}), 3.74(2 \mathrm{H}, \mathrm{m}), 4.09(2 \mathrm{H}, \mathrm{d}, J=5.3$ $\mathrm{Hz}), 4.18(2 \mathrm{H}, \mathrm{m}), 4.31(2 \mathrm{H}, \mathrm{d}, J=7.1 \mathrm{~Hz}), 4.63(2 \mathrm{H}, \mathrm{d}, J=6.0 \mathrm{~Hz}), 5.26(1 \mathrm{H}, \mathrm{ddt}, J=10.7,1.2$ and $1.2 \mathrm{~Hz}), 5.32(1 \mathrm{H}, \mathrm{ddt}, J=17.0,1.2$ and 1.2 Hz$), 5.49(1 \mathrm{H}, \mathrm{brd}, J=7.8 \mathrm{~Hz}), 5.88(1 \mathrm{H}, \mathrm{ddt}, J=17.0$, 10.7 and 6.0 Hz$), 6.35(1 \mathrm{H}$, br t, $J=5.3 \mathrm{~Hz}), 6.48(1 \mathrm{H}, \mathrm{s}), 6.97-7.05(2 \mathrm{H}, \mathrm{m}), 7.08-7.42(19 \mathrm{H}, \mathrm{m}), 7.57$ $(1 \mathrm{H}, \mathrm{d}, J=7.0 \mathrm{~Hz}), 7.59(1 \mathrm{H}, \mathrm{d}, J=7.0 \mathrm{~Hz}), 7.65(1 \mathrm{H}, \mathrm{d}, J=8.4 \mathrm{~Hz}), 7.76(2 \mathrm{H}, \mathrm{d}, J=7.5 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta=19.1,29.4,39.9,41.7,47.2,47.8,49.4,66.4,67.1,67.2,116.9,117.7$, 118.9, 119.4, 120.1, 124.6, 125.3, 126.5, 126.8, 127.2, 127.8, 128.0, 129.6, 131.3, 141.4, 141.4, 143.9, 144.0, 144.1, 144.6, 148.3, 154.3, 155.6, 159.7, 167.4, 169.3, 172.6; HRMS (ESI-TOF) m / z calcd for $\mathrm{C}_{55} \mathrm{H}_{4}{ }_{9} \mathrm{~N}_{3} \mathrm{NaO}_{8} \mathrm{~S}\left([\mathrm{M}+\mathrm{Na}]^{+}\right) 934.3138$, found 934.3163.
[2-(7-\{ N-[Fmoc-L-Asp(Ot-Bu)]-N-(2-tritylsulfanylethyl)amino\}coumarin-4-acetylamino)]-acetic acid allyl ester (8c)

White amorphous solid; yield: $60 \%(146 \mathrm{mg}) ;[\alpha]^{22}{ }_{\mathrm{D}} 46.5\left(c 1.01, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400\right.$ $\mathrm{MHz}) \delta=1.38(9 \mathrm{H}, \mathrm{s}), 2.26-2.60(4 \mathrm{H}, \mathrm{m}), 3.45(2 \mathrm{H}, \mathrm{br} \mathrm{t}, J=7.0 \mathrm{~Hz}), 3.65(1 \mathrm{H}, \mathrm{d}, J=16.8 \mathrm{~Hz}), 3.69$ $(1 \mathrm{H}, \mathrm{d}, J=16.8 \mathrm{~Hz}), 4.06(2 \mathrm{H}, \mathrm{d}, J=5.2 \mathrm{~Hz}), 4.13(1 \mathrm{H}, \mathrm{t}, J=6.7 \mathrm{~Hz}), 4.17-4.30(2 \mathrm{H}, \mathrm{br} \mathrm{m}), 4.47(1 \mathrm{H}$, br s), $4.62(2 \mathrm{H}, \mathrm{d}, J=5.9 \mathrm{~Hz}), 5.26(1 \mathrm{H}, \mathrm{ddt}, J=10.4,1.3 \mathrm{and} 1.3 \mathrm{~Hz}), 5.32(1 \mathrm{H}, \mathrm{ddt}, J=17.1,1.3$ and 1.3 Hz$), 5.53(1 \mathrm{H}$, br d, $J=8.4 \mathrm{~Hz}), 5.88(1 \mathrm{H}, \mathrm{ddt}, J=17.1,10.4$ and 5.9 Hz$), 6.24(1 \mathrm{H}$, br t,$J=$ $5.2 \mathrm{~Hz}), 6.44(1 \mathrm{H}, \mathrm{s}), 6.95-7.06(1 \mathrm{H}, \mathrm{m}), 7.00(1 \mathrm{H}, \mathrm{S}), 7.08-7.36(17 \mathrm{H}, \mathrm{m}), 7.39(1 \mathrm{H}, \mathrm{t}, J=7.2 \mathrm{~Hz})$, $7.40(1 \mathrm{H}, \mathrm{t}, J=7.5 \mathrm{~Hz}), 7.51-7.61(1 \mathrm{H}, \mathrm{m}), 7.55(2 \mathrm{H}, \mathrm{d}, J=8.0 \mathrm{~Hz}), 7.76(2 \mathrm{H}, \mathrm{d}, J=7.3 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta=28.1,29.3,38.4,39.9,41.7,47.2,49.1,49.7,66.4,67.2,81.6,116.9,117.6$, 118.7, 119.4, 120.1, 124.6, 125.2, 126.3, 126.8, 127.2, 127.3, 127.9, 128.0, 129.7, 131.4, 141.4, 143.8, 143.9, 144.1, 144.6, 148.2, 154.2, 155.3, 159.7, 167.4, 169.3, 169.3, 170.1; HRMS (ESI-TOF) m / z calcd for $\mathrm{C}_{60} \mathrm{H}_{57} \mathrm{~N}_{3} \mathrm{NaO}_{10} \mathrm{~S}\left([\mathrm{M}+\mathrm{Na}]^{+}\right) 1034.3662$, found 1034.3634.
[2-(7-\{N-[Fmoc-L-Glu(Ot-Bu)]- N-(2-tritylsulfanylethyl)amino\}coumarin-4-acetylamino)]-acetic acid allyl ester (8d)

White amorphous solid; yield: 78% (194 mg); $[\alpha]^{22}{ }_{\mathrm{D}} 89.4$ (c 1.00, CHCl_{3}); ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400\right.$ $\mathrm{MHz}) \delta=1.36(9 \mathrm{H}, \mathrm{s}), 1.67-1.80(2 \mathrm{H}, \mathrm{br}$ m), 2.06-2.17(2H, br m), 2.25-2.36 (1H, br m), 2.45-2.59 $(1 \mathrm{H}, \mathrm{br} \mathrm{m}), 3.29-3.42(1 \mathrm{H}, \mathrm{br} \mathrm{m}), 3.50-3.61(1 \mathrm{H}, \mathrm{m}), 3.72(1 \mathrm{H}, \mathrm{d}, J=15.8 \mathrm{~Hz}), 3.77(1 \mathrm{H}, \mathrm{d}, J=15.8$ $\mathrm{Hz}), 4.09(2 \mathrm{H}, \mathrm{d}, J=5.2 \mathrm{~Hz}), 4.13-4.22(2 \mathrm{H}, \mathrm{m}), 4.31(2 \mathrm{H}, \mathrm{d}, J=7.1 \mathrm{~Hz}), 4.64(2 \mathrm{H}, \mathrm{d}, J=5.9 \mathrm{~Hz})$, $5.26(1 \mathrm{H}, \mathrm{ddt}, J=10.6,1.3$ and 1.3 Hz$), 5.32(1 \mathrm{H}, \mathrm{ddt}, J=17.0,1.3$ and 1.3 Hz$), 5.55(1 \mathrm{H}, \mathrm{br} \mathrm{d}, J=$ $8.3 \mathrm{~Hz}), 5.88(1 \mathrm{H}, \mathrm{ddt}, J=17.0,10.6$ and 5.9 Hz$), 6.30(1 \mathrm{H}, \mathrm{br} \mathrm{t}, J=5.2 \mathrm{~Hz}), 6.48(1 \mathrm{H}, \mathrm{s}), 6.99-7.08$ $(2 H, m), 7.09-7.36(17 \mathrm{H}, \mathrm{m}), 7.39(2 \mathrm{H}, \mathrm{t}, J=7.5 \mathrm{~Hz}), 7.57(1 \mathrm{H}, \mathrm{d}, J=6.6 \mathrm{~Hz}), 7.59(1 \mathrm{H}, \mathrm{d}, J=6.6$ $\mathrm{Hz}), 7.63(1 \mathrm{H}, \mathrm{d}, J=8.2 \mathrm{~Hz}), 7.76(2 \mathrm{H}, \mathrm{d}, J=7.5 \mathrm{~Hz}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta=27.6,28.2$, $29.3,30.8,39.9,41.8,47.3,49.4,51.3,66.4,67.1,67.2,80.8,117.1,117.7,118.9,119.4,120.1,124.7$, $125.3,126.4,126.8,127.2,127.8,128.0,129.6,131.4,141.4,143.9,144.0,144.6,148.2,154.3,155.9$, 159.7, 167.3, 169.3, 171.2, 172.0; HRMS (ESI-TOF) m / z calcd for $\mathrm{C}_{61} \mathrm{H}_{59} \mathrm{~N}_{3} \mathrm{NaO}_{10} \mathrm{~S}\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$ 1048.3819, found 1048.3817.
[2-(7-\{ N-[Fmoc-L-Asn(Trt)]- N-(2-tritylsulfanylethyl)amino\}coumarin-4-acetylamino)]-acetic acid allyl ester (8e)

White amorphous solid; yield: $87 \%(387 \mathrm{mg}) ;[\alpha]^{26}{ }_{\mathrm{D}} 5.5\left(c 1.04, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ $\delta=2.37(2 \mathrm{H}, \mathrm{br} \mathrm{t}, J=7.1 \mathrm{~Hz}), 2.44-2.66(2 \mathrm{H}, \mathrm{br} \mathrm{m}), 3.26-3.56(4 \mathrm{H}, \mathrm{m}), 3.92(2 \mathrm{H}, \mathrm{d}, J=4.9 \mathrm{~Hz}), 3.97-$ $4.06(1 \mathrm{H}, \mathrm{br}$ m$), 4.06-4.21(2 \mathrm{H}, \mathrm{br} \mathrm{m}), 4.49(1 \mathrm{H}, \mathrm{br} \mathrm{s}), 4.57(2 \mathrm{H}, \mathrm{d}, J=5.9 \mathrm{~Hz}), 5.23(1 \mathrm{H}, \mathrm{ddt}, J=10.7$, 1.3 and 1.3 Hz$), 5.29(1 \mathrm{H}, \mathrm{ddt}, J=17.0,1.3$ and 1.3 Hz$), 5.62(1 \mathrm{H}, \mathrm{br} \mathrm{s}), 5.85(1 \mathrm{H}, \mathrm{ddt}, J=17.0,10.7$ and 5.9 Hz$), 6.23-6.42(2 \mathrm{H}, \mathrm{br} \mathrm{m}), 6.69-6.89(3 \mathrm{H}, \mathrm{br} \mathrm{m}), 7.06-7.42(35 \mathrm{H}, \mathrm{m}), 7.49(2 \mathrm{H}, \mathrm{br}$ d, $J=6.9$ $\mathrm{Hz}), 7.74(2 \mathrm{H}, \mathrm{br} \mathrm{d}, J=5.6 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta=29.2,39.5,39.8,41.6,47.1,49.8$, $66.2,67.2,67.3,70.8,116.5,117.3,118.5,119.2,120.1,124.4,125.2,125.3,126.1,126.8,127.2,127.3$, $127.9,128.0,128.1,128.8,129.6,131.5,141.3,141.4,143.7,143.8,144.5,144.6,148.3,154.1,155.2$, 159.7, 167.6, 168.6, 169.3, 170.2; HRMS (ESI-TOF) m / z calcd for $\mathrm{C}_{75} \mathrm{H}_{64} \mathrm{~N}_{4} \mathrm{NaO}_{9} \mathrm{~S}\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$ 1219.4292, found 1219.4301.

