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Abstract

The Duffing equation describes a periodically forced oscillator model with a nonlinear

elasticity. In its circuitry, a saturable-iron core often exhibits a hysteresis, however,

a few studies about the Duffing equation has discussed the effects of the hysteresis

because of difficulties in their mathematical treatment. In this paper, we investigate a

forced planer system obtained by replacing a cubic term in the Duffing equation with

a hysteresis function. For simplicity, we approximate the hysteresis to a piecewise

linear function. Since the solutions are expressed by combinations of some dynamical

systems and switching conditions, a finite-state machine is derived from the hybrid

system approach, and then bifurcation theory can be applied to it. We topologically

classify periodic solutions and compute local and grazing bifurcation sets accurately. In

comparison with the Duffing equation, we discuss the effects caused by the hysteresis,

such as the devil’s staircase in resonant solutions.
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1. Introduction

The Duffing equation describes a typical nonlinear non-autonomous system that

provides a rich variety of nonlinear phenomena: a horseshoe structure around a saddle

fixed point[1], nonlinear resonance with jump phenomena, bifurcations of periodic so-

lutions, chaotic behavior[2] and so on. It has been already well studied from viewpoints

varying from mathematical analyses[3] to control engineering[4].

The circuit corresponding to the Duffing equation is achieved by a resistor, a ca-

pacitor and a nonlinear inductor with an external driving force[3, 5], see Fig. 1.

Conventionally, the current of the inductor is approximated by a third-power polyno-

i iC

Figure 1: A forced resonant circuit with a saturable-core inductor.

mial of the magnetic flux. However, a practical saturable-core inductor has a hysteresis

between the current and the flux. The Duffing equation containing the hysteresis was in-

vestigated, e.g., Hayashi[6] suggested that the hysteresis affects structures of bifurcation

sets for periodic solutions.

To analyze a nonlinear system rigorously, piecewise linear (PWL) functions are

frequently used to approximate these nonlinear characteristics and, conversely, some-

times utilized to create complex behavior[7]. For example, Nishio and Mori[8] showed

chaotic phenomena derived from a two-dimensional circuit with a PWL hysteresis and

Kimura et al.[9] presented an application of a PWL system. Kousaka et al.[10] devel-

oped a general method to solve bifurcation problems of nonlinear systems containing

hysteresis.
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Nonsmooth systems appear naturally in many practical systems because many phys-

ical phenomena present discontinuities: switching in an electrical circuit[11], firing in

the neuronal systems[12] or having impacts in mechanics[13]. Their discontinuities

can be approximated by the PWL functions.

In this study, we discuss the behavior observed in a forced planer system obtained

by replacing a cubic term in the Duffing equation with a hysteresis function. We

regard these properties as a simple PWL function in order to apply the hybrid system

approaches. In Section 2, we introduce the Duffing equation with its circuitry. We also

provide mathematical preliminaries for the hybrid system with hysteresis in this section.

We try to describe the hysteresis by defining departure and arrival sets and determine

the relationship among them. Then the system provides a finite-state machine (FSM),

which is necessary for constructing the hybrid system. In Section 3, we briefly denote

topological classifications of periodic solutions and their bifurcations. In Section 4,

we show bifurcation diagrams and response curves of periodic solutions in the system

by solving the fixed point equation and the characteristic equation simultaneously. We

compare the bifurcation structures between the Duffing equation and the proposed

hybrid system and point out their differences and similarities. We introduce the ratio

ρ as a measure to represent a characteristic of the solutions of the proposed system

and observe the devil’s staircase in the ratio ρ, which cannot be found in the Duffing

equation. Finally, we conclude this study in Section 5.

2. Duffing equation containing a piecewise linear hysteresis

2.1. Duffing equation

The resonant circuit shown in Fig. 1 leads to the following equations:

C
dvC
dt

+
vC

R
+ i = j (t),

N
dϕ
dt

= vC,

Ni = G(ϕ) = a1ϕ + a3ϕ
3,

j (t) = J0 + J cosωt,

(1)
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where ϕ is the magnetic flux of the saturable-core inductor, N is the number of turns

of the coil, and G is the characteristic of the inductor that is assumed to be a cubic

function. By taking variable transformations such as:

x = ϕ, τ = ωt,

k =
1
ωRC

, c1 =
a1

N2ω2C
, c3 =

a3

N2ω2C
,

g(x) = c1x + c3x3, B0 =
J0

Nω2C
, B =

J
Nω2C

,

we have
d2x
dτ2 + k

dx
dτ
+ g(x) = B0 + B cos τ. (2)

By setting dx/dτ with y and rewriting τ as t, Eq. (2) can be written as a system of

first-order ordinary differential equations on R2:

dx
dt
= y,

dy
dt
= −ky − g(x) + B0 + B cos t . (3)

We call Eq. (3) the Duffing equation[2]. Several variations of circuit implementation

and equations for the Duffing equation have been revisited by Kovacic and Brennan [3].

