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Abstract

The cellular prion protein, designated PrPC, is a membrane glycoprotein expressed abun-

dantly in brains and to a lesser extent in other tissues. Conformational conversion of PrPC into

the amyloidogenic isoform is a key pathogenic event in prion diseases. However, the physio-

logical functions of PrPC remain largely unknown, particularly in non-neuronal tissues. Here,

we show that PrPC is expressed in lung epithelial cells, including alveolar type 1 and 2 cells

and bronchiolar Clara cells. Compared with wild-type (WT) mice, PrPC-null mice (Prnp0/0)

were highly susceptible to influenza A viruses (IAVs), with higher mortality. Infected Prnp0/0

lungs were severely injured, with higher inflammation and higher apoptosis of epithelial cells,

and contained higher reactive oxygen species (ROS) than control WT lungs. Treatment with

a ROS scavenger or an inhibitor of xanthine oxidase (XO), a major ROS-generating enzyme

in IAV-infected lungs, rescued Prnp0/0 mice from the lethal infection with IAV. Moreover,

Prnp0/0 mice transgenic for PrP with a deletion of the Cu-binding octapeptide repeat (OR)

region, Tg(PrPΔOR)/Prnp0/0 mice, were also highly susceptible to IAV infection. These results

indicate that PrPC has a protective role against lethal infection with IAVs through the Cu-bind-

ing OR region by reducing ROS in infected lungs. Cu content and the activity of anti-oxidant

enzyme Cu/Zn-dependent superoxide dismutase, SOD1, were lower in Prnp0/0 and Tg

(PrPΔOR)/Prnp0/0 lungs than in WT lungs. It is thus conceivable that PrPC functions to main-

tain Cu content and regulate SOD1 through the OR region in lungs, thereby reducing ROS in

IAV-infected lungs and eventually protecting them from lethal infection with IAVs. Our current

results highlight the role of PrPC in protection against IAV infection, and suggest that PrPC

might be a novel target molecule for anti-influenza therapeutics.

Author summary

Influenza A virus (IAV) is an enveloped, negative sense, single-stranded RNA virus, caus-

ing seasonal epidemic outbreaks of influenza. Anti-influenza agents targeting viral
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molecules, such as neuraminidase inhibitors, are currently available. However, these

agents have accelerated emergence of mutant IAVs that are resistant to these agents

among human populations. Development of new types of anti-influenza agents is awaited.

We show that the cellular prion protein PrPC has a protective role against lethal infection

with IAVs through the octapeptide repeat (OR) region by abrogating lung epithelial cell

apoptosis induced by reactive oxygen species (ROS) in infected lungs. We also show that

PrPC could reduce ROS in IAV-infected lungs through the OR region by maintaining Cu

ion homeostasis and thereby activating Cu/Zn-dependent superoxide dismutase, SOD1.

These results highlight the protective role of PrPC in IAV infection. Elucidation of the

exact mechanism underlying the PrPC-mediated protection against IAV infection would

be important for further understanding the pathogenesis of IAV infection and could be

useful for development of new types of anti-influenza therapeutics.

Introduction

The normal cellular prion protein, designated PrPC, is a membrane glycoprotein tethered to

the outer cell membrane via a glycosylphosphatidylinositol anchor moiety and expressed most

abundantly in brains, particularly by neurons, and to a lesser extent in non-neuronal tissues

including hearts, kidneys, and lungs [1,2]. Conformational conversion of PrPC into the abnor-

mally folded, amyloidogenic isoform is a pivotal pathogenic event in prion diseases, a group of

neurodegenerative disorders including Creutzfeldt-Jakob disease in humans and scrapie and

bovine spongiform encephalopathy in animals [2]. In brains, glial cells including microglia,

astrocytes, and oligodendrocytes also express PrPC [3–7]. PrPC expression has also been re-

ported in non-cardiomyocytes in hearts [8], in glomeruli, proximal convoluted tubules and

collecting ducts in kidneys [8,9], activated hepatic stellate cells in livers [10], in lymphoid nod-

ules [11] and perilymphoid zones of the red pulp [8] in spleens, and in neuronal cells in the

lamina propia and parasympathetic ganglions [8], some epithelial cells [12], Peyer’s patches

[12] and enteric glial cells [13] in intestines. In lungs, alveolar walls were reported to be posi-

tive for PrPC expression [8]. However, the exact function of PrPC remains to be clarified.