[2-(7-\{N-[Fmoc-L-Gln(Trt)]-N-(2-tritylsulfanylethyl)amino\}coumarin-4-acetylamino)]-acetic

 acid allyl ester (8f)

White amorphous solid; yield: $83 \%(244 \mathrm{mg}) ;[\alpha]^{21}{ }_{\mathrm{D}} 72.8\left(c 1.00, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400\right.$ $\mathrm{MHz}) \delta=1.68(1 \mathrm{H}, \mathrm{br} \mathrm{dt}, J=14.1$ and 7.0 Hz$), 1.74-1.86(1 \mathrm{H}, \mathrm{br} \mathrm{m}), 2.15(2 \mathrm{H}, \mathrm{br} \mathrm{t}, J=7.0 \mathrm{~Hz}), 2.23-$ $2.36(1 \mathrm{H}, \mathrm{br} \mathrm{m}), 2.42-2.56(1 \mathrm{H}, \mathrm{br} \mathrm{m}), 3.24-3.39(1 \mathrm{H}, \mathrm{br} \mathrm{m}), 3.46-3.63(1 \mathrm{H}, \mathrm{br} \mathrm{m}), 3.58(2 \mathrm{H}, \mathrm{br} \mathrm{s})$, $3.95(1 \mathrm{H}, \mathrm{dd}, J=17.7$ and 4.9 Hz$), 4.01(1 \mathrm{H}, \mathrm{dd}, J=17.7$ and 4.9 Hz$), 4.12-4.23(2 \mathrm{H}, \mathrm{br} \mathrm{m}), 4.32(2 \mathrm{H}$, br d, $J=6.8 \mathrm{~Hz}), 4.61(2 \mathrm{H}, \mathrm{d}, J=5.9 \mathrm{~Hz}), 5.25(1 \mathrm{H}, \mathrm{ddt}, J=10.7,1.3$ and 1.3 Hz$), 5.31(1 \mathrm{H}, \mathrm{ddt}, J=$ $17.0,1.3$ and 1.3 Hz$), 5.66(1 \mathrm{H}, \mathrm{br} \mathrm{d}, J=6.9 \mathrm{~Hz}), 5.87(1 \mathrm{H}, \mathrm{ddt}, J=17.0,10.7$ and 5.9 Hz$), 6.29(1 \mathrm{H}$, br t, $J=4.9 \mathrm{~Hz}), 6.41(1 \mathrm{H}, \mathrm{s}), 6.50(1 \mathrm{H}, \mathrm{br} \mathrm{s}), 6.92-7.02(2 \mathrm{H}, \mathrm{m}), 7.02-7.41(34 \mathrm{H}, \mathrm{m}), 7.49(1 \mathrm{H}, \mathrm{d}, J$ $=8.2 \mathrm{~Hz}), 7.56(1 \mathrm{H}, \mathrm{d}, J=6.5 \mathrm{~Hz}), 7.57(1 \mathrm{H}, \mathrm{d}, J=6.5 \mathrm{~Hz}), 7.75(2 \mathrm{H}, \mathrm{d}, J=7.4 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta=27.8,29.4,32.6,39.7,41.7,47.3,49.4,51.5,66.3,67.1,67.2,70.7,116.8,117.5$, 118.9, 119.4, 120.1, 124.6, 125.3, 126.5, 126.8, 127.2, 127.8, 128.0, 128.1, 128.8, 129.6, 131.4, 141.4,
$141.5,143.8,144.0,144.6,144.7,148.2,154.3,156.1,159.7,167.4,169.3,170.5,171.1$; HRMS (ESITOF) m / z calcd for $\mathrm{C}_{76} \mathrm{H}_{66} \mathrm{~N}_{4} \mathrm{NaO}_{9} \mathrm{~S}\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$1233.4448, found 1233.4451.
[2-(7-\{ N-[Fmoc-L-Ser(t-Bu)]-N-(2-tritylsulfanylethyl)amino\}coumarin-4-acetylamino)]-acetic acid allyl ester (8g)

White amorphous solid; yield: $87 \%(207 \mathrm{mg}) ;[\alpha]^{21}{ }_{\mathrm{D}} 36.6\left(c 1.02, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400\right.$ $\mathrm{MHz}) \delta=1.09(9 \mathrm{H}, \mathrm{s}), 2.45(2 \mathrm{H}, \mathrm{br} \mathrm{m}), 3.24-3.42(3 \mathrm{H}, \mathrm{m}), 3.63(1 \mathrm{H}, \mathrm{dt}, J=14.3$ and 7.2 Hz$), 3.72$ $(1 \mathrm{H}, \mathrm{d}, J=16.0 \mathrm{~Hz}), 3.76(1 \mathrm{H}, \mathrm{d}, J=16.0 \mathrm{~Hz}), 4.09(2 \mathrm{H}, \mathrm{d}, J=5.1 \mathrm{~Hz}), 4.17(1 \mathrm{H}, \mathrm{t}, J=7.0 \mathrm{~Hz}), 4.25-$ $4.39(3 \mathrm{H}, \mathrm{m}), 4.63(2 \mathrm{H}, \mathrm{d}, J=5.9 \mathrm{~Hz}), 5.26(1 \mathrm{H}, \mathrm{ddt}, J=10.7,1.2$ and 1.2 Hz$), 5.32(1 \mathrm{H}, \mathrm{ddt}, J=$ $17.0,1.2$ and 1.2 Hz$), 5.38(1 \mathrm{H}, \mathrm{d}, J=7.0 \mathrm{~Hz}), 5.88(1 \mathrm{H}, \mathrm{ddt}, J=17.0,10.7$ and 5.9 Hz$), 6.28(1 \mathrm{H}, \mathrm{br}$ $\mathrm{t}, J=5.1 \mathrm{~Hz}), 6.47(1 \mathrm{H}, \mathrm{s}), 7.00-7.23(11 \mathrm{H}, \mathrm{m}), 7.27-7.35(8 \mathrm{H}, \mathrm{m}), 7.39(2 \mathrm{H}, \mathrm{t}, J=7.5 \mathrm{~Hz}), 7.56(1 \mathrm{H}$, $\mathrm{d}, J=6.9 \mathrm{~Hz}), 7.57(1 \mathrm{H}, \mathrm{d}, J=6.9 \mathrm{~Hz}), 7.61(1 \mathrm{H}, \mathrm{d}, J=8.4 \mathrm{~Hz}), 7.75(2 \mathrm{H}, \mathrm{d}, J=7.5 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta=27.4,29.3,29.8,39.9,41.7,47.2,49.5,51.6,62.8,66.4,67.2,73.8,117.4,118.6$, $119.3,120.1,124.8,125.2,126.0,126.8,127.2,127.8,128.0,129.6,131.3,141.4,143.8,143.9,144.4$, 144.6, 148.4, 154.0, 155.6, 159.9, 167.5, 169.3, 170.5; HRMS (ESI-TOF) m / z calcd for $\mathrm{C}_{59} \mathrm{H}_{57} \mathrm{~N}_{3} \mathrm{NaO}_{9} \mathrm{~S}\left([\mathrm{M}+\mathrm{Na}]^{+}\right) 1006.3713$, found 1006.3732.
[2-(7-\{ N-[Fmoc-L-Thr(t-Bu)]- N-(2-tritylsulfanylethyl)amino\}coumarin-4-acetylamino)]-acetic acid allyl ester (8h)

White amorphous solid; yield: $84 \%(202 \mathrm{mg}) ;[\alpha]^{26}{ }_{\mathrm{D}} 110.1\left(c 1.04, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400\right.$ $\mathrm{MHz}) \delta=0.92(3 \mathrm{H}, \mathrm{br} \mathrm{d}, J=4.4 \mathrm{~Hz}), 1.03(9 \mathrm{H}, \mathrm{br} \mathrm{s}), 2.19-2.36(1 \mathrm{H}, \mathrm{br} \mathrm{m}), 2.50-2.65(1 \mathrm{H}, \mathrm{br} \mathrm{m})$, 3.17-3.33 ($1 \mathrm{H}, \mathrm{br}$ m), $3.56-3.71(2 \mathrm{H}, \mathrm{br} \mathrm{m}), 3.72(1 \mathrm{H}, \mathrm{d}, J=15.7 \mathrm{~Hz}), 3.77(1 \mathrm{H}, \mathrm{d}, J=15.7 \mathrm{~Hz}), 4.08$ $(2 \mathrm{H}, \mathrm{d}, J=5.2 \mathrm{~Hz}), 4.13-4.25(1 \mathrm{H}, \mathrm{m}), 4.21(1 \mathrm{H}, \mathrm{t}, J=7.1 \mathrm{~Hz}), 4.35(2 \mathrm{H}, \mathrm{d}, J=7.1 \mathrm{~Hz}), 4.63(2 \mathrm{H}, \mathrm{d}$, $J=6.0 \mathrm{~Hz}), 5.26(1 \mathrm{H}, \mathrm{ddt}, J=10.6,1.2$ and 1.2 Hz$), 5.32(1 \mathrm{H}, \mathrm{ddt}, J=17.0,1.2$ and 1.2 Hz$), 5.50$
$(1 \mathrm{H}, \mathrm{br} \mathrm{d}, J=7.5 \mathrm{~Hz}), 5.88(1 \mathrm{H}, \mathrm{ddt}, J=17.0,10.6$ and 6.0 Hz$), 6.28(1 \mathrm{H}, \mathrm{t}, J=5.2 \mathrm{~Hz}), 6.48(1 \mathrm{H}, \mathrm{s})$, 6.94-7.05 ($2 \mathrm{H}, \mathrm{m}$), 7.08-7.23 ($9 \mathrm{H}, \mathrm{m}$), 7.28-7.36 ($8 \mathrm{H}, \mathrm{m}$), $7.40(2 \mathrm{H}, \mathrm{t}, J=7.5 \mathrm{~Hz}), 7.57-7.66(3 \mathrm{H}, \mathrm{m})$, $7.76(2 \mathrm{H}, \mathrm{d}, J=7.5 \mathrm{~Hz}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta=20.3,28.4,29.3,39.9,41.8,47.3,49.8,56.8$, $66.4,67.2,67.2,68.1,74.5,116.8,117.5,118.5,119.4,120.1,124.9,125.3,125.3,126.2,126.8,127.2$, $127.8,128.0,129.7,131.4,141.4,143.9,144.1,144.6,144.7,148.3,154.3,156.2,159.7,167.3,169.3$, 170.2; HRMS (ESI-TOF) m / z calcd for $\mathrm{C}_{60} \mathrm{H}_{59} \mathrm{~N}_{3} \mathrm{NaO}_{9} \mathrm{~S}\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$1020.3870, found 1020.3878.
[2-(7-\{ N-[Fmoc-L-Cys(Trt)]- N-(2-tritylsulfanylethyl)amino\}coumarin-4-acetylamino)]-acetic acid allyl ester (8i)