2.2. Hysteresis of a saturable-core inductor and its piecewise linear approximation

A saturable-core inductor includes the hysteresis in the relationship between the

magnetic flux ϕ and the current i of the inductor, as shown in Fig. 2 (a). In accordance

with the magnetic saturation and the remanence of the iron core, a hysteresis loop is

formed by varying the flux, i.e., if an increment of the flux exceeds a threshold ϕ1, a

decrement may trace another curve (lower curve in the figure). Also after the negative

threshold ϕ−1 in the decrement is exceeded, the flux may trace the other curve (upper

curve in the figure) in the increment, where the thresholds ϕ1 and ϕ−1 correspond

remanences. The appearance of the gap between these curves is the main property of

the hysteresis. The state of the saturable-core inductor, magnetized or not, determines

which curve the current follows; and therefore, it actually includes a memory in a sense.

We try to approximate the hysteresis to a PWL hysteresis H constructed of two

PWL functions shown in Fig. 2 (b)[8]. Note xth(±1) is in accordance with ϕ±1, and

4



(a) (b)

Figure 2: (a) Schematic illustration of the relationship between magnetic flux and current for the saturable-core
inductor, and (b) PWL hysteresis H as an approximated model for (a).

the bending point xbend(±1) is added. The thickness of the hysteresis loop of the PWL

hysteresis is governed by θ.

2.3. Hybrid systems

We adopt the hybrid system approach[14] to consider a dynamical system containing

the PWL hysteresis. Although H is not differentiable at xth(±1) and xbend(±1) and has

the hysteresis loop depending on the state, the approach stated below overcomes these

difficulties.

(a) (b)

Figure 3: Schematic illustration for divided parts: (a) H1 and (b) H−1 from Fig. 2 (b).
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A hybrid system is composed of some smooth dynamical systems and a finite-state

machine (FSM). The FSM is a mathematical model used in computation algorithms and

this describes the transitions of the finite discrete states (we call modes). Each mode

gives one dynamical system, and the FSM switches the modes one after another. When

we interpret a system as a hybrid system, the total number of the smooth dynamical

systems, which is equivalent to the total number of the modes, and the rules of the mode

transitions are necessary.

Now we define a hybrid system for the Duffing equation containing the PWL

hysteresis. Let m be the total number of the smooth dynamical systems and Mj ⊂ R2

and f j ⊂ R2 be the state space under the mode j and the vector field of Mj , respectively.

Since one dynamical system has one vector field, m gives how many vector fields we

define. For defining f j , we decompose the PWL hysteresis H into four linear functions.

Figure 3 firstly splits H into two parts: H1 (red shaded) and H−1 (blue shaded). H1 and

H−1 correspond to upper and lower curves in Fig. 2 (a), respectively. Hs (x) for s = ±1

is the PWL function of x:

Hs (x) =


1
3

x + θ · s if |x − xth(s) | < |xth(s) − xbend(s) |,

3x + 2 · s if |x − xth(s) | > |xth(s) − xbend(s) |.
(4)

From Eq. (4), edges xth(s) and xbend(s) are given as functions of s with the parameter

θ: xth(s) = 3(θ + 2)s/8 and xbend(s) = 3(θ − 2)s/8. H±1(x) is defined on two intervals

of x edged by xbend(±1) and xth(±1):

I1 = {x ∈ R | xbend(1) ≤ x ≤ xth(1)} ,
I2 = {x ∈ R | x ≤ xbend(1)} ,
I3 = {x ∈ R | xth(−1) ≤ x ≤ xbend(−1)} ,

I4 = {x ∈ R | xbend(−1) ≤ x} .

(5)

We further decompose Hs (x) into four linear functions gj of x on Ij :

g1(x) =
1
3

x + θ, g2(x) = 3x + 2, g3(x) =
1
3

x − θ, g4(x) = 3x − 2.
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(a) (b)

Figure 4: The characteristics of the function Hs (x) with various values of the parameter θ in Eq. (4). (a):
θ = 0 and (b): θ = 0.25.