Neuroprotective function has been suggested for PrPC. Mice devoid of PrPC (Prnp0/0) have

been reported to be vulnerable to ischemic brain injury, with enhanced neuronal cell apoptosis

in the injured brains [14–16]. PrP lacking the octapeptide repeat (OR) region failed to rescue

Prnp0/0 mice from ischemic brain injury [17]. These results suggest that PrPC might exert an

anti-apoptotic activity through the OR region, thereby protecting neurons from ischemic dam-

age. It was recently reported that the hearts and kidneys of Prnp0/0 mice were also vulnerable

to ischemic injury [18,19], indicating that PrPC could have a protective function even in non-

neuronal tissues. However, the exact mechanism underlying the protective function of PrPC

remains elusive.

The OR region binds to Cu ions via histidine residues [20–22]. Some investigators showed

that Cu content was reduced and the enzymatic activity of anti-oxidant enzyme Cu/Zn-depen-

dent superoxide dismutase, SOD1, was lower in the brains of Prnp0/0 mice [20,23,24], suggest-

ing that PrPC might function to maintain Cu levels, thereby regulating SOD1 activity to exert

anti-oxidative activity and eventually protecting neurons from apoptosis. However, others

reported normal levels of Cu content and SOD1 activity in the brains of Prnp0/0 mice [25].

Thus, the role of PrPC in maintenance of Cu content and regulation of SOD1 in terms of its

protective activity remains to be determined.

Several groups have investigated the role of PrPC in virus infection in mice [26–28]. Nasu-

Nishimura et al. reported that PrPC could have a protective role against infection with
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encephalomyocarditis virus B variant by reducing neuronal apoptosis in the brains of infected

mice without affecting viral replication [27]. It was also reported that human immunodefi-

ciency virus type 1 (HIV-1) production was strongly inhibited by expression of PrPC in cul-

tured cells transfected with an infectious HIV-1 molecular clone [28]. On the other hand, PrPC

overexpression was shown to enhance acute infection of herpes simplex virus type 1 (SC16) in

the central and peripheral neuronal tissues, causing higher mortality in mice, although latent

infection of the virus in these tissues was inhibited by overexpression of PrPC [26].

Influenza A virus (IAV) is an enveloped, negative sense, single-stranded RNA virus, causing

seasonal epidemic outbreaks of influenza [29]. High morbidity and mortality are observed in

infected people, particularly in the young and elderly and those with underlying chronic dis-

eases in lung or cardiovascular systems [29]. Several lines of evidence indicate that reactive

oxygen species (ROS) play a pivotal role in IAV infection-induced lung injury, by causing apo-

ptosis in infected lung epithelial cells [30–33]. However, the role of PrPC in IAV infection

remains unknown.

In the present study, we show that Prnp0/0 mice were highly susceptible to IAV infection,

with higher mortality, compared to wild-type (WT) mice. PrP lacking the Cu-binding OR

region failed to rescue Prnp0/0 mice from lethal infection with IAV. Infected Prnp0/0 lungs were

severely injured, with higher epithelial cell apoptosis and higher ROS levels than control WT

lungs. Treatment with anti-oxidants rescued Prnp0/0 mice from lethal infection with IAV.

SOD1 activity and Cu ion content were lower in Prnp0/0 lungs than in WT lungs. These results

suggest that PrPC could have a protective role against lethal infection with IAVs through the

OR region probably by exerting an anti-oxidative activity by maintaining Cu content and reg-

ulating SOD1 in lungs.

Results

PrPC is expressed in lung epithelial cells

We first investigated expression of PrPC in lung tissues of C57BL/6 WT mice on Western blot-

ting. PrPC was detectable in various tissues, with highest expression in brains (Fig 1A). Lower

but considerably high levels of PrPC were detected in lungs, followed by that in spleens and

intestines (Fig 1A). Only very low level of PrPC was detectable in hearts and livers (Fig 1A).