White amorphous solid; yield: 79% (227 mg); $[\alpha]^{22}{ }_{\mathrm{D}} 25.2$ (c 1.00, CHCl_{3}); ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400\right.$ $\mathrm{MHz}) \delta=2.13(1 \mathrm{H}, \mathrm{dd}, J=11.6$ and 7.3 Hz$), 2.24-2.37(2 \mathrm{H}, \mathrm{m}), 2.46(1 \mathrm{H}, \mathrm{dt}, J=13.6$ and 6.7 Hz$)$, $3.39(2 \mathrm{H}, \mathrm{br} \mathrm{t}, J=6.7 \mathrm{~Hz}), 3.70(1 \mathrm{H}, \mathrm{d}, J=15.8 \mathrm{~Hz}), 3.75(1 \mathrm{H}, \mathrm{d}, J=15.8 \mathrm{~Hz}), 4.08(2 \mathrm{H}, \mathrm{d}, J=5.1$ $\mathrm{Hz}), 4.16-4.36(4 \mathrm{H}, \mathrm{m}), 4.62(2 \mathrm{H}, \mathrm{d}, J=5.9 \mathrm{~Hz}), 5.25(1 \mathrm{H}, \mathrm{ddt}, J=10.7,1.3$ and 1.3 Hz$), 5.31(1 \mathrm{H}$, ddt, $J=17.0,1.3$ and 1.3 Hz$), 5.41(1 \mathrm{H}, \mathrm{d}, J=8.6 \mathrm{~Hz}), 5.87(1 \mathrm{H}, \mathrm{ddt}, J=17.0,10.7$ and 5.9 Hz$), 6.24$ $(1 \mathrm{H}, \mathrm{brt}, J=5.1 \mathrm{~Hz}), 6.48(1 \mathrm{H}, \mathrm{s}), 6.77(1 \mathrm{H}, \mathrm{br} \mathrm{s}), 6.85(1 \mathrm{H}, \mathrm{br} \mathrm{d}, J=8.4 \mathrm{~Hz}), 7.08-7.42(34 \mathrm{H}, \mathrm{m})$, $7.54(1 \mathrm{H}, \mathrm{d}, J=8.4 \mathrm{~Hz}), 7.59(1 \mathrm{H}, \mathrm{d}, J=6.9 \mathrm{~Hz}), 7.60(1 \mathrm{H}, \mathrm{d}, J=6.9 \mathrm{~Hz}), 7.77(2 \mathrm{H}, \mathrm{d}, J=7.5 \mathrm{~Hz}) ;$ ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta=29.3,34.4,40.0,41.8,47.2,49.7,50.8,66.5,66.9,67.2,67.3,116.8$, $117.7,118.8,119.4,120.1,124.6,125.3,126.3,126.8,127.0,127.2,127.3,127.9,128.0,128.1,129.5$, $129.6,131.3,141.4,143.8,143.9,144.0,144.3,144.6,148.1,154.2,155.5,159.6,167.3,169.3,169.9$; HRMS (ESI-TOF) m / z calcd for $\mathrm{C}_{74} \mathrm{H}_{63} \mathrm{~N}_{3} \mathrm{NaO}_{8} \mathrm{~S}_{2}\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$1208.3954, found 1208.3955 .
(2-\{7-[N-(Fmoc-L-Pro)- N-(2-tritylsulfanylethyl)amino]coumarin-4-acetylamino\})-acetic acid allyl ester (8j)

White amorphous solid; yield: 48% (109 mg); $[\alpha]^{23}{ }_{\mathrm{D}} 87.9$ (c 1.01, CHCl_{3}); ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400\right.$ $\mathrm{MHz}) \delta=1.67-2.16(4 \mathrm{H}, \mathrm{m}), 2.25-2.41(1.3 \mathrm{H}, \mathrm{m}), 2.50-2.59(0.7 \mathrm{H}, \mathrm{m}), 3.20-3.39(1 \mathrm{H}, \mathrm{m}), 3.45-3.53$ $(1 \mathrm{H}, \mathrm{m}), 3.54-3.76(4 \mathrm{H}, \mathrm{m}), 4.06-4.15(3 \mathrm{H}, \mathrm{m}), 4.20-4.43(3 \mathrm{H}, \mathrm{m}), 4.59-4.67(2 \mathrm{H}, \mathrm{m}), 5.26(1 \mathrm{H}, \mathrm{ddt}$, $J=10.4,1.3$ and 1.3 Hz$), 5.32(1 \mathrm{H}, \mathrm{ddt}, J=17.2,1.3$ and 1.3 Hz$), 5.82-5.94(1 \mathrm{H}, \mathrm{m}), 6.31(1 \mathrm{H}, \mathrm{br} \mathrm{s})$, $6.46(1 \mathrm{H}, \mathrm{s}), 6.59(0.3 \mathrm{H}, \mathrm{d}, J=7.2 \mathrm{~Hz}), 6.74(0.3 \mathrm{H}, \mathrm{s}), 7.04-7.50(21.5 \mathrm{H}, \mathrm{m}), 7.56-7.64(2 \mathrm{H}, \mathrm{m}), 7.75$ $(1.4 \mathrm{H}, \mathrm{d}, J=7.5 \mathrm{~Hz}), 7.80(0.6 \mathrm{H}, \mathrm{d}, J=7.5 \mathrm{~Hz}),{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta=23.5,24.7,29.6$, $30.5,31.7,39.9,41.8,47.1,47.3,47.5,47.7,49.3,57.7,66.5,67.1,67.6,117.1,117.5,118.5,119.5$, $120.1,120.2,125.0,125.3,125.4,126.2,126.8,127.1,127.2,127.8,128.0,129.6,129.7,131.3,141.4$, $144.0,144.2,144.3,144.6,144.7,145.1,148.3,154.2,154.9,159.8,167.4,169.3,172.1$; HRMS (ESITOF) m / z calcd for $\mathrm{C}_{57} \mathrm{H}_{51} \mathrm{~N}_{3} \mathrm{NaO}_{8} \mathrm{~S}\left([\mathrm{M}+\mathrm{Na}]^{+}\right) 960.3295$, found 960.3321.
(2-\{7-[N-(Fmoc-L-Val)- N-(2-tritylsulfanylethyl)amino]coumarin-4-acetylamino\})-acetic acid allyl ester (8 k)

White amorphous solid; yield: $86 \%(260 \mathrm{mg}) ;[\alpha]^{23}{ }_{\mathrm{D}} 117.3\left(c 1.01, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400\right.$ $\mathrm{MHz}) \delta=0.72(3 \mathrm{H}, \mathrm{d}, J=6.3 \mathrm{~Hz}), 0.77(3 \mathrm{H}, \mathrm{d}, J=6.5 \mathrm{~Hz}), 1.73-1.88(1 \mathrm{H}, \mathrm{m}), 2.23-2.35(1 \mathrm{H}, \mathrm{m})$, 2.49-2.62 $(1 \mathrm{H}, \mathrm{m}), 3.34-3.46(1 \mathrm{H}, \mathrm{br} \mathrm{m}), 3.54(1 \mathrm{H}, \mathrm{ddd}, J=13.4,8.7$ and 6.1 Hz$), 3.72(1 \mathrm{H}, \mathrm{d}, J=$ $15.5 \mathrm{~Hz}), 3.78(1 \mathrm{H}, \mathrm{d}, J=15.5 \mathrm{~Hz}), 4.02(1 \mathrm{H}, \mathrm{dd}, J=9.3 \mathrm{and} 6.5 \mathrm{~Hz}), 4.09(2 \mathrm{H}, \mathrm{d}, J=5.2 \mathrm{~Hz}), 4.19$ $(1 \mathrm{H}, \mathrm{t}, J=7.1 \mathrm{~Hz}), 4.30(1 \mathrm{H}, \mathrm{dd}, J=10.4$ and 7.1 Hz$), 4.38(1 \mathrm{H}, \mathrm{dd}, J=10.4$ and 7.1 Hz$), 4.63(2 \mathrm{H}$, d, $J=5.9 \mathrm{~Hz}), 5.25(1 \mathrm{H}, \mathrm{ddt}, J=10.6,1.2$ and 1.2 Hz$), 5.28-5.38(1 \mathrm{H}, \mathrm{m}), 5.32(1 \mathrm{H}, \mathrm{ddt}, J=17.0,1.2$ and 1.2 Hz$), 5.88(1 \mathrm{H}, \mathrm{ddt}, J=17.0,10.6$ and 5.9 Hz$), 6.32(1 \mathrm{H}, \mathrm{br} \mathrm{s}), 6.48(1 \mathrm{H}, \mathrm{s}), 6.91-7.04(2 \mathrm{H}$, m), 7.09-7.22 (9H, m), 7.27-7.36 (8H, m), 7.39 (2H, t, J=7.5 Hz), 7.55-7.67 (3H, m), 7.76 (2H, d, J $=7.5 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta=17.5,19.6,29.4,31.9,39.9,41.7,47.3,49.5,56.8,66.4$, $67.1,67.2,117.0,117.6,118.7,119.4,120.1,124.9,125.2,126.3,126.8,127.2,127.8,128.0,129.6$, $131.4,141.4,143.9,144.0,144.4,144.6,148.3,154.2,156.1,159.7,167.4,169.3,171.7$; HRMS (ESITOF) m / z calcd for $\mathrm{C}_{57} \mathrm{H}_{53} \mathrm{~N}_{3} \mathrm{NaO}_{8} \mathrm{~S}\left([\mathrm{M}+\mathrm{Na}]^{+}\right) 962.3451$, found 962.3468 .
(2-\{7-[N-(Fmoc-L-Met)- N-(2-tritylsulfanylethyl)amino]coumarin-4-acetylamino\})-acetic acid allyl ester (81)

White amorphous solid; yield: $83 \%(196 \mathrm{mg}) ;[\alpha]^{21}{ }_{\mathrm{D}} 76.7$ (c 1.02, $\left.\mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400\right.$ $\mathrm{MHz}) \delta=1.63-1.83(2 \mathrm{H}, \mathrm{m}), 1.89(3 \mathrm{H}, \mathrm{s}), 2.22-2.39(3 \mathrm{H}, \mathrm{m}), 2.47-2.60(1 \mathrm{H}, \mathrm{br} \mathrm{m}), 3.37-3.58(2 \mathrm{H}$, m), $3.72(1 \mathrm{H}, \mathrm{d}, J=15.6 \mathrm{~Hz}), 3.77(1 \mathrm{H}, \mathrm{d}, J=15.6 \mathrm{~Hz}), 4.09(2 \mathrm{H}, \mathrm{d}, J=5.2 \mathrm{~Hz}), 4.18(1 \mathrm{H}, \mathrm{t}, J=7.0$ $\mathrm{Hz}), 4.27-4.40(3 \mathrm{H}, \mathrm{m}), 4.64(2 \mathrm{H}, \mathrm{d}, J=5.9 \mathrm{~Hz}), 5.26(1 \mathrm{H}, \mathrm{ddt}, J=10.7,1.3$ and 1.3 Hz$), 5.32(1 \mathrm{H}$, ddt, $J=17.0,1.3$ and 1.3 Hz$), 5.44(1 \mathrm{H}$, br d, $J=8.1 \mathrm{~Hz}), 5.88(1 \mathrm{H}, \mathrm{ddt}, J=17.0,10.7$ and 5.9 Hz$)$, $6.26(1 \mathrm{H}, \mathrm{br} \mathrm{t}, J=5.2 \mathrm{~Hz}), 6.48(1 \mathrm{H}, \mathrm{s}), 6.95-7.05(2 \mathrm{H}, \mathrm{m}), 7.09-7.24(9 \mathrm{H}, \mathrm{m}), 7.28-7.37(8 \mathrm{H}, \mathrm{m})$, $7.40(2 \mathrm{H}, \mathrm{t}, J=7.5 \mathrm{~Hz}), 7.57(1 \mathrm{H}, \mathrm{d}, J=6.8 \mathrm{~Hz}), 7.58(1 \mathrm{H}, \mathrm{d}, J=6.9 \mathrm{~Hz}), 7.64(1 \mathrm{H}, \mathrm{d}, J=8.2 \mathrm{~Hz})$, $7.76(2 \mathrm{H}, \mathrm{d}, J=7.5 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta=15.6,29.4,29.9,32.7,40.0,41.8,47.3,49.4$, $51.1,66.5,67.1,67.2,116.9,117.8,118.9,119.4,120.1,124.7,125.2,126.5,126.9,127.2,127.9,128.0$, 129.6, 131.4, 141.4, 143.8, 144.0, 144.6, 148.2, 154.3, 155.9, 159.6, 167.3, 169.3, 171.4; HRMS (ESITOF) m / z calcd for $\mathrm{C}_{57} \mathrm{H}_{53} \mathrm{~N}_{3} \mathrm{NaO}_{8} \mathrm{~S}_{2}\left([\mathrm{M}+\mathrm{Na}]^{+}\right) 994.3172$, found 994.3176 .
(2-\{7-[N-(Fmoc-L-Leu)- N-(2-tritylsulfanylethyl)amino]coumarin-4-acetylamino\})-acetic acid allyl ester (8 m)