Then Mj is determined by the interval Ij :

Mj =
{
(x, y) ∈ R2 | x ∈ Ij

}
, j = 1 . . . 4, (6)

and the vector field f j in Mj is represented by

f j (t, x, λ) = (y,−ky − gj (x) + B0 + B cos t), (7)

where x = (x, y) ∈ R2, λ is a parameter vector. When θ = 0, g1 and g2 become the

exact same function and H does not include hysteresis anymore, as shown in Fig. 4 (a).

When θ ≥ 0, we can derive the following equation:

dx
dt
= f j (t, x, λ), j = 1 . . . 4. (8)
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Figure 5: Relationships between arrival and departure sets, and x = xbend (±1) and x = xth (±1).

Let D j and Aj be the departure and arrival sets of mode j:

D1 = {(x, y) ∈ M1 | x = xbend(1)} ,
A1 = {(x, y) ∈ M1 | x = xbend(1) or x = xth(1)} ,
D2 = {(x, y) ∈ M2 | x = xbend(1) or x = xth(−1)} ,
A2 = {(x, y) ∈ M2 | x = xbend(1)} ,

D3 = {(x, y) ∈ M3 | x = xbend(−1)} ,
A3 = {(x, y) ∈ M3 | x = xth(−1) or x = xbend(−1)} ,
D4 = {(x, y) ∈ M4 | x = xbend(−1) or x = xth(1)} ,

A4 = {(x, y) ∈ M4 | x = xbend(−1)} .

(9)

Figure 5 shows the schematic illustration explaining the relationships between Dj and

Aj , and xbend(±1) and xth(±1). The dynamical system (8) contains the following rules

of the mode transitions derived from the features of the saturable-core inductor:

• at xth(1), a solution in M1 reaches A1, and then the mode is switched from 1 to

4. This process is not invertible.

• at xbend(1), a solution in M1 reaches A1, and then the mode is switched from 1 to

2. This process is invertible.
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Figure 6: Schematic illustration of the mode transition. Red and blue solid curves are the states of the system.

• at xth(−1), a solution in M3 reaches A3, and then the mode is switched from 3 to

2. This process is not invertible.

• at xbend(−1), a solution in M3 reaches A3, and then the mode is switched from 3

to 4. This process is invertible.

Figure 6 helps us understand the above rules. Let L = M1∪M2 and R = M3∪M4 be the

closed half-plane. Since the mode transition between the modes 1 and 2 is invertible,

the state can freely move in L. For the modes 3 and 4, the same consideration can be

made in R. If the state in L goes outside of L, it cannot go back on L with the inverted

path because the mode transition between modes 1 and 4 is not invertible. The mode

transition between modes 3 and 2 is also similar. In the other words, these transitions

between L and R, which are the transitions from mode 1 to mode 4 and from mode 3 to

mode 2, are one way only. The FSM representing the rules of the mode transitions for

the proposed model is illustrated in Fig. 7.

From the above definitions, the dynamical systems in Eq. (8) and the FSM in Fig. 7

compose a hybrid system with 4 modes. We call this hybrid system the PWL hysteresis
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s s = 1

s = −1= −1

Figure 7: Finite-state machine representing the rules of the mode transitions of the dynamical system (8).

hybrid system.

The solution orbit of this hybrid system with the initial condition u0 = (x0, y0) is

described as a function of the current time t:

x(t) = φ(t, x0, λ) ∈ R2. (10)

This solution is actually constructed of some solutions governed by the dynamical

system in each mode. Assuming the mode is j after i-times mode transitions, the

solution in each mode is given by a function of the current time t, the starting time ti

and the initial value ui = (xi, yi) ∈ Dj :

xi (t) = φi (t, ti, ui, λ) ∈ Mj,

xi (ti) = φi (ti, ti, ui, λ) = ui ∈ D j, i = 0, 1, . . . ,
(11)

where t0 = 0.

3. Method of analysis

In this section, we describe the local stability and bifurcations of periodic solutions

of Eq. (8).

A solution orbit is called a periodic solution if it satisfies

x(t + τp) = x(t), ∃τp ∈ R, ∀t ∈ R, (12)
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where τp > 0 is the period of the solution. In general, τp becomes an integer multiple

of 2π, which is the period of f . We achieve numerical integration by using the

Runge-Kutta method to compute numerical solutions of the differential and variational

equations. We define the step-size of the method as 10−2. Note that the PWL system

(8) can be solved analytically in principle because of linearity, however, we rely on

numerical computations to avoid treatment about huge numbers of emerged cases.

3.1. Classification of periodic solution

We classify the periodic solution from two standpoints, one is the asymptotic

stability (or simply, stability) of it and the other is the mode through which the solution

passes.