These results are consistent with PrPC being expressed most abundantly in brains and, to lesser

extents, in other non-neuronal tissues [1,2]. Weak signals were observed in Prnp0/0 lungs (Fig

1A). However, no signals for PrPC were detectable in the brains of Prnp0/0 mice (Fig 1A),

clearly indicating that PrPC expression is absent in Prnp0/0 mice. Therefore, the signals

observed in Prnp0/0 lungs are not specific for PrPC. PrPC is a glycoprotein with two glycosyla-

tion sites, therefore di-, mono-, and un-glycosylated forms of PrPC are being expressed and

detected as a broad band on Western blotting. We then performed immunofluorescent stain-

ing for PrPC in lungs. No specific signals were detected on Prnp0/0 lung slices (Fig 1B). In con-

trast, bronchiolar and alveolar epithelial cells on WT lung slices showed positive staining (Fig

1B). Double staining with anti-podoplanin, anti-surfactant protein C (SP-C), or anti-Clara cell

10-kDa protein (CC10) antibodies, which specifically detect alveolar type 1 and 2 epithelial

cells (AT1 and AT2 cells) and bronchiolar Clara epithelial cells, respectively, revealed expres-

sion of PrPC in these lung epithelial cells (Fig 1C).

Prnp0/0 mice are highly susceptible to IAV infection

To investigate the role of PrPC in IAV infection, we intranasally infected Prnp0/0 and C57BL/6

WT mice with 50 infectious units (IFU) of influenza virus strain A/Puerto Rico/8/34 (H1N1)

(hereafter referred to as IAV/PR8). Compared to control WT mice, male Prnp0/0 mice showed
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higher sensitivity to IAV/PR8, with markedly elevated mortality (Fig 2A). At 14 days post-

infection (dpi), only about 7% of male Prnp0/0 mice survived the infection while more than

70% of male WT mice were still alive. Higher mortality was also observed in infected female

Prnp0/0 mice, compared to control female WT mice (Fig 2A). Viral titers were higher in

infected Prnp0/0 lungs than in control WT lungs (Fig 2A). Western blotting showed similar

expression of PrPC in male and female WT lungs (S1 Fig). We also intranasally infected male

Prnp0/0 and WT mice with increasing infectious doses (100 IFU) of IAV/PR8. None of Prnp0/0

mice survived the infection by 14 dpi (Fig 2B). However, about 40% of WT mice remained

alive (Fig 2B). Viral titers were higher in infected Prnp0/0 lungs than in control WT lungs (Fig

2B). According to the Reed and Muench method [34], a 50% mouse lethal dose (MLD50) for

IAV/PR8 was calculated as 66 IFU in WT mice and less than 50 IFU in Prnp0/0 mice. We also

Fig 1. PrPC is expressed in lung epithelial cells. (A) Western blotting of various tissues from C57BL/6 WT and Prnp0/0 mice with 6D11 anti-PrP antibody, which

recognizes residues 93–109 of mouse PrP. Non-specific weak signals were observed in lungs and spleens. Actb is an internal control. Br, brain; Ht, heart; Lg, lung;

Lv, liver; Sp, spleen; In, intestine. (B) Immunofluorescence staining of WT and Prnp0/0 lungs with IBL-N anti-PrP antibodies, which are raised against a synthetic

N-terminal peptide. Bar, 400 μm. Insets show 2 times-magnified images of white squares. (C) Double immunofluorescence staining of WT and Prnp0/0 lungs with

IBL-N anti-PrP antibodies and antibodies against podoplanin, SP-C, or CC10. Bar, 400 μm. Insets show 2.5 times-magnified images of white squares.

https://doi.org/10.1371/journal.ppat.1007049.g001
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Fig 2. Prnp0/0 mice are highly susceptible to IAV/PR8. (A) Mortality and body weight of male (left panels) and female (right panels) Prnp0/0 and WT mice after

intranasal infection with 50 IFU of IAV/PR8 (male Prnp0/0, n = 14; male WT, n = 13; female Prnp0/0, n = 14; female WT, n = 14). The p value for mortality: p<0.0001 in

both genders. Lower panels: Viral titers in the lungs of Prnp0/0 (n = 3) and WT mice (n = 3) uninfected (Un) and infected with IAV/PR8 (50 IFU) at 3, 5, and 8 dpi. (B)
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used Prnp0/0 and Prnp+/+ littermates for intranasal infection with 50 IFU of IAV/PR8. Male

and female Prnp+/+ mice showed a mortality rate of about 40% at 14 dpi (Fig 2C). However,

more than 80% of male and female Prnp0/0 mice died by 14 dpi (Fig 2C). Higher viral titers

were observed in infected Prnp0/0 lungs compared to control Prnp+/+ lungs (Fig 2C).