White amorphous solid; yield: $91 \%(563 \mathrm{mg}) ;[\alpha]^{27}{ }_{\mathrm{D}} 94.4$ (c 1.02, $\left.\mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400\right.$ $\mathrm{MHz}) \delta=0.41(3 \mathrm{H}, \mathrm{br} \mathrm{d}, J=5.1 \mathrm{~Hz}), 0.74(3 \mathrm{H}, \mathrm{br} \mathrm{d}, J=5.9 \mathrm{~Hz}), 1.15-1.28(1 \mathrm{H}, \mathrm{br} \mathrm{m}), 1.35-1.52(2 \mathrm{H}$, br m), 2.24-2.37 $(1 \mathrm{H}, \mathrm{m}), 2.48-2.60(1 \mathrm{H}$, br m$), 3.27-3.40(1 \mathrm{H}, \mathrm{br}$ m), $3.48-3.60(1 \mathrm{H}, \mathrm{m}), 3.72(1 \mathrm{H}, \mathrm{d}$, $J=15.6 \mathrm{~Hz}), 3.78(1 \mathrm{H}, \mathrm{d}, J=15.6 \mathrm{~Hz}), 4.08(2 \mathrm{H}, \mathrm{d}, J=5.2 \mathrm{~Hz}), 4.15-4.26(2 \mathrm{H}, \mathrm{m}), 4.27-4.37(2 \mathrm{H}$, m), $4.63(2 \mathrm{H}, \mathrm{d}, J=5.9 \mathrm{~Hz}), 5.26(1 \mathrm{H}, \mathrm{ddt}, J=10.6,1.1$ and 1.1 Hz$), 5.28-5.38(2 \mathrm{H}, \mathrm{m}), 5.88(1 \mathrm{H}$, ddt, $J=17.0,10.6$ and 5.9 Hz$), 6.43(1 \mathrm{H}, \mathrm{br} \mathrm{s}), 6.49(1 \mathrm{H}, \mathrm{s}), 7.00(1 \mathrm{H}, \mathrm{br} \mathrm{s}), 7.04(1 \mathrm{H}, \mathrm{br}$ d, $J=8.4$ $\mathrm{Hz}), 7.09-7.21(9 \mathrm{H}, \mathrm{m}), 7.27-7.36(8 \mathrm{H}, \mathrm{m}), 7.39(2 \mathrm{H}, \mathrm{t}, J=7.5 \mathrm{~Hz}), 7.57(1 \mathrm{H}, \mathrm{d}, J=6.5 \mathrm{~Hz}), 7.59(1 \mathrm{H}$, $\mathrm{d}, J=6.5 \mathrm{~Hz}), 7.65(1 \mathrm{H}, \mathrm{d}, J=8.4 \mathrm{~Hz}), 7.76(2 \mathrm{H}, \mathrm{d}, J=7.5 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta=21.1$, $23.3,24.6,29.4,39.9,41.7,42.4,47.3,49.3,50.5,66.4,67.1,67.2,116.9,117.6,118.7,119.4,120.1$,
$124.9,125.3,126.3,126.8,127.2,127.8,128.0,129.6,131.3,141.4,143.9,144.0,144.2,144.6,148.3$, 154.2, 156.1, 159.7, 167.4, 169.3, 172.6; HRMS (ESI-TOF) m / z calcd for $\mathrm{C}_{58} \mathrm{H}_{55} \mathrm{KN}_{3} \mathrm{O}_{8} \mathrm{~S}\left([\mathrm{M}+\mathrm{K}]^{+}\right)$ 992.3347, found 992.3329.
(2-\{7-[N-(Fmoc-L-Ile)- N-(2-tritylsulfanylethyl)amino]coumarin-4-acetylamino\})-acetic acid allyl ester (8n)

White amorphous solid; yield: $85 \%(195 \mathrm{mg}) ;[\alpha]^{22}{ }_{\mathrm{D}} 110.1\left(c 1.01, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400\right.$ $\mathrm{MHz}) \delta=0.67-0.80(6 \mathrm{H}, \mathrm{m}), 0.81-0.95(1 \mathrm{H}, \mathrm{m}), 1.32-1.46(1 \mathrm{H}, \mathrm{br} \mathrm{m}), 1.50-1.62(1 \mathrm{H}, \mathrm{br} \mathrm{m}), 2.22-$ $2.35(1 \mathrm{H}, \mathrm{br} \mathrm{m}), 2.50-2.62(1 \mathrm{H}, \mathrm{br} \mathrm{m}), 3.37-3.47(1 \mathrm{H}, \mathrm{m}), 3.49-3.59(1 \mathrm{H}, \mathrm{m}), 3.71(1 \mathrm{H}, \mathrm{d}, J=15.6$ $\mathrm{Hz}), 3.78(1 \mathrm{H}, \mathrm{d}, J=15.6 \mathrm{~Hz}), 4.03(1 \mathrm{H}, \mathrm{dd}, J=8.9$ and 7.8 Hz$), 4.09(2 \mathrm{H}, \mathrm{d}, J=5.2 \mathrm{~Hz}), 4.19(1 \mathrm{H}$, $\mathrm{t}, J=7.2 \mathrm{~Hz}), 4.31(1 \mathrm{H}, \mathrm{dd}, J=10.4$ and 7.2 Hz$), 4.37(1 \mathrm{H}, \mathrm{dd}, J=10.4$ and 7.2 Hz$), 4.63(2 \mathrm{H}, \mathrm{d}, J=$ $6.0 \mathrm{~Hz}), 5.22-5.36(1 \mathrm{H}, \mathrm{m}), 5.26(1 \mathrm{H}, \mathrm{ddt}, J=10.6,1.2$ and 1.2 Hz$), 5.32(1 \mathrm{H}, \mathrm{ddt}, J=16.9,1.2$ and $1.2 \mathrm{~Hz}), 5.88(1 \mathrm{H}, \mathrm{ddt}, J=16.9,10.6$ and 6.0 Hz$), 6.23-6.35(1 \mathrm{H}, \mathrm{br}$ m$), 6.48(1 \mathrm{H}, \mathrm{s}), 6.92-7.02(2 \mathrm{H}$, m), 7.09-7.24 (9H, m), 7.28-7.43 (10H, m), 7.54-7.66 (3H, m), 7.76 ($2 \mathrm{H}, \mathrm{d}, J=7.5 \mathrm{~Hz}$); ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta=11.4,15.8,24.2,29.4,38.5,39.9,41.8,47.4,49.4,56.2,66.4,67.0,67.2,117.1$, $117.6,118.7,119.4,120.1,124.9,125.2,126.2,126.8,127.2,127.8,128.0,129.6,131.3,141.4,143.9$, 144.0, 144.4, 144.6, 148.3, 154.2, 156.0, 159.8, 167.4, 169.3, 171.8; HRMS (ESI-TOF) m / z calcd for $\mathrm{C}_{58} \mathrm{H}_{55} \mathrm{~N}_{3} \mathrm{NaO}_{8} \mathrm{~S}\left([\mathrm{M}+\mathrm{Na}]^{+}\right) 976.3608$, found 976.3602 .
[2-(7-\{ N-[Fmoc-L-Tyr(t-Bu)]- N-(2-tritylsulfanylethyl)amino\}coumarin-4-acetylamino)]-acetic acid allyl ester (8o)

White amorphous solid
 yield: 73% (188 mg); $[\alpha]^{26}{ }_{\mathrm{D}} 17.9\left(c 1.04, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta=1.32(9 \mathrm{H}, \mathrm{s}), 2.25-2.42(2 \mathrm{H}, \mathrm{m}), 2.69$ $(1 \mathrm{H}, \mathrm{dd}, J=12.9$ and 5.8 Hz$), 2.84(1 \mathrm{H}, \mathrm{dd}, J=12.9$ and 9.0 Hz$), 3.24-3.42(2 \mathrm{H}, \mathrm{m}), 3.70(1 \mathrm{H}, \mathrm{d}, J=$ $15.7 \mathrm{~Hz}), 3.75(1 \mathrm{H}, \mathrm{d}, J=15.7 \mathrm{~Hz}), 4.09(2 \mathrm{H}, \mathrm{d}, J=5.1 \mathrm{~Hz}), 4.15(1 \mathrm{H}, \mathrm{t}, J=6.9 \mathrm{~Hz}), 4.22-4.36(3 \mathrm{H}$, m), $4.64(2 \mathrm{H}, \mathrm{d}, J=5.9 \mathrm{~Hz}), 5.26(1 \mathrm{H}, \mathrm{ddt}, J=10.7,1.2$ and 1.2 Hz$), 5.32(1 \mathrm{H}, \mathrm{ddt}, J=17.0,1.2$ and
$1.2 \mathrm{~Hz}), 5.39(1 \mathrm{H}, \mathrm{br} \mathrm{d}, J=8.1 \mathrm{~Hz}), 5.88(1 \mathrm{H}, \mathrm{ddt}, J=17.0,10.7$ and 5.9 Hz$), 6.27(1 \mathrm{H}, \mathrm{br} \mathrm{s}), 6.46$ $(1 \mathrm{H}, \mathrm{s}), 6.76-6.85(4 \mathrm{H}, \mathrm{br}$ s), 7.08-7.23 ($10 \mathrm{H}, \mathrm{m}$), 7.28-7.36 ($9 \mathrm{H}, \mathrm{m}$), $7.40(2 \mathrm{H}, \mathrm{t}, J=7.5 \mathrm{~Hz}), 7.47$ $(1 \mathrm{H}, \mathrm{br}$ d, $J=8.0 \mathrm{~Hz}), 7.55(1 \mathrm{H}, \mathrm{d}, J=6.2 \mathrm{~Hz}), 7.57(1 \mathrm{H}, \mathrm{d}, J=6.4 \mathrm{~Hz}), 7.76(2 \mathrm{H}, \mathrm{d}, J=7.5 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta=29.0,29.1,39.3,39.9,41.8,47.3,49.3,53.1,66.4,67.1,67.3,78.6,116.9$, 117.7, 118.7, 119.4, 120.1, 124.2, 124.5, 125.2, 125.9, 126.8, 127.2, 127.9, 128.0, 129.6, 130.1, 130.4, 131.4, 141.4, 143.9, 144.6, 148.1, 154.0, 154.8, 155.4, 159.6, 167.3, 169.3, 171.1; HRMS (ESI-TOF) m / z calcd for $\mathrm{C}_{65} \mathrm{H}_{61} \mathrm{~N}_{3} \mathrm{NaO} 9 \mathrm{~S}\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$1082.4026, found 1082.4020.
(2-\{7-[N-(Fmoc-L-Phe)- N-(2-tritylsulfanylethyl)amino]coumarin-4-acetylamino\})-acetic acid allyl ester (8p)