The stability of a periodic solution is closely related to the stability of the corre-

sponding Poincaré map. We define the Poincaré map T as follows:

T : R2 → R2;

u0 7→ T (u0) = φ(2π, u0, λ).
(13)

In the hybrid system approach, the Poincaré map has another expression as the compo-

sition of local maps, which are maps from a departure set to the corresponding arrival

set. For simplicity, let Ti : Πi → Πi+1 be a local map and Πi equal the departure set of

(i)-th mode:
T0 : Π0 → Π1;

u0 7→ u1 = φ0(t1, 0, u0, λ),

T1 : Π1 → Π2;

u1 7→ u2 = φ1(t2, t1, u1, λ),
...

Tn−1 : Πn−1 → Π0;

un−1 7→ un = φn−1(2π, tn−1, un−1, λ),

(14)

where n is the total number of the mode transitions. Note that Πi also equals the arrival

set of (i − 1)-th mode if i , 0. The Poincaré map as a composition of local maps forms

T (u0) = Tn−1 ◦ Tn−2 ◦ · · ·T0(u0). (15)
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Table 1: Symbols for the classification of an l-periodic point by its local stability.
Symbol Stability Condition

0Dl completely stable |µ1 | < 1, |µ2 | < 1
1Dl directly unstable 0 < µ1 < 1, 1 < µ2

1Il inversely unstable µ1 < −1, − 1 < µ2 < 0
2Dl completely unstable |µ1 | > 1, |µ2 | > 1

When the u0 satisfies

u0 = T (u0), (16)

then u0 is called a fixed point of the Poincaré map. The point that satisfies

u0 = T l (u0), l = 1, 2, . . . (17)

is called an l-periodic point of the Poincaré map. In this sense, the fixed point equals to

the 1-periodic point. Thus, the fixed points and l-periodic points are collectively called

periodic points in this study. The problems to obtain solutions for Eq. (16) or (17) are

equivalent to the boundary value problems. We use Newton’s method to calculate their

solutions. The Jacobian matrix DT (u0) of the Poincaré map T (u0) is necessary to use

Newton’s method. Since T is the composition of the local maps as shown in Eq. (15),

a special method to calculate DT is needed. For a detailed explanation of the method,

refer to our previous study[15].

The Jacobian matrix DT l (u0) gives the stability of l-periodic points u0 as the

characteristic multiplier µ derived from the characteristic equation of DT l (u0):

χ(µ) = det(DT l (u0) − µI) = 0, (18)

where I is a 2×2 identity matrix. Since this system is 2-dimensional, two characteristic

multipliers µ1 and µ2 are obtained. Table 1 shows the classification of an l-periodic

point by its stability. From Liouville’s formula, it is noteworthy that 2Dl does not exist

in the Duffing equation when k > 0. We regard k > 0 in this study.

On the other hand, for the hybrid systems, we should classify periodic points by

the modes through which the corresponding solutions pass. In this study, the periodic
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Table 2: Symbols for the classification of a periodic point by the modes through which the corresponding
solution passes.

Symbol Type
[L] a left type
[R] a right type

[(LR)p] a p-loops left-right type

solution passing through only the half-plane L is called left type periodic solution.

Likewise, the periodic solution passing through only the half-plane R is called right

type periodic solution. If a periodic solution passes through both the half-planes, it

passes through each plane in the same number of times within the period of the solution.

Given p is this number of times, let us call such solutions the p-loops left-right type

periodic solution. The periodic points included in each type periodic solution are also

called with its type: left, right, or p-loops left-right type periodic points, respectively.

Table 2 shows the symbols that are additionally attached to the symbols shown in Tab.

1 to classify periodic points by the modes.

3.2. Local bifurcations

Let us consider an l-periodic point with an arbitrary value of the parameter λ. As

varying λ until λ∗ where the absolute value of µ becomes 1, the local bifurcation of

the l-periodic point occurs. Since the appearance scenario of the local bifurcation is

independent of the modes, each type of the l-periodic point classified by the modes can

meet the local bifurcation.