We also tested other IAV strains, A/Aichi/2/68 (H3N2) and A/WSN/33 (H1N1) (hereafter

referred to as IAV/Aichi and IAV/WSN, respectively), for their pathogenicity in Prnp0/0 mice.

Prnp0/0 and WT mice were intranasally infected with 500 IFU of IAV/Aichi and 3,000 IFU of

IAV/WSN. IAV/WSN belong to the same H1N1 subtype family as IAV/PR8. However, IAV/

WSN was established by passages in mouse brains, thus being neurotropic, while IAV/PR8 is

highly pathogenic to lungs [35]. Therefore, higher virus titers were used for intranasal infec-

tion with IAV/WSN. No male Prnp0/0 mice were alive by 14 dpi with IAV/Aichi and IAV/

WSN (Fig 2D and 2E). However, about 90% and 75% of male WT mice survived at 14 dpi with

IAV/Aichi and IAV/WSN, respectively (Fig 2D and 2E). Virus titers were higher in Prnp0/0

lungs than in WT lungs after infection with IAV/Aichi and IAV/WSN (Fig 2D and 2E). Higher

mortality was also observed in female Prnp0/0 mice infected with IAV/Aichi and IAV/WSN,

compared to control WT mice (Fig 2D and 2E). Taken together, these results indicate that

Prnp0/0 mice are highly susceptible to IAV infection, with higher mortality and higher virus

loads in the lungs compared to WT mice, suggesting that PrPC could have a protective role

against lethal infection with IAVs.

Transgenic expression of PrPC rescues Prnp0/0 mice from IAV infection

To confirm that lack of PrPC is responsible for the higher susceptibility of Prnp0/0 mice to IAV

infection, 50 IFU of IAV/PR8 were intranasally infected into Tg(MoPrP)/Prnp0/0 mice, in

which multiple copies of the transgene encoding mouse PrPC are expressed on the Prnp0/0

background [36]. Western blotting showed higher expression of PrPC in the lungs and brains

of Tg(MoPrP)/Prnp0/0 mice than in WT mice (Fig 3A). Mortality was markedly reduced in

male Tg(MoPrP)/Prnp0/0 mice compared to male Prnp0/0 littermates after infection (Fig 3B).

More than 90% of male Tg(MoPrP)/Prnp0/0 mice survived the infection while only less than

10% of male Prnp0/0 littermates remained alive at 14 dpi. Virus titers were also reduced in Tg

(MoPrP)/Prnp0/0 lungs compared to Prnp0/0 lungs (Fig 3B). A higher survival rate was also

observed in female Tg(MoPrP)/Prnp0/0 mice after infection, compared to control female

Prnp0/0 littermates (Fig 3B). These results confirm that the higher susceptibility of Prnp0/0 mice

to IAV infection could result from the lack of PrPC.

The OR region is important for PrPC to protect against IAV infection

We then investigated whether the OR region might be involved in the protective role of PrPC

against lethal infection with IAVs, by intranasal infection with 100 IFU of IAV/PR8 into Tg

(PrPΔOR)/Prnp0/0 mice and their Prnp0/0 littermates. Tg(PrPΔOR)/Prnp0/0 mice express

Mortality and body weight of male Prnp0/0 (n = 8) and WT (n = 10) mice after intranasal infection with 100 IFU of IAV/PR8. The p value for mortality: p = 0.0003.