White amorphous solid; yield: $81 \%(194 \mathrm{mg}) ;[\alpha]^{20}{ }_{\mathrm{D}} 58.0\left(c 1.03, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400\right.$ $\mathrm{MHz}) \delta=2.24-2.40(2 \mathrm{H}, \mathrm{m}), 2.75(1 \mathrm{H}, \mathrm{dd}, J=12.6$ and 5.3 Hz$), 2.87(1 \mathrm{H}, \mathrm{dd}, J=12.6$ and 9.4 Hz$)$, $3.24-3.43(2 \mathrm{H}, \mathrm{br} \mathrm{m}), 3.70(1 \mathrm{H}, \mathrm{d}, J=16.0 \mathrm{~Hz}), 3.76(1 \mathrm{H}, \mathrm{d}, J=16.0 \mathrm{~Hz}), 4.09(2 \mathrm{H}, \mathrm{d}, J=5.0 \mathrm{~Hz})$, $4.17(1 \mathrm{H}, \mathrm{t}, J=7.0 \mathrm{~Hz}), 4.23-4.40(3 \mathrm{H}, \mathrm{m}), 4.63(2 \mathrm{H}, \mathrm{d}, J=5.9 \mathrm{~Hz}), 5.26(1 \mathrm{H}, \mathrm{ddt}, J=10.6,1.2$ and $1.2 \mathrm{~Hz}), 5.32(1 \mathrm{H}, \mathrm{ddt}, J=17.0,1.2$ and 1.2 Hz$), 5.41(1 \mathrm{H}, \mathrm{br} \mathrm{d}, J=8.7 \mathrm{~Hz}), 5.88(1 \mathrm{H}, \mathrm{ddt}, J=17.0$, 10.6 and 5.9 Hz$), 6.25(1 \mathrm{H}, \mathrm{br} \mathrm{t}, J=5.0 \mathrm{~Hz}), 6.46(1 \mathrm{H}, \mathrm{s}), 6.89(2 \mathrm{H}, \mathrm{d}, J=7.3 \mathrm{~Hz}), 7.08-7.23(11 \mathrm{H}$, $\mathrm{m}), 7.23-7.36(11 \mathrm{H}, \mathrm{m}), 7.40(2 \mathrm{H}, \mathrm{t}, J=7.5 \mathrm{~Hz}), 7.48(1 \mathrm{H}, \mathrm{d}, J=8.2 \mathrm{~Hz}), 7.56(1 \mathrm{H}, \mathrm{d}, J=6.4 \mathrm{~Hz})$, $7.57(1 \mathrm{H}, \mathrm{d}, J=6.6 \mathrm{~Hz}), 7.76(2 \mathrm{H}, \mathrm{d}, J=7.5 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta=29.2,39.9,40.2$, $41.8,47.3,49.3,53.2,66.5,67.1,67.2,116.7,117.6,118.6,119.5,120.1,124.5,125.2,125.3,125.8$, $126.8,127.2,127.5,127.9,128.0,128.7,129.6,131.3,135.7,141.4,143.8,143.9,144.6,148.2,153.9$, 155.4, 159.7, 167.3, 169.3, 171.0; HRMS (ESI-TOF) m / z calcd for $\mathrm{C}_{61} \mathrm{H}_{53} \mathrm{KN}_{3} \mathrm{O}_{8} \mathrm{~S}\left([\mathrm{M}+\mathrm{K}]^{+}\right)$ 1026.3190 , found 1026.3214 .

[2-(7-\{N-[Fmoc-L-His(MBom)]-N-(2-tritylsulfanylethyl)amino\}coumarin-4-acetylamino)]acetic acid allyl ester (8q)

White amorphous solid; yield: 70% (193 mg); $[\alpha]^{23}{ }_{\mathrm{D}} 58.0\left(c 1.01, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400\right.$ $\mathrm{MHz}) \delta=2.21-2.32(1 \mathrm{H}, \mathrm{br} \mathrm{m}), 2.40-2.52(1 \mathrm{H}, \mathrm{br} \mathrm{m}), 2.79(1 \mathrm{H}, \mathrm{br} d \mathrm{dd}, J=14.9$ and 6.5 Hz$), 2.95(1 \mathrm{H}$, dd, $J=14.9$ and 7.6 Hz$), 3.20-3.33(1 \mathrm{H}, \mathrm{m}), 3.52-3.70(3 \mathrm{H}, \mathrm{m}), 3.77(3 \mathrm{H}, \mathrm{s}), 4.04(2 \mathrm{H}, \mathrm{d}, J=5.2 \mathrm{~Hz})$, 4.08-4.20 (3H, m), 4.27-4.39 (3H, m), 4.62 ($2 \mathrm{H}, \mathrm{d}, J=5.9 \mathrm{~Hz}), 4.83(1 \mathrm{H}, \mathrm{d}, J=10.9 \mathrm{~Hz}), 4.90(1 \mathrm{H}$, br d, $J=10.9 \mathrm{~Hz}), 5.24(1 \mathrm{H}, \mathrm{ddt}, J=10.6,1.2$ and 1.2 Hz$), 5.30(1 \mathrm{H}, \mathrm{ddt}, J=16.9,1.2$ and 1.2 Hz$)$, $5.57(1 \mathrm{H}$, br d, $J=7.7 \mathrm{~Hz}), 5.87(1 \mathrm{H}, \mathrm{ddt}, J=16.9,10.6$ and 5.9 Hz$), 6.42(1 \mathrm{H}, \mathrm{s}), 6.60-6.67(3 \mathrm{H}, \mathrm{br}$ $\mathrm{m}), 6.83(2 \mathrm{H}, \mathrm{d}, J=8.6 \mathrm{~Hz}), 7.04-7.22(11 \mathrm{H}, \mathrm{m}), 7.24-7.42(12 \mathrm{H}, \mathrm{m}), 7.50(1 \mathrm{H}, \mathrm{d}, J=8.4 \mathrm{~Hz}), 7.54$ $(1 \mathrm{H}, \mathrm{d}, J=6.5 \mathrm{~Hz}), 7.56(1 \mathrm{H}, \mathrm{d}, J=6.5 \mathrm{~Hz}), 7.74(2 \mathrm{H}, \mathrm{d}, J=7.5 \mathrm{~Hz}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta$ $=27.7,29.2,39.8,41.7,47.2,49.2,51.5,55.5,66.4,67.1,67.2,69.4,72.8,114.2,116.8,117.7,118.8$, $119.4,120.1,124.4,125.2,126.3,126.8,127.2,127.9,128.0,128.2,129.6,129.7,131.4,138.5,141.4$, 143.6, 143.8, 144.5, 148.2, 154.1, 155.4, 159.6, 159.7, 167.4, 169.3, 170.8; HRMS (ESI-TOF) m / z calcd for $\mathrm{C}_{67} \mathrm{H}_{62} \mathrm{~N}_{5} \mathrm{O}_{10} \mathrm{~S}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$1128.4217, found 1128.4210.
[2-(7-\{N-[Fmoc-L-Lys(Boc)]-N-(2-tritylsulfanylethyl)amino\}coumarin-4-acetylamino)]-acetic acid allyl ester (8r)

White amorphous solid; yield: $70 \%(177 \mathrm{mg}) ;[\alpha]^{22} \mathrm{D} 90.0\left(c 1.00, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400\right.$ $\mathrm{MHz}) \delta=1.02-1.24(4 \mathrm{H}, \mathrm{br} \mathrm{m}), 1.36-1.47(2 \mathrm{H}, \mathrm{m}), 1.40(9 \mathrm{H}, \mathrm{s}), 2.23-2.37(1 \mathrm{H}, \mathrm{br}$ m), 2.47-2.61$(1 \mathrm{H}$, br m), 2.77-2.97 $(2 \mathrm{H}, \mathrm{br} \mathrm{s}), 3.28-3.40(1 \mathrm{H}, \mathrm{br} m), 3.53-3.66(1 \mathrm{H}, \mathrm{br} \mathrm{m}), 3.76(2 \mathrm{H}, \mathrm{s}), 4.09(2 \mathrm{H}, \mathrm{d}, J=$ $5.3 \mathrm{~Hz}), 4.14-4.24(1 \mathrm{H}, \mathrm{m}), 4.18(1 \mathrm{H}, \mathrm{t}, J=7.1 \mathrm{~Hz}), 4.32(2 \mathrm{H}, \mathrm{d}, J=7.1 \mathrm{~Hz}), 4.49-4.59(1 \mathrm{H}, \mathrm{br} \mathrm{s})$,
$4.63(2 \mathrm{H}, \mathrm{d}, J=5.9 \mathrm{~Hz}), 5.25(1 \mathrm{H}, \mathrm{d}, J=10.7 \mathrm{~Hz}), 5.32(1 \mathrm{H}, \mathrm{dd}, J=17.0$ and 1.2 Hz$), 5.36-5.48(1 \mathrm{H}$, br m), 5.88 (1 H , ddt, $J=17.0,10.7$ and 5.9 Hz$), 6.37-6.62(2 \mathrm{H}, \mathrm{br}$ s), 6.96-7.06 ($2 \mathrm{H}, \mathrm{m}$), 7.09-7.21 $(9 \mathrm{H}, \mathrm{m}), 7.24-7.35(8 \mathrm{H}, \mathrm{m}), 7.40(2 \mathrm{H}, \mathrm{t}, J=7.5 \mathrm{~Hz}), 7.58(1 \mathrm{H}, \mathrm{d}, J=6.6 \mathrm{~Hz}), 7.59(1 \mathrm{H}, \mathrm{d}, J=6.9 \mathrm{~Hz})$, $7.65(1 \mathrm{H}, \mathrm{d}, J=8.2 \mathrm{~Hz}), 7.76(2 \mathrm{H}, \mathrm{d}, J=7.5 \mathrm{~Hz}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta=22.3,28.5,29.2$, $29.4,29.8,32.5,39.8,40.1,41.7,47.3,49.3,51.5,66.4,67.1,67.2,76.7,77.2,77.4,77.6,79.3,116.9$, 117.7, 118.9, 119.3, 120.1, 124.7, 125.3, 126.4, 126.8, 127.2, 127.8, 128.0, 129.6, 131.4, 141.4, 143.9, $144.0,144.6,148.3,154.3,156.1,159.6,167.6,169.3,171.9$; HRMS (ESI-TOF) m / z calcd for $\mathrm{C}_{63} \mathrm{H}_{64} \mathrm{~N}_{4} \mathrm{NaO}_{10} \mathrm{~S}\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$1091.4241, found 1091.4253.