In the case that µ = 1, equivalently χ(1) = 0, a tangent bifurcation occurs. This bi-

furcation generates a couple of stable and unstable l-periodic points. These topological

changes are expressed by the following:

∅ ⇔ 0Dl[L] + 1Dl[L],

∅ ⇔ 0Dl[R] + 1Dl[R],

∅ ⇔ 0Dl[(LR)p] + 1Dl[(LR)p],

(19)

where the symbol⇔ indicates the relation before and after the bifurcation and ∅means

there are no periodic points. In the case that µ = −1, equivalently χ(−1) = 0, a period-
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doubling bifurcation occurs. This bifurcation changes the stability of an l-periodic

point and generates two 2l-periodic stable points. In this instance, the bifurcation is

called period-doubling bifurcation of an l-periodic point. These topological changes

are expressed by the following:

0Dl[L] ⇔ 1Il[L] + 2 0D2l[L],

0Dl[R] ⇔ 1Il[R] + 2 0D2l[R],

0Dl[(LR)p] ⇔ 1Il[(LR)p] + 2 0D2l[(LR)p],

1Il[L] ⇔ 0Dl[L] + 2 1D2l[L],

1Il[R] ⇔ 0Dl[R] + 2 1D2l[R],

1Il[(LR)p] ⇔ 0Dl[(LR)p] + 2 1D2l[(LR)p].

(20)

Note that there are no Neimark-Sacker bifurcations since there is no 2Dl with k > 0.

The parameter set where a bifurcation arises is called a bifurcation set. In this study,

Gl and Il are symbols denoting the tangent and period-doubling bifurcation sets of an

l-periodic point, respectively.

We can obtain a tangent bifurcation set in a hybrid system by simultaneously solving

Eq. (17) and χ(1) = 0 with Newton’s method[2]. A period-doubling bifurcation set is

also similar. We compute the 2-parameter bifurcation diagram of the local bifurcations

by using parameter continuation.

3.3. Grazing bifurcation

If a continuous time dynamical system includes the mode transitions depending on

the state, a grazing bifurcation arises[16]. This bifurcation is observed if the solution

grazes a boundary that changes the mode of a system.

Conditions of raising a grazing bifurcation are given as follows:


qs (x(τth)) = 0,

dqs
dt

= 0,
(21)

where qs : R2 → R is the function of x and is governed by the location of the boundary,
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τth is the time when the solution grazes the boundary, and

dqs
dt
=
∂qs
∂ x

dφ
dt

�����t=τth

. (22)

In this study, qs (x) = x − xth(s). As varying some parameter, the periodic solution can

graze the boundary, and then the mode of the system changes. At that time, the periodic

solution cannot keep its structure anymore. Hence, grazing bifurcation extinguishes

periodic points:
∅ ⇔ 0Dl[L],

∅ ⇔ 0Dl[R],

∅ ⇔ 0Dl[(LR)p],

∅ ⇔ 1Dl[L],

∅ ⇔ 1Dl[R],

∅ ⇔ 1Dl[(LR)p],

∅ ⇔ 1Il[L],

∅ ⇔ 1Il[R],

∅ ⇔ 1Il[(LR)p].

(23)

In this study, Z l is the symbol denoting the grazing bifurcation set of an l-periodic

point. Grazing bifurcations can arise for both stable and unstable solutions.

Grazing bifurcation sets are obtained by solving boundary value problem Eq. (21).

Therefore, the bifurcation sets are calculated by using Newton’s method.

3.4. Typical bifurcation structure

Let us introduce the typical bifurcation scenario of a 2-periodic point existing in the

PWL hysteresis hybrid system. Assume that the corresponding periodic solution passes

through both modes one-time-only within its period as shown in Fig. 8 (b). At the

vertical line labeled G2 in Fig. 8 (a), tangent bifurcation arises and two periodic points

are generated in accordance with the third equation of Eq. (19): a stable one 0D2[(LR)1]

and an unstable one 1D2[(LR)1] as shown in Fig. 8 (b). Note that they are too close

and difficult to be confirmed by our eyes. As B increases, these points move further

apart. Afterward, at B = 0.339, 1D2[(LR)1] reaches Z2, where the corresponding

15



solution orbit is shown in Fig. 8 (c), and suddenly disappears in accordance with the

sixth equation in Eq. (23). Similarly, 0D2[(LR)1], whose solution orbit is shown in

Fig. 8 (d), also reaches Z2 at B = 0.356 and disappears in accordance with the third

equation in Eq. (23).

4. Results of analysis

In this section, we explore the phase space x ∈ (−2, 2) ⊂ R and y ∈ (−2, 2) ⊂ R

with the parameter space B ∈ (0, 0.7) ⊂ R and B0 ∈ (0, 0.7) ⊂ R.

4.1. Bifurcation diagrams and response curves

In this subsection, we deal with the Duffing equation and two types of the hybrid

systems with various Hs (x) shown in Fig. 4. When θ = 0, the hybrid system does not

include the hysteresis in itself, and then it is called the PWL hybrid system. We set the

parameter k = 0.2.