Lower panel: Viral titers in the lungs of Prnp0/0 (n = 3) and WT mice (n = 3) uninfected (Un) and infected with IAV/PR8 (100 IFU) at 3, 5, and 8 dpi. (C) Mortality and

body weight of male (left panels) and female (right panels) Prnp0/0 and Prnp+/+ littermates after intranasal infection with 50 IFU of IAV/PR8 (male Prnp0/0, n = 22; male

Prnp+/+, n = 12; female Prnp0/0, n = 22; female Prnp+/+, n = 23). The p value for mortality: p = 0.0135 in males, p<0.0001 in females. Lower panels: Viral titers in the lungs

of Prnp0/0 (n = 3) and Prnp+/+ mice (n = 3) uninfected (Un) and infected with IAV/PR8 (50 IFU) at 3, 5, and dpi. (D) Mortality and body weight of male (left panels) and

female (right panels) WT and Prnp0/0 mice after intranasal infection with 500 IFU of IAV/Aichi (male WT, n = 20; male Prnp0/0, n = 9; female WT, n = 30; female Prnp0/0,

n = 29). The p value for mortality: p<0.0001 in both genders. Lower left panel: Viral titers in the lungs of male Prnp0/0 (n = 3) and WT mice (n = 3) uninfected (Un) and

infected with IAV/Aichi (500 IFU) at 3, 5, and 8 dpi. (E) Mortality and body weight of male (left panels) and female (right panels) WT and Prnp0/0 mice after intranasal

infection with 3,000 IFU of IAV/WSN (male WT, n = 16; male Prnp0/0, n = 20; female WT, n = 16; female Prnp0/0, n = 20). The p value for mortality: p<0.0001 in both

genders. Lower left panel: Viral titers in the lungs of male Prnp0/0 (n = 3) and WT lungs (n = 3) uninfected (Un) and infected with IAV/WSN (3,000 IFU) at 3, 5, and 8 dpi.

The 0 dpi in the graphs of survival rate and body weight is 5–10 min after infection. �, p<0.05; ��, p<0.01. Error bars, SD.

https://doi.org/10.1371/journal.ppat.1007049.g002
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Fig 3. Transgenic expression of PrPC rescues Prnp0/0 mice from lethal infection with IAVs. (A) Western blotting of

the brains (Br) and lungs (Lg) of WT, Tg(MoPrP)/Prnp0/0, and Prnp0/0 mice with 6D11 anti-PrP antibody. Actb is an

internal control. (B) Mortality and body weight of male (left panels) and female (right panels) Prnp0/0 and Tg(MoPrP)/

Prnp0/0 mice after intranasal infection with 50 IFU of IAV/PR8 (male Prnp0/0, n = 11; male Tg(MoPrP)/Prnp0/0, n = 14;

female Prnp0/0, n = 9; Tg(MoPrP)/Prnp0/0, n = 16). The p value for mortality: p<0.0001 in both genders. Lower panel:

Viral titers in the lungs of male Prnp0/0 (n = 3) and Tg(MoPrP)/Prnp0/0 mice (n = 3) uninfected (Un) and infected with

IAV/PR8 (50 IFU) at 3, 5, and 8 dpi. The 0 dpi in the graphs of survival rate and body weight is 5–10 min after

infection. ��, p<0.01. Error bars, SD.

https://doi.org/10.1371/journal.ppat.1007049.g003
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transgenic mouse PrP with a deletion of the OR region alone on the Prnp0/0 background [37].

Western blotting with 6D11 anti-PrP antibody, which recognizes residues 93–109 of mouse

PrP, revealed expression of PrPΔOR in Tg(PrPΔOR)/Prnp0/0 lungs and PrPC in WT lungs (Fig

4A and 4B). SAF32 anti-PrP antibody, which recognizes the OR region, did not detect

PrPΔOR in Tg(PrPΔOR)/Prnp0/0 lungs (Fig 4A and 4B), confirming lack of the OR region in

PrPΔOR. We increased the dose of IAV/PR8 for infection into Tg(PrPΔOR)/Prnp0/0 mice to

100 IFU since they were highly resistant to 50 IFU of IAV/PR8. IAV/PR8 infection caused

similar mortality in Tg(PrPΔOR)/Prnp0/0 and Prnp0/0 mice (Fig 4C). However, mortality in

these mice was significantly higher than that in control WT mice (Fig 4C). Only 10% of Tg

(PrPΔOR)/Prnp0/0 mice and no Prnp0/0 mice survived the infection while 50% of WT mice

were alive at 14 dpi (Fig 4C). Tg(PrPΔOR)/Prnp0/0 and Prnp0/0 lungs showed similar virus

titers, but they were higher than those in WT lungs (Fig 4C). These results suggest that the OR

region could play an important role for PrPC to protect against lethal infection with IAVs in

mice.