[2-(7-\{N-[Fmoc-L-Arg(Pbf)]-N-(2-tritylsulfanylethyl)amino\}coumarin-4-acetylamino)]-acetic acid allyl ester (8s)

White amorphous solid; yield: 74% (222 mg); $[\alpha]^{22}{ }_{\mathrm{D}} 38.5$ (c 1.02, CHCl_{3}); ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400\right.$ $\mathrm{MHz}) \delta=1.07-1.28(1 \mathrm{H}, \mathrm{br} \mathrm{m}), 1.33-1.57(9 \mathrm{H}, \mathrm{m}), 2.05(3 \mathrm{H}, \mathrm{s}), 2.20-2.27(1 \mathrm{H}, \mathrm{m}), 2.44(3 \mathrm{H}, \mathrm{s}), 2.50$ $(3 \mathrm{H}, \mathrm{s}), 2.39-2.57(1 \mathrm{H}, \mathrm{m}), 2.59-2.81(2 \mathrm{H}, \mathrm{br} \mathrm{m}), 2.91(2 \mathrm{H}, \mathrm{s}), 3.24-3.38(1 \mathrm{H}, \mathrm{m}), 3.61-3.73(1 \mathrm{H}, \mathrm{m})$, 3.87-4.10 $(3 \mathrm{H}, \mathrm{m}), 4.11-4.21(2 \mathrm{H}, \mathrm{m}), 4.23-4.42(3 \mathrm{H}, \mathrm{m}), 4.61(2 \mathrm{H}, \mathrm{d}, J=5.7 \mathrm{~Hz}), 5.22(1 \mathrm{H}, \mathrm{ddt}, J=$ $10.7,1.3$ and 1.3 Hz$), 5.31(1 \mathrm{H}, \mathrm{ddt}, J=17.0,1.3$ and 1.3 Hz$), 5.42-5.80(2 \mathrm{H}, \mathrm{br} \mathrm{m}), 5.67(1 \mathrm{H}, \mathrm{d}, J=$ $9.0 \mathrm{~Hz}), 5.89(1 \mathrm{H}, \mathrm{ddt}, J=17.0,10.7$ and 5.7 Hz$), 6.04(1 \mathrm{H}, \mathrm{br} \mathrm{s}), 6.67(1 \mathrm{H}, \mathrm{s}), 6.94(1 \mathrm{H}, \mathrm{s}), 6.97(1 \mathrm{H}$, dd, $J=8.4$ and 1.6 Hz$), 7.08-7.41(19 \mathrm{H}, \mathrm{m}), 7.53(1 \mathrm{H}, \mathrm{d}, J=7.5 \mathrm{~Hz}), 7.56(1 \mathrm{H}, \mathrm{d}, J=7.5 \mathrm{~Hz}), 7.74$ $(2 \mathrm{H}, \mathrm{dd}, J=7.5$ and 3.0 Hz$), 7.83(1 \mathrm{H}, \mathrm{br} \mathrm{d}, J=8.4 \mathrm{~Hz}), 7.99(1 \mathrm{H}, \mathrm{s}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta$ $=12.6,18.0,19.4,23.1,28.7,29.3,39.4,41.5,43.3,47.3,49.0,50.8,66.1,67.2,67.3,86.6,116.6$, $116.9,117.7,118.9,119.6,120.2,120.2,123.9,124.8,125.1,126.9,127.2,127.2,127.9,128.0,129.6$, $131.7,132.2,132.9,138.4,141.4,141.5,143.0,143.4,143.8,144.5,149.5,154.0,155.7,157.0,158.9$, 160.0, 168.8, 169.6, 171.3; HRMS (ESI-TOF) m / z calcd for $\mathrm{C}_{71} \mathrm{H}_{72} \mathrm{~N}_{6} \mathrm{NaO}_{11} \mathrm{~S}_{2}\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$1271.4598, found 1271.4609.
(2-\{7-[N-(Fmoc-L-Trp)- N-(2-tritylsulfanylethyl)amino]coumarin-4-acetylamino\})-acetic acid allyl ester (8t)

White amorphous solid; yield: $87 \%(217 \mathrm{mg}) ;[\alpha]^{21} \mathrm{D} 108.1$ (c 1.01, $\left.\mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400\right.$ $\mathrm{MHz}) \delta=2.16(1 \mathrm{H}, \mathrm{ddd}, J=12.3,9.3$ and 6.2 Hz$), 2.26(1 \mathrm{H}, \mathrm{ddd}, J=12.3,9.0$ and 5.6 Hz$), 2.94(1 \mathrm{H}$, dd, $J=13.6$ and 4.2 Hz$), 3.04(1 \mathrm{H}, \mathrm{dd}, J=13.6$ and 10.3 Hz$), 3.17(1 \mathrm{H}, \mathrm{ddd}, J=13.3,9.0$ and 6.2 Hz$)$, $3.43(1 \mathrm{H}, \mathrm{ddd}, J=13.3,9.3$ and 5.6 Hz$), 3.59(1 \mathrm{H}, \mathrm{d}, J=15.7 \mathrm{~Hz}), 3.67(1 \mathrm{H}, \mathrm{d}, J=15.7 \mathrm{~Hz}), 4.08$ $(2 \mathrm{H}, \mathrm{d}, J=5.2 \mathrm{~Hz}), 4.22(1 \mathrm{H}, \mathrm{t}, J=7.1 \mathrm{~Hz}), 4.36(1 \mathrm{H}, \mathrm{dd}, J=10.4$ and 7.1 Hz$), 4.39(1 \mathrm{H}, \mathrm{dd}, J=10.4$ and 7.1 Hz$), 4.53-4.69(1 \mathrm{H}, \mathrm{m}), 4.64(2 \mathrm{H}, \mathrm{d}, J=5.9 \mathrm{~Hz}), 5.25(1 \mathrm{H}, \mathrm{ddt}, J=10.7,1.2$ and 1.2 Hz$), 5.31$ $(1 \mathrm{H}, \operatorname{ddt}, J=17.0,1.2$ and 1.2 Hz$), 5.59(1 \mathrm{H}, \mathrm{br} \mathrm{d}, J=8.7 \mathrm{~Hz}), 5.88(1 \mathrm{H}, \operatorname{ddt}, J=17.0,10.7$ and 5.9 $\mathrm{Hz}), 6.26(1 \mathrm{H}, \mathrm{br} \mathrm{t}, J=5.2 \mathrm{~Hz}), 6.38(1 \mathrm{H}, \mathrm{s}), 6.72(1 \mathrm{H}, \mathrm{s}), 6.75-6.84(1 \mathrm{H}, \mathrm{br} \mathrm{m}), 7.01-7.24(12 \mathrm{H}, \mathrm{m})$, $7.25-7.37(11 \mathrm{H}, \mathrm{m}), 7.41(2 \mathrm{H}, \mathrm{t}, J=7.5 \mathrm{~Hz}), 7.60(1 \mathrm{H}, \mathrm{d}, J=6.7 \mathrm{~Hz}), 7.61(1 \mathrm{H}, \mathrm{d}, J=6.8 \mathrm{~Hz}), 7.78$ $(2 \mathrm{H}, \mathrm{d}, J=7.5 \mathrm{~Hz}), 8.03(1 \mathrm{H}, \mathrm{s}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta=29.2,29.8,30.5,39.6,41.7,47.3$, $49.0,52.3,66.4,67.0,67.1,110.0,111.4,116.0,117.1,117.9,118.4,119.4,120.1,122.1,123.0,124.1$, $125.3,126.8,127.2,127.4,127.9,127.9,129.6,131.3,136.0,141.4,143.6,143.9,143.9,144.6,148.3$, $153.4,155.7,160.0,167.5,169.4,171.9 ;$ HRMS (ESI-TOF) m / z calcd for $\mathrm{C}_{63} \mathrm{H}_{54} \mathrm{~N}_{4} \mathrm{NaO}_{8} \mathrm{~S}\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$ 1049.3560 , found 1049.3582 .

Typical procedure of removal of an allyl group of 8

To a stirred mixture of compound $\mathbf{8 a}(77.0 \mathrm{mg}, 85.7 \mu \mathrm{~mol})$ in THF $(2 \mathrm{~mL}), N$-methylaniline $(93.0 \mu \mathrm{~L}$, $857 \mu \mathrm{~mol})$ and $\mathrm{Pd}\left(\mathrm{Ph}_{3} \mathrm{P}\right)_{4}(9.91 \mathrm{mg}, 8.57 \mu \mathrm{~mol})$ were added and the reaction mixture was stirred at room temperature for 1 h . After removal of the solvent in vacuo, the product was purified by column chromatography $\left(\mathrm{CHCl}_{3} / \mathrm{MeOH}=100 / 0\right.$ to $100 / 7$ then $\left.3 / 2(\mathrm{v} / \mathrm{v})\right)$ to yield $9 \mathrm{a}(53.3 \mathrm{mg}, 62.1 \mu \mathrm{~mol}$, 72%) as a yellow amorphous solid.

(2-\{7-[N-(Fmoc-Gly)-N-(2-tritylsulfanylethyl)amino]coumarin-4-acetylamino\})-acetic acid (9a)

Yellow amorphous solid; yield $72 \%(53.3 \mathrm{mg}) ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)=2.41(2 \mathrm{H}, \mathrm{t}, J=7.1$ $\mathrm{Hz}), 3.41-3.63(4 \mathrm{H}, \mathrm{m}), 3.76(2 \mathrm{H}, \mathrm{s}), 3.92(2 \mathrm{H}, \mathrm{br} \mathrm{d}, J=4.2 \mathrm{~Hz}), 4.15(1 \mathrm{H}, \mathrm{t}, J=7.0 \mathrm{~Hz}), 4.29(2 \mathrm{H}, \mathrm{d}$, $J=7.0 \mathrm{~Hz}), 5.87(1 \mathrm{H}, \mathrm{br} \mathrm{t}, J=3.9 \mathrm{~Hz}), 6.51(1 \mathrm{H}, \mathrm{s}), 6.57(1 \mathrm{H}, \mathrm{br} \mathrm{s}), 6.89(1 \mathrm{H}, \mathrm{dd}, J=8.3$ and 1.4 Hz$)$, $6.94(1 \mathrm{H}, \mathrm{d}, J=1.4 \mathrm{~Hz}), 7.09-7.40(19 \mathrm{H}, \mathrm{m}), 7.54(2 \mathrm{H}, \mathrm{d}, J=7.4 \mathrm{~Hz}), 7.63(1 \mathrm{H}, \mathrm{d}, J=8.3 \mathrm{~Hz}), 7.73$
 $116.7,117.8,119.2,120.2,124.5,125.2,126.9,127.2,127.9,128.1,129.6,141.4,143.0,143.7,144.5$, 148.8, 154.3, 156.6, 160.0, 167.7, 168.3, 171.3; HRMS (ESI-TOF) m / z calcd for $\mathrm{C}_{51} \mathrm{H}_{43} \mathrm{~N}_{3} \mathrm{NaO}_{8} \mathrm{~S}$ ([M $+\mathrm{Na}]^{+}$) 880.2669 , found 880.2656 .
(2-\{7-[N-(Fmoc-L-Phe)- N-(2-tritylsulfanylethyl)amino]coumarin-4-acetylamino\})-acetic
acid (9p)

Pale yellow amorphous solid; yield: $57 \%(217 \mathrm{mg}) ;[\alpha]{ }^{28}{ }_{\mathrm{D}} 46.3\left(c 1.01, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right.$, $400 \mathrm{MHz}) \delta=2.30(2 \mathrm{H}, \mathrm{t}, J=7.6 \mathrm{~Hz}), 2.72(1 \mathrm{H}, \mathrm{dd}, J=13.5$ and 5.3 Hz$), 2.83(1 \mathrm{H}, \mathrm{dd}, J=13.5$ and $9.3 \mathrm{~Hz}), 3.28-3.38(2 \mathrm{H}, \mathrm{m}), 3.72(1 \mathrm{H}, \mathrm{d}, J=15.5 \mathrm{~Hz}), 3.79(1 \mathrm{H}, \mathrm{d}, J=15.5 \mathrm{~Hz}), 4.07-4.19(2 \mathrm{H}, \mathrm{m})$, $4.23(1 \mathrm{H}, \mathrm{dd}, J=9.3$ and 5.3 Hz$), 4.28-4.43(1 \mathrm{H}, \mathrm{m}), 4.31(1 \mathrm{H}, \mathrm{dd}, J=7.2$ and 10.5 Hz$), 4.39(1 \mathrm{H}$, dd, $J=7.2$ and 10.5 Hz$), 7.10-7.21(12 \mathrm{H}, \mathrm{m}), 7.28-7.35(10 \mathrm{H}, \mathrm{m}), 7.40(2 \mathrm{H}, \mathrm{dd}, \mathrm{J}=7.4$ and 8.4 Hz$)$, $7.50-7.60(1 \mathrm{H}, \mathrm{m}), 7.55(2 \mathrm{H}, \mathrm{t}, J=7.2 \mathrm{~Hz}), 7.75(2 \mathrm{H}, \mathrm{d}, J=7.4 \mathrm{~Hz}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta=$ $29.1,39.7,40.0,41.9,47.1,49.2,53.2,67.2,67.3,76.7,77.2,77.4,77.6,116.5,117.3,118.7,120.1$, $124.4,125.2,126.2,126.8,127.2,127.4,127.9,127.9,128.7,129.6,135.5,141.3,143.5,143.6,144.5$, $149.0,153.6,155.7,160.5,168.5,171.0,172.3$; HRMS (ESI-TOF) m / z calcd for $\mathrm{C}_{58} \mathrm{H}_{49} \mathrm{~N}_{3} \mathrm{NaO}_{8} \mathrm{~S}$ $\left([\mathrm{M}+\mathrm{Na}]^{+}\right) 970.3138$, found 970.3142 .