By applying the method mentioned in Sec. 2 to the systems, 2-parameter bifurcation

diagrams and response curves of them are obtained as shown in Fig. 9. Figure 9 (a)

shows a 2-parameter bifurcation diagram of the Duffing equation. Note that the results

have already been stated by Kawakami[2] and are restated here for comparison with the

result of the analysis for the PWL ones.

In Fig. 9 (a), there is a period-doubling bifurcation set I1 with the shape of a closed

curve in the lower region of B0; however, in Fig. 9 (b), the corresponding bifurcation

sets are not located. This is because the corresponding solutions of the PWL hybrid

system are confined in the domain M1 (or equivalently M3), i.e., the system does not

have nonlinearity. On the other hand, the upper region in Fig. 9 (b) contains the

positive slopes of I1 and G1 that are not observed in the Duffing equation. They

are caused by the nonlinearity around the bending boundary xbend(−1). The solution

with some parameter does not pass through xbend(s). We can easily calculate such

solutions without any numerical method because they are the solutions of a linear

ordinary differential equation. Moreover, we can calculate the parameter space where
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Figure 8: (a) 1-parameter bifurcation diagram of the PWL hysteresis hybrid system with θ = 0.25, k = 0.2,
B0 = 0.2 and B ∈ (0.33, 0.36). In the central region, solid and broken curves are stable and unstable periodic
points, respectively. Tangent bifurcation arises at the parameter with black dots and the grazing bifurcations
arise at the parameter with open circles. (b) Phase portrait with B = 0.335 corresponding G2. (c) Phase
portrait with B = 0.339 corresponding Z2 of 1D

2[(LR)1]. (d) Phase portrait with B = 0.356 corresponding
Z2 of 0D

2[(LR)1]. In (b), (c) and (d), vertical lines are xth (±1) and xbend (±1) where the mode transitions
arise.
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such solution exists. Focusing on 0D1[R] with θ = 0, the parameter region is given by

B0 > 1.493B + 0.25. (24)

The edge of this parameter space is along the positive slope of I1 and G1 in Fig. 9 (b).

If parameters are outside of this space, the solution with the parameters comes to pass

through xbend(−1), i.e., this solution comes to include nonlinearity in itself. Afterward,

tangent and period-doubling bifurcations arise at G1 and I1. Next, the bifurcation

set labeled as Z1 + Z1 in Fig. 9 (b) is the parameter set where different two grazing

bifurcation arises at the same time. They are the bifurcations from completely different

solutions, see at P4 in Fig. 9 (b). They are with the same region coincidentally and,

as an interesting result, correspond to G1 at P2 in Fig. 9 (d). The set Z1 + Z1 goes

across the parameter plane from the lower part of B0 to the upper. When they join the

curve G1 at the outlined circle near (B, B0) = (0.25, 0.4), Z1 of 1D1[R] becomes Z1 of

0D1[R]. In other words, the stability of the periodic point reaching Z1 changes.

Comparing with Fig. 9 (b), the positive slopes of I1 and G1 in Fig. 9 (c) are located

in the lower region of parameter space. Similarly to Eq.(24), we can calculate the line

including the bending boundary xbend(−1):

B0 > 1.493B − 0.031. (25)

The edge B0 = 1.493B − 0.031 is at the lower side of the edge B0 = 1.493B + 0.25.

Similarly to that the bifurcation sets in Fig. 9 (b) are along this edge, they in Fig. 9

(c) also go down along the edge. On the other hand, Z1 + Z1 are separated into two

parameter sets: Z1 including P6 and Z1 including P9, because of the hysteresis. If the

system does not include hysteresis, solutions freely come and go through the border

xth(s). However, if the system includes hysteresis, solutions can go across the border

from the left/right part but cannot come back from the opposite part. Because of this

difference, complex and confusing phenomena arise after the grazing bifurcation at Z1

including P6, as shown in Fig. 9 (f). With the parameters in the upper part of the

shaded region in the figure, the solutions have a much higher number of p. We can also
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Figure 10: Phase portraits of the resonant and non-resonant solutions in (a): the Duffing equation with
(B, B0) = (0.3, 0.2), (b): the PWL hybrid system with θ = 0.0 and (B, B0) = (0.3, 0.2), and (c): the PWL
hysteresis hybrid system with θ = 0.25 and (B, B0) = (0.3, 0.2). Vertical lines in (b) are the sets of xth (s),
and they in (c) are the sets of xth (s) and xbend. Solid and broken curves represent stable and unstable periodic
solutions, respectively.

observe such phenomena in the shaded region enclosed by the Z1 in Fig. 9 (c). In the

next section, we discuss these phenomena in detail. Z1 in Fig. 9 (c) with a negative

slope starting from (B, B0) = (0, 0.53) is a newly observed grazing bifurcation set of

the periodic point 0D1[L] whose orbit exists only in the domain M1. The movement of

0D1[L] as parameter varying is shown as a red line in Fig. 9 (f).