More severe inflammation in IAV-infected Prnp0/0 lungs

To gain insights into the protective role of PrPC against lethal infection with IAVs, we investi-

gated the pathology of IAV/PR8 (50 IFU)-infected Prnp0/0 and WT lungs. No macroscopic

lesions were observed on the lung surface of control saline-administrated Prnp0/0 and WT

mice (Fig 5A). In contrast, reddish lesions were evident on the surface of infected WT and

Prnp0/0 lungs at 5 and 8 dpi, with larger size and higher number of the lesions in the Prnp0/0

lungs than in the WT lungs (Fig 5A). Prnp0/0 and WT lungs had increased wet weights after

infection, with the Prnp0/0 lungs being significantly heavier than the WT lungs (Fig 5B), sug-

gesting higher exudates in Prnp0/0 lungs than in WT lungs after infection. Microscopic exami-

nations showed higher infiltration of inflammatory cells in Prnp0/0 lungs than in WT lungs

after infection (Fig 5C). Immunofluorescent staining also showed viral nucleocapsid protein

NP accumulated in the inflammatory regions (Fig 5C). Atelectatic areas were therefore larger

in Prnp0/0 lungs than in WT lungs after infection (Fig 5D). We also investigated levels of

inflammatory cytokines, including interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α), and

interferon-γ (IFN-γ), in these infected lungs. All the cytokines examined had higher levels in

Prnp0/0 lungs than in WT lungs (Fig 5E). We also investigated viral proteins in these infected

lungs. Western blotting showed that viral proteins, including NP, NS1 nonstructural protein,

and M2 matrix protein, became detectable in Prnp0/0 and WT lungs at 3 dpi, reached a peak

level at 5 dpi, and decreased at 8 dpi (Fig 5F), with slightly but not significantly higher levels in

the Prnp0/0 lungs than in the WT lungs (Fig 5G).

Active immune responses against IAV infection in Prnp0/0 mice

We evaluated innate and adaptive immune responses against IAV infection in Prnp0/0 mice.

To this end, we first investigated expression of the innate immunity-related genes, including

those for retinoic acid-inducible gene I (RIG-I), melanoma differentiation-associated protein 5

(MDA5), TNF-α, IFN-α and IFN-γ, in IAV/PR8 (50 IFU)-infected WT and Prnp0/0 lungs.

Reverse transcriptase-polymerase chain reaction (RT-PCR) showed upregulated expression of

these genes in infected WT and Prnp0/0 lungs (S2A Fig). However, expression levels of these

genes except for the MDA5 gene were higher in infected Prnp0/0 lungs than in control WT

lungs (S2A Fig). Expression of the viral NP gene was also higher in infected Prnp0/0 lungs than

in control WT lungs (S2A Fig), suggesting that the higher expression of the innate immune-

related genes in infected Prnp0/0 lungs might be due to the higher viral loads in the lungs. We

then investigated antibody responses against IAV/PR8 infection in WT and Prnp0/0 mice.
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Fig 4. Transgenic expression of PrPΔOR fails to rescue Prnp0/0 mice from lethal infection with IAVs. (A)

Schematic diagrams of the protein structure for WT PrP and PrPΔOR with the epitopes of SAF32 and 6D11 anti-PrP

antibodies. SP, signal peptide; GPI, GPI anchor signal. (B) Western blotting of WT and Tg(PrPΔOR)/Prnp0/0 lungs

with 6D11 and SAF32 anti-PrP antibodies. Actb is an internal control. (C) Mortality and body weight of male WT

(n = 10), Tg(PrPΔOR)/Prnp0/0 (n = 10), and Prnp0/0 (n = 5) mice after intranasal infection with 100 IFU of IAV/PR8.