Preparation of SECmide peptide 11

The protected peptide resin was constructed on NovaSyn ${ }^{\circledR}$ TGR resin (loading: $0.22 \mathrm{mmol} / \mathrm{g}$) using

Fmoc SPPS (Acylation: Fmoc amino acid (5.0 equiv), DIC (5.0 equiv) and $\mathrm{HOBt} \cdot \mathrm{H}_{2} \mathrm{O}$ (5.0 equiv) in DMF or 9a (2.0 equiv), HATU (1.9 equiv) and DIPEA (1.9 equiv) in DMF for 2 h ; Fmoc removal: $20 \%(\mathrm{v} / \mathrm{v})$ piperidine DMF for 10 min$)$. The completed resin (150 mg) was treated with TFA-TES$\mathrm{H}_{2} \mathrm{O}(95: 2.5: 2.5,(\mathrm{v} / \mathrm{v}), 7.5 \mathrm{~mL})$ at room temperature for 2 h . The resin was filtered off and the filtrate was directly added to cold $\mathrm{Et}_{2} \mathrm{O}$ to generate precipitate. The precipitate collected by centrifugation was washed with cold $\mathrm{Et}_{2} \mathrm{O}$ and purified by preparative HPLC to give SECmide peptide $\mathbf{1 1}$ ($6.2 \mathrm{mg}, \mathbf{2 5 \%}$).

SECmide peptide 11: Analytical HPLC conditions, linear gradient of solvent B in solvent A, 15 to 25% over 30 min , retention time $=24.6 \mathrm{~min}$. Preparative HPLC condition: linear gradient of solvent D in solvent C, 15 to 25% over 30 min . LRMS (ESI-TOF) m / z calcd for $\left([\mathrm{M}+\mathrm{H}]^{+}\right) 906.4$, found 906.1.

Preparation of peptide thioester 13

SECmide peptide $11(1.5 \mathrm{mg}, 1.7 \mu \mathrm{~mol})$ was dissolved in 0.5 M Na phosphate buffer containing 5% (v/v) 3-mercaptopropionic acid (MPA), 20 mM tris(2-carboxyethyl)phosphine hydrochloride (TCEP $\cdot \mathrm{HCl}$) and 50 mM Na ascorbate $(\mathrm{pH} 5.0,1.7 \mathrm{~mL})$. The reaction mixture was incubated at $50^{\circ} \mathrm{C}$ for 4 h and reaction progress was monitored by analytical HPLC. After completion of the reaction, the crude material was purified by preparative HPLC to give $13(0.89 \mathrm{mg}, 1.1 \mu \mathrm{~mol}, 68 \%$ isolated yield $)$. Analytical HPLC conditions, linear gradient of solvent B in solvent A, 5 to 30% over 30 min , retention time $=18.6$ min. Preparative HPLC conditions: linear gradient of solvent B in solvent A, 8 to 18% over 30 min . LRMS (ESI-TOF) m / z calcd for $\left([\mathrm{M}+\mathrm{H}]^{+}\right)$677.3, found 677.2.

Preparation of SECmide peptide 14

The protected peptide resin was constructed on NovaSyn ${ }^{\circledR}$ TGR resin (loading: $0.22 \mathrm{mmol} / \mathrm{g}$) using Fmoc SPPS (Acylation: Fmoc amino acid (3.0 equiv), DIC (3.0 equiv) and $\mathrm{HOBt} \cdot \mathrm{H}_{2} \mathrm{O}$ (3.0 equiv) in DMF or 9p (2.0 equiv), HATU (1.9 equiv) and DIPEA (1.9 equiv) in DMF for 2 h ; Fmoc removal: $20 \% ~(\mathrm{v} / \mathrm{v})$ piperidine in DMF for 10 min$)$. The completed resin $(120 \mathrm{mg})$ was treated with TFA-TES$\mathrm{H}_{2} \mathrm{O}(95: 2.5: 2.5,(\mathrm{v} / \mathrm{v}), 6.0 \mathrm{~mL})$ at room temperature for 2 h . The resin was filtered off and the filtrate
was directly added to cold $\mathrm{Et}_{2} \mathrm{O}$ to generate precipitate. The precipitate collected by centrifugation was washed with cold $\mathrm{Et}_{2} \mathrm{O}$ and purified by preparative HPLC to give SECmide peptide $\mathbf{1 4}(4.53 \mathrm{mg}$, 16.3%). Analytical HPLC conditions, linear gradient of solvent B in solvent A, 5 to 35% over 30 min , retention time $=27.8 \mathrm{~min}$. Preparative HPLC conditions: linear gradient of solvent D in solvent $\mathrm{C}, 19$ to 28% over 30 min . LRMS (ESI-TOF) m / z calcd for $\left([\mathrm{M}+\mathrm{H}]^{+}\right) 996.4$, found 996.1.

Examination of epimerization during $\mathrm{N}-\mathrm{S}$ acyl transfer mediated thioesterification of SECmide peptide 14

SECmide peptide $14(0.12 \mathrm{mg}, 0.10 \mu \mathrm{~mol})$ was dissolved in 0.5 M Na phosphate buffer containing $5 \%(\mathrm{v} / \mathrm{v}) \mathrm{MPA}, 20 \mathrm{mM}$ TCEP $\cdot \mathrm{HCl}$ and 50 mM Na ascorbate ($\mathrm{pH} 5.0,0.10 \mathrm{~mL}$). The reaction mixture was incubated at $50^{\circ} \mathrm{C}$ for 8 h and reaction progress was monitored by analytical HPLC. Analytical HPLC conditions: linear gradient of solvent B in solvent A, 10 to 30% over 30 min .

Preparation of peptide thioesters S2 and S3

S2

S3

Typical procedure: On 4-methylbenzhydrylamine (MBHA) resin (0.70 mmol amine $/ \mathrm{g}, 0.36 \mathrm{~g}, 0.25$ mmol), introduction of Boc-Ala-OH (4.0 equiv) in the presence of DIC (4.0 equiv), $\mathrm{HOBt} \cdot \mathrm{H}_{2} \mathrm{O}$ (4.0 equiv) and DIPEA (2.0 equiv) in DMF at room temperature for 2 h followed by Boc removal by TFA-anisole-toluene (50:2:48 (v/v), 30 min) afforded the Boc-Ala-incorporated resin. Next, treatment of the resulting resin with $S-\mathrm{Tr}$ mercaptopropionic acid (4.0 equiv), DIC (4.0 equiv), $\mathrm{HOBt} \cdot \mathrm{H}_{2} \mathrm{O}$ (4.0 equiv) and DIPEA (2.0 equiv) in DMF at room temperature for 2 h followed by Trt removal by TFATES (95:5, 10 min) gave $\mathrm{HSCH}_{2} \mathrm{CH}_{2} \mathrm{CO}-\mathrm{Ala}-\mathrm{MBHA}$ resin. Activated Boc-ı-Phe-OH (4.0 equiv) with DIC (4.0 equiv), $\mathrm{HOBt} \cdot \mathrm{H}_{2} \mathrm{O}$ (4.0 equiv) and DIPEA (2.0 equiv) in DMF was coupled with $\mathrm{HSCH}_{2} \mathrm{CH}_{2} \mathrm{CO}-\mathrm{Ala}-\mathrm{MBHA}$ resin for 2 h , and the resin was subsequently subjected to Boc removal by TFA-anisole-toluene (50:2:48 (v/v), 30 min). On the resulting resin, standard in situ neutralization Boc SPPS (Acylation: Boc amino acid (4.0 equiv), DIC (4.0 equiv), $\mathrm{HOB} \cdot \mathrm{H}_{2} \mathrm{O}$ (4.0 equiv) and DIPEA (2.0 equiv) in DMF at room temperature for 2 h ; Boc removal: TFA-anisole-toluene (50:2:48 (v/v), $30 \mathrm{~min})$) was performed for chain elongation to give a protected peptide resin. The resulting completed resin (50 mg) was treated with 1 M TMSOTf-thioanisole in TFA and m-cresol (100/5 (v/v)) at $4{ }^{\circ} \mathrm{C}$ for 2 h . After filtration of the resin, cooled $\mathrm{Et}_{2} \mathrm{O}$ was added to the filtrate to give precipitate. The
formed precipitate was collected by centrifugation and thoroughly washed with $\mathrm{Et}_{2} \mathrm{O}$ to afford crude peptide thioester. The crude peptide thioester was purified by preparative HPLC to give the purified peptide S2 (2.0 mg, 9.4\%) .

Peptide thioester S2: Analytical HPLC conditions, linear gradient of solvent B in solvent A, 10 to 30\% over 30 min , retention time $=24.1 \mathrm{~min}$. Preparative HPLC conditions: linear gradient of solvent B in solvent A, 10 to 30% over 30 min . LRMS (ESI-TOF) m / z calcd for $\left([\mathrm{M}+\mathrm{H}]^{+}\right) 837.4$, found 837.1.

Peptide thioester $\mathbf{S 3}$ ($2.0 \mathrm{mg}, 9.2 \%$): Analytical HPLC conditions, linear gradient of solvent B in solvent A, 10 to 30% over 30 min , retention time $=27.1 \mathrm{~min}$. Preparative HPLC conditions: linear gradient of solvent B in solvent A, 10 to 30% over 30 min . LRMS (ESI-TOF) m / z calcd for $\left([\mathrm{M}+\mathrm{H}]^{+}\right)$ 837.4, found 837.1.

Preparation of peptide thioesters S4 and S5

S4

S5

Typical procedure: Peptide thioester $\mathbf{S 2}(0.94 \mathrm{mg}, 1.0 \mu \mathrm{~mol})$ was dissolved in 6 M guanidine $\cdot \mathrm{HCl}-0.1$ M Na phosphate buffer containing $2 \%(\mathrm{v} / \mathrm{v})$ MPA ($\mathrm{pH} 7.3,1.0 \mathrm{~mL}$). The reaction mixture was incubated at $37{ }^{\circ} \mathrm{C}$ for 1 h and reaction progress was monitored by analytical HPLC. After 1 h of the reaction, the crude material was purified by preparative HPLC to give $\mathbf{S} \mathbf{4}(0.10 \mathrm{mg}, 0.13 \mu \mathrm{~mol}, 13 \%$ isolated yield).