In Fig. 9 (d) and 9 (e), we can confirm nonlinear resonance phenomena arising

around B = 0.3. When this phenomenon arises, there exist the parameter sets

representing two different solutions of the system. Considering the solutions with such

parameters, we call the solution with larger amplitude a resonant solution and call

the smaller one a non-resonant solution. The same phenomenon is observed around

B = 0.2 in Fig. 9 (f). Figure 10 shows phase portraits of the co-existing solutions

introduced above.

4.2. Devil’s staircase

The shaded region in Fig. 9 (c) and (f) contains many tangent and grazing bifurcation

sets of stable and unstable periodic points. 1-parameter bifurcation diagram is a useful

tool to confirm the appearance of the bifurcations of stable periodic points. To obtain

the diagram, we compute images of a point under 10,000 iterations of the Poincaré

maps and use the last 1,000 points for the data to plot. Figure 11 shows the result of the

computing and also shows the movement of the ratio ρ, which is given later, and the

20



-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 0

 0.2

 0.4

 0.6

 0.8

 1

-0.6

-0.4

-0.2

 0

0.25 0.3 0.35 0.4 0.45

Figure 11: 1-parameter bifurcation diagram of x∗, with the ratio ρ and the maximal Lyapunov exponent η
with B ∈ (0.23, 0.45). B0 = 0.2. x∗ is the coordinate value of x of the Poincaré map.

maximal Lyapunov exponent.

In the 1-parameter bifurcation diagram in Fig. 11, as B increases, the period of

the Poincaré map keeps changing because of raising tangent and grazing bifurcations.

Let us confirm this changing with the phase portraits of the corresponding solutions.

Figure 12 shows the solutions with B ∈ (0.23, 0.45) and B0 = 0.2. As B increases

from B = 0.239, the periodic solution shown in Fig. 12 (a) reaches xth(1) and gets

grazing bifurcation Z1, i.e., the solution immediately disappears. Afterward, another

periodic solution shown in Fig. 12 (b) appears. Likewise, as B increases from here,

disappearance and appearance arise one after another with B ∈ (0.23, 0.45). With some

parameters in such parameter space, a solution becomes to have quite long periods, as

shown in Fig. 12 (f). As B increases further, tangent bifurcation for a 2-periodic point

0D2[(LR)1] arises, as shown at the parameter labeled with G2 in Fig. 12 (g). For a
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concrete discussion, refer to Fig. 8, which shows an example of this tangent bifurcation

and the subsequent grazing bifurcation. The 2-periodic point 0D2[(LR)1] arises with

an unstable 2-periodic point 1D2[(LR)1] because of the feature of tangent bifurcation

in Eq. (19). 1D2[(LR)1] disappears very soon with raising grazing bifurcation. This

grazing bifurcation is invisible in responses because this is a bifurcation for an unstable

periodic point, After this bifurcation, 0D2[(LR)1] disappears because of the different

grazing bifurcation. From here, the sequence of tangent and grazing bifurcations

continues until at B = 0.44. Finally, the solution stabilizes as a 1-periodic solution

through 0D1[(LR)1], as shown in Fig. 12 (l). On the other hand, chaos is observed

with B = 0.443, as shown in Fig. 12 (k). Figure 13 (a) and (b) show the enlargements

of the regions (A) and (B) in Fig. 12 (f) and (k) that focus on the Poincaré map of each

solution. Figure 13 (c) and (d) show the return map of the solutions.

Given pk is the number of times that a solution passes through both the half-planes

from t = 0 to t = 2kπ, the ratio ρ indicates the average value of this number within the

time of 2π:

ρ = lim
k→∞

pk
k
. (26)

For example, ρ of the solution shown in Fig. 12 (g) is almost 1/2 because the orbit

passes through both the half-planes at once within two iterations of Poincaré maps. The

middle part of Fig. 11 depicts the movement of the ratio ρ as B varies. As B increases,

we find that ρ grows as well as the shape of the devil’s staircase. At this instance, ρ

changes its value by undergoing tangent and grazing bifurcations. This results in that

the devil’s staircase shown in this model is caused by the tangent bifurcations and the

grazing bifurcations. As a characteristic behavior of the devil’s staircase, ρ grows in

accordance with Farey sequence. For example, between ρ = 1/2 and ρ = 2/3, there

are parameters where ρ = (1 + 2)/(2 + 3) = 3/5. Additionally, the devil’s staircase of

unstable periodic solutions might also arise although we could not observe it naturally.

This consideration is based on the fact that there are grazing bifurcations for the unstable

periodic solutions as well as the stable periodic solutions. The devil’s staircase is a

phenomenon ordinary observed in discrete time dynamical systems. Therefore, it is

very interesting to find this phenomenon in a hybrid system. As a further interesting
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fact, the phenomenon we observed is caused by the result of the sequence of tangent and

grazing bifurcations. In other words, in the hybrid systems, the sequence of tangent and

grazing bifurcations fractally generates and erases periodic solutions one after another

and forms the devil’s staircase.

The maximal Lyapunov exponent:

η = lim
k→∞

1
k

log
∥DTk (u0)e∥
∥e∥ , (27)

where e is an arbitrary unit vector, indicates whether the attractor is chaotic or not.

The bottom part of Fig. 11 presents the movement of the maximal Lyapunov exponent

η with varying B. Since η is positive at B = 0.443, the solution shown in Fig. 12 (k)

is recognized as chaos. With k = 0.1, the parameter space where the solution becomes

chaotic gets larger than the case of k = 0.2, as shown as the red shaded region in Fig.

14. As an interesting phenomenon, we found that the crisis C arises around B = 0.145

with k = 0.1. A crisis is the appearance (or disappearance) of the chaotic attractor as

the parameters of a system are varied[17].

It is important to confirm robustness and reproducibility of phenomena shown in

this paper, hence we note here a brief analysis of noise margin. If we scan the one-

dimensional bifurcation diagram with the presence of the thermal noise as an additive

Gaussian noise, then the system retains almost the same bifurcation structure collated

with Fig. 11, i.e., the system exhibits the devil’s staircase even though the noise has a

comparatively large amplitude. This result implies the PWL hysteresis hybrid system

is structurally stable with the defined parameters.

All mentioned results in this section are not observed in the Duffing equation or the

PWL hybrid system; therefore, we consider that they are unique results observed in the

PWL hysteresis hybrid system.

5. Conclusion

We studied the phenomena observed in a forced planer system with a piecewise

linear hysteresis. We modeled the dynamics as a hybrid system, that is, the pair of

a finite-state machine (FSM) and continuous time dynamical systems. The periodic
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Figure 13: (a), (b) Enlargements of regions (A) and (B) in Fig. 12 (f) and (k). (c), (d) Return maps of y of
the solution with the parameters in Fig. 12 (f) and (k).

solutions are interpreted as the periodic points of the Poincaré map, and all possible

periodic points are classified with the topological indices, which represent the stability

of the periodic points and the modes through which the solution passes. The main

results are summarized below:

• The local bifurcations sets such as tangent and period-doubling bifurcation sets

observed in the hybrid systems are computed and presented as 2-parameter bi-

furcation diagrams, see Fig. 9.

• Grazing bifurcations arise; and they are also traced, as shown in Fig. 9. This

bifurcation is a representative phenomenon of the switched dynamical systems.

• A nonlinear resonance, which is a typical phenomenon in the Duffing equation,

is also found to arise in the PWL hysteresis one, see Fig. 10.
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Figure 14: 1-parameter bifurcation diagram of x∗, the ratio ρ and η with k = 0.1, B ∈ (0.14, 0.33) and
B0 = 0.2. Chaos arises in red shaded regions.

• The sequence of tangent and grazing bifurcations caused by the effect of the

hysteresis is found in the 1-parameter bifurcation diagram. This phenomenon

causes the devil’s staircase in the value of the ratio ρ and is a representative

phenomenon of this system, see Fig. 11 and 14.

• When the damping coefficient k becomes small as k = 0.1, many chaotic solutions

are observed, and the parameter space where we can observe them is located in

the 1-parameter bifurcation diagrams with their the maximal Lyapunov exponent

of the solution, see Fig. 14.

The most remarkable result of this paper is the discovery of the devil’s staircase in

a hybrid system. As a future work, we are interested in the correspondence between

the devil’s staircase of the PWL hysteresis hybrid system and discrete time dynamical

systems. Additionally, we should consider the global bifurcation problem.
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