The p value for mortality: WT vs Prnp0/0 mice, p = 0.0011; WT vs Tg(PrPΔOR)/Prnp0/0 mice, p = 0.009; Tg(PrPΔOR)/

Prnp0/0 vs Prnp0/0 mice, p = 0.7022. Lower panel: Viral titers in the lungs of male Prnp0/0 (n = 3) and Tg(MoPrP)/Prnp0/

0 mice (n = 3) uninfected (Un) and infected with IAV/PR8 (100 IFU) at 3, 5, and 8 dpi. The 0 dpi in the graphs of

survival rate and body weight is 5–10 min after infection. �, p<0.05; ��, p<0.01. NS, not significant. Error bars, SD.

https://doi.org/10.1371/journal.ppat.1007049.g004
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Fig 5. Pulmonary inflammation and viral loads are higher in IAV-infected Prnp0/0 lungs. (A) Macroscopic pictures

of the lungs of WT and Prnp0/0 mice administrated with saline as uninfected control or infected with IAV/PR8 (50
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Plasma levels of IAV/PR8-specific IgG and IgM antibodies were similarly elevated in infected

WT and Prnp0/0 mice (S2B Fig). Enzyme-linked immunoSpot (ELISPOT) assay also showed

that the spot number of TNF-α- or IFN-γ-secreting cells was the same in the lungs and spleens

of infected Prnp0/0 and WT mice (S2C Fig). These results indicate that Prnp0/0 mice could acti-

vate innate and adaptive immune responses against IAV infection.

Higher epithelial cell damage in IAV-infected Prnp0/0 lungs

To understand the protective mechanism of PrPC against lethal infection with IAVs, we inves-

tigated apoptotic cell death in IAV/PR8 (50 IFU)-infected Prnp0/0 and WT lungs, by perform-

ing Western blotting for the cleaved fragments of the apoptotic marker caspase 3. Prnp0/0 and

WT lungs showed increased the fragments after infection (Fig 6A). However, the fragments

were higher in infected Prnp0/0 lungs than in control WT lungs (Fig 6A). Terminal deoxynu-

cleotidyl transferase-mediated dUTP nick-end labeling (TUNEL) staining also showed more

abundant apoptotic cells in alveolar and bronchiolar epithelial areas in Prnp0/0 lungs than in

WT lungs (Fig 6B). We also performed Western blotting with anti-podoplanin, anti-SP-C, and

anti-CC10 antibodies. Podoplanin levels were unaffected in Prnp0/0 and WT lungs after infec-

tion (Fig 6C). This is consistent with IAV/PR8 infection not damaging AT1 cells in C57BL/6

mice [38]. In contrast, SP-C and CC10 were markedly decreased in Prnp0/0 and WT lungs after

infection, with their levels significantly lower in infected Prnp0/0 lungs than in control WT

lungs (Fig 6C). Consistently, immunofluorescence staining showed that SP-C-positive AT2

cells and CC10-positive Clara cells were less in infected Prnp0/0 lungs than in control WT

lungs, while podoplanin-positive AT1 cells were similarly observed in infected these lungs (Fig

6D). These results suggest that AT2 and Clara cells in Prnp0/0 lungs could be more vulnerable

to apoptosis than those in WT lungs after infection with IAVs, and that PrPC could exert an

anti-apoptotic activity in AT2 and Clara cells after infection with IAVs.

Anti-oxidant rescues Prnp0/0 mice from lethal infection with IAV

To investigate the role of ROS in the higher mortality of IAVs-infected Prnp0/0 mice, we

addressed whether Prnp0/0 mice could be rescued from lethal infection with IAV/PR8 by treat-

ment with a ROS scavenger. To this end, we first measured ROS in the lungs of Prnp0/0 and

WT mice intranasally infected with IAV/PR8 (100 IFU). The virus dose used was higher than

1 MLD50 since it is assumed that the effect of a ROS scavenger on the survival rate of infected

mice, if any, would be evaluated more easily for the mice developing mortality more than 50%

after infection than those with less than 50% mortality after infection. No difference in ROS

levels was detected between uninfected Prnp0/0 and WT lungs (Fig 7A). IAV/PR8 infection at 5

dpi increased ROS levels in Prnp0/0 and WT lungs (Fig 7A). However, ROS levels were higher

in Prnp0/0 lungs than in control WT lungs (Fig 7A). ROS levels were also higher in infected Tg

IFU) at 5 and 8 dpi. Bar, 1 cm. (B) Wet lung weights of WT and Prnp0/0 mice (n = 3) uninfected (Un) and infected with

50 IFU of IAV/PR8 at 3, 5, and 8 dpi. (C) Hemotoxylin-Eosin staining of the lungs of WT and Prnp0/0 mice uninfected

(Un) and infected with 50 IFU of IAV/PR8 at 3, 5, and 8 dpi and immunofluorescent staining for the viral protein NP

in the consecutive lung sections. Bar, 200 μm. Insets show 3 times-magnified images of the squares. (D) Atelectatic area

in the lungs of WT (n = 3) and Prnp0/0 mice (n = 3) uninfected (Un) and infected with 50 IFU of IAV/PR8 at 3, 5, and

8 dpi. (E) Levels of pro-inflammatory cytokines, IL-6, TNF-α, and IFN-γ, in the lungs of WT (n = 3) and Prnp0/0 mice

(n = 3) at uninfected (Un) and infected with 50 IFU of IAV/PR8 at 3, 5, and 8 dpi. (F) Western blotting of the lungs of

WT and Prnp0/0 mice uninfected (Un) and infected with 50 IFU of IAV/PR8 at 3, 5, and 8 dpi for viral proteins, NP,

NS1, and M2. Actb is an internal control. (G) Quantification of the intensity for each viral protein in (F) after

normalization against β-actin. Signal intensity of the proteins in the lungs was evaluated against that in WT lungs at 3

dpi. �, p<0.05; ��, p<0.01. Error bars, SD.

https://doi.org/10.1371/journal.ppat.1007049.g005
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Fig 6. Epithelial cells are highly apoptotic in IAV-infected Prnp0/0 lungs. (A) Left panel: Western blotting of the lungs of WT and Prnp0/0 mice

uninfected (Un) and infected with 50 IFU of IAV/PR8 at 3, 5, and 8 dpi for pro-caspase 3 and its cleaved fragments. Actb is an internal control.

Right panel: Quantification of the cleaved fragments of caspase 3 after normalization against β-actin. Signal intensity of the cleaved fragments of

caspase 3 in Prnp0/0 lungs (n = 3) was evaluated against that in WT lungs (n = 3). (B) TUNEL staining of IAV/PR8 (50 IFU)-infected WT and

Prnp0/0 lungs at 5 dpi. Bar, 400 μm. Insets show 2.5 times-magnified images of the squares. (C) Left panel: Western blotting of the lungs of WT

and Prnp0/0 mice uninfected (Un) and infected with 50 IFU of IAV/PR8 at 3, 5, and 8 dpi for podoplanin, SP-C, and CC10. Actb is an internal

control. Right panels: Quantification of podoplanin, SP-C, and CC10 after normalization against β-actin (n = 3 for each mouse group). Signal
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(PrPΔOR)/Prnp0/0 lungs than in control WT lungs at 5 dpi (Fig 7A). These results suggest that

PrPC might exert an anti-oxidative activity to reduce ROS levels through the OR region in

IAV-infected lungs. We then examined the anti-oxidative effect of butylated hydroxyanisole

(BHA), a ROS scavenger, on ROS levels in the lungs of IAV/PR8 (100 IFU)-infected WT mice.

Treatment with BHA for 4 days starting at 2 dpi effectively reduced ROS in infected WT lungs

at 5 dpi (Fig 7B). We then similarly treated Prnp0/0 and WT mice with BHA after intranasal

infection with IAV/PR8 (100 IFU). The treatment decreased the mortality of infected WT

mice (Fig 7C). This could be consistent with that ROS could be a major player in IAV infec-

tion-induced lung injury [30–33]. The mortality of infected Prnp0/0 mice was also decreased to

that of control WT mice after treatment with BHA (Fig 7C). Viral titers were also decreased in

Prnp0/0 lungs to those in WT lungs after treatment with BHA (Fig 7C). These results suggest

that the higher ROS levels in Prnp0/0 lungs could be involved in the higher mortality of Prnp0/0

mice after infection with IAVs.

Higher expression of xanthine oxidase (XO) and lower activity of SOD1 in

IAV-infected Prnp0/0 lungs

To investigate the role of XO, a major ROS-generating enzyme in IAV-infected