Peptide thioester S4: Analytical HPLC conditions, linear gradient of solvent B in solvent A, 10 to 30% over 30 min , retention time $=27.2 \mathrm{~min}$. Preparative HPLC conditions: linear gradient of solvent B in solvent A, 15 to 35% over 30 min . LRMS (ESI-TOF) m / z calcd for $\left([\mathrm{M}+\mathrm{H}]^{+}\right) 767.3$, found 767.1 .

Peptide thioester $\mathbf{S 5}$ ($0.25 \mathrm{mg}, 0.33 \mu \mathrm{~mol}, 33 \%$ isolated yield): Analytical HPLC conditions, linear gradient of solvent B in solvent A, 10 to 30% over 30 min , retention time $=29.8 \mathrm{~min}$. Preparative HPLC conditions: linear gradient of solvent B in solvent A, 15 to 35% over 30 min . LRMS (ESI-TOF) m / z calcd for $\left([\mathrm{M}+\mathrm{H}]^{+}\right) 767.3$, found 767.2.

Preparation of SEAlide peptide 16

The protected peptide resin was constructed on NovaSyn ${ }^{\circledR}$ TGR resin (loading: $0.22 \mathrm{mmol} / \mathrm{g}$) using Fmoc SPPS (Acylation: Fmoc amino acid (4.0 equiv), DIC (4.0 equiv) and $\mathrm{HOBt} \cdot \mathrm{H}_{2} \mathrm{O}$ (4.0 equiv) in DMF or 4-[(Fmoc-Gly -2-tritylsulfanylethyl)amino]benzoic acid (2.0 equiv), HATU (1.9 equiv) and DIPEA (1.9 equiv) in DMF for 2 h ; Fmoc removal: $20 \%(\mathrm{v} / \mathrm{v})$ piperidine in DMF for 10 min). The completed resin (100 mg) was treated with TFA-TES- $\mathrm{H}_{2} \mathrm{O}(95: 2.5: 2.5$, $(\mathrm{v} / \mathrm{v}), 5.0 \mathrm{~mL})$ at room temperature for 2 h . The resin was filtered off and the filtrate was directly added to cold $\mathrm{Et}_{2} \mathrm{O}$ to generate precipitate. The precipitate collected by centrifugation was washed with cold $\mathrm{Et}_{2} \mathrm{O}$ and purified by preparative HPLC to give SEAlide peptide 16 ($3.1 \mathrm{mg}, 11 \%$). Analytical HPLC conditions, linear gradient of solvent B in solvent $A, 10$ to 60% over 30 min , retention time $=11.2 \mathrm{~min}$. Preparative HPLC conditions: linear gradient of solvent D in solvent C, 15 to 25% over 30 min. LRMS (ESI-TOF) m / z calcd for $\left([\mathrm{M}+\mathrm{H}]^{+}\right) 824.4$, found 824.2.

Preparation of N-terminal cysteinyl peptide 17

H-CYRANK-NH2

The protected peptide resin was constructed on NovaSyn ${ }^{\circledR}$ TGR resin (loading: $0.22 \mathrm{mmol} / \mathrm{g}$) using Fmoc SPPS (Acylation: Fmoc amino acid (3.0 equiv), DIC (3.0 equiv) and $\mathrm{HOBt} \cdot \mathrm{H}_{2} \mathrm{O}$ (3.0 equiv) in DMF) in DMF for 2 h ; Fmoc removal: 20% (v/v) piperidine in DMF for 10 min). The completed resin (200 mg) was treated with TFA- m-cresol-thioanisole- $\mathrm{H}_{2} \mathrm{O}-1,2$-ethanedithiol (80:5:5:5:5, (v/v), 10 mL) at room temperature for 2 h . The resin was filtered off and the filtrate was directly added to cold $\mathrm{Et}_{2} \mathrm{O}$ to generate precipitate. The precipitate collected by centrifugation was washed with cold $\mathrm{Et}_{2} \mathrm{O}$ and purified by preparative HPLC to give N-terminal cysteinyl peptide 17 ($14 \mathrm{mg}, 37 \%$). Analytical HPLC conditions, linear gradient of solvent B in solvent A, 1 to 30% over 30 min , retention time $=$ 11.0 min . Preparative HPLC conditions: linear gradient of solvent B in solvent A, 1 to 13% over 30 min. LRMS (ESI-TOF) m/z calcd for $\left([\mathrm{M}+\mathrm{H}]^{+}\right) 753.4$, found 753.2.

NCL between SECmide peptide 11, 14 or SEAlide peptide 16 and N-terminal cysteinyl peptide 17

NCL between SECmide peptide 11 or SEAlide peptide 16 and \mathbf{N}-terminal cysteinyl peptide 17:

NCL between SECmide peptide $\mathbf{1 1}$ or SEAlide peptide $\mathbf{1 6}$ and N-terminal cysteinyl peptide $\mathbf{1 7}$ was performed in 0.1 M HEPPS buffer containing 40 mM additive and 30 mM TCEP $\cdot \mathrm{HCl}(\mathrm{pH} 7,100 \mu \mathrm{~L}, 1$ mM each peptide) at $37{ }^{\circ} \mathrm{C}$.

Ligation product 18: Analytical HPLC conditions, linear gradient of solvent B in solvent A, 5 to 35% over 30 min , retention time $=18.6 \mathrm{~min}$. LRMS $(E S I-T O F) \mathrm{m} / \mathrm{z}$ calcd for $\left([\mathrm{M}+2 \mathrm{H}]^{2+}\right) 662.3$, found 662.4 .

NCL between SECmide peptide 14 and \mathbf{N}-terminal cysteinyl peptide 17:

NCL between SECmide peptide 14 and N-terminal cysteinyl peptide 17 was performed in 0.1 M HEPPS buffer containing 40 mM additive and 30 mM TCEP $\cdot \mathrm{HCl}(\mathrm{pH} 7,100 \mu \mathrm{~L}, 1 \mathrm{mM}$ each peptide) at $50^{\circ} \mathrm{C}$.

Ligation product 19: Analytical HPLC conditions, linear gradient of solvent B in solvent A, 5 to 35% over 30 min , retention time $=21.7 \mathrm{~min}$. LRMS $(E S I-T O F) \mathrm{m} / \mathrm{z}$ calcd for $\left([\mathrm{M}+2 \mathrm{H}]^{2+}\right) 707.3$, found 707.3.

Preparation of S6 and S7

H-GAQSGLX-CYRANK-NH2

Typical procedure: Peptide thioester $\mathbf{S 2}(1.1 \mathrm{mg}, 1.0 \mu \mathrm{~mol})$ and N -terminal cysteinyl peptide $\mathbf{1 7}$ (1.2 $\mathrm{mg}, 1.0 \mu \mathrm{~mol}$) was dissolved in 0.1 M HEPPS buffer containing 40 mM MPAA and $30 \mathrm{mM} \mathrm{TCEP} \cdot \mathrm{HCl}$ ($\mathrm{pH} 7,100 \mu \mathrm{~L}, 1 \mathrm{mM}$ each peptide) at $37^{\circ} \mathrm{C}$. The reaction mixture was incubated for 1.5 h and reaction progress was monitored by analytical HPLC. After 1.5 h of the reaction, the crude material was purified by preparative HPLC to give $\mathbf{S 6}(0.34 \mathrm{mg}, 0.24 \mu \mathrm{~mol}, 24 \%$ isolated yield $)$.
$\mathbf{S 6}$ ($\mathbf{X}=$ L-Phe): Analytical HPLC conditions, linear gradient of solvent B in solvent A, 5 to 35% over 30 min , retention time $=21.1 \mathrm{~min}$. Preparative HPLC conditions: linear gradient of solvent B in solvent A, 5 to 35% over 30 min . LRMS (ESI-TOF) m / z calcd for $\left([\mathrm{M}+2 \mathrm{H}]^{2+}\right) 707.8$, found 707.4.
$\mathbf{S 7}$ ($\mathbf{X}=$ D-Phe, $0.25 \mathrm{mg}, 0.078 \mu \mathrm{~mol}, 7.8 \%$ isolated yield): Analytical HPLC conditions, linear gradient of solvent B in solvent A, 5 to 35% over 30 min , retention time $=23.7 \mathrm{~min}$. Preparative HPLC conditions: linear gradient of solvent B in solvent A, 5 to 35% over 30 min . LRMS (ESI-TOF) m/z calcd for $\left([\mathrm{M}+2 \mathrm{H}]^{2+}\right) 707.8$, found 707.5.

Kinetics measurement

Ligation of SECmide peptide $11(0.020 \mu \mathrm{~mol})$ and cysteine $\cdot \mathrm{HCl}(4.0 \mu \mathrm{~mol})$ were performed in 0.3 M additive aq. containing 40 mM TCEP $\cdot \mathrm{HCl}$ and 30 mM MPAA (pH 7.0 or $\mathrm{pH} 6.0,200 \mu \mathrm{~L}$, SECmide
peptide: 0.10 mM , cysteine: 20 mM) at $37^{\circ} \mathrm{C}$. Fluorescence intensity of $\mathbf{S} 1$ was measured (λ ex: 373 nm ; $\lambda \mathrm{em}: 465 \mathrm{~nm}$) and it was defined as time $=0 \mathrm{~min}$. Then, the fluorescence of the reaction mixture was recorded at 1, 2, 3, 6 and 12 h. Half-life of $\mathbf{1 1}$ was estimated based on GraphPad Prism 5 software.

[^0]${ }^{1} \mathrm{H}$ NMR spectrum of 5

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{5}$

${ }^{1} \mathrm{H}$ NMR spectrum of 6

${ }^{13} \mathrm{C}$ NMR spectrum of 6

${ }^{1} \mathrm{H}$ NMR spectrum of 7

${ }^{13} \mathrm{C}$ NMR spectrum of 7

80
60
\qquad
$40 \quad 20 \quad 0$
${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{3}$

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{3}$

200 , 150 , 100 ,
${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{8 a}$

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{8 a}$

${ }^{1}$ H NMR spectrum of $\mathbf{8 b}$

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{8 b}$

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{8 c}$

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{8 c}$

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{8 d}$

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{8 d}$

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{8 e}$

${ }^{13} \mathrm{C}$ NMR spectrum of $8 \mathbf{e}$

${ }^{1}$ H NMR spectrum of $\mathbf{8 f}$

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{8 f}$

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{8 g}$

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{8 g}$

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{8 h}$

${ }^{13}$ C NMR spectrum of $\mathbf{8 h}$

${ }^{1}$ H NMR spectrum of $\mathbf{8 i}$

${ }^{13}$ C NMR spectrum of $\mathbf{8 i}$

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{8 j}$

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{8 j}$

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{8 k}$

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{8 k}$

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{8 1}$

\qquad u

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{8 l}$

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{8 m}$

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{8 m}$

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{8 n}$

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{8 n}$

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{8 o}$

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{8 o}$

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{8 p}$

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{8 p}$

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{8 q}$

${ }^{13}$ C NMR spectrum of $\mathbf{8 q}$

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{8 r}$

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{8 r}$

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{8 s}$

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{8 s}$

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{8 t}$

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{8 t}$

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{9 a}$

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{9 a}$

${ }^{13}$ C NMR spectrum of $\mathbf{9 p}$

Reference

S1. Hibino, H.; Nishiuchi, Y. Tetrahedron Lett. 2011, 52, 4947-4949.

S2. Fukuyama, T.; Jow, C. K.; Cheung, M. Tetrahedron Lett. 1995, 36, 6373-6374.

[^0]: ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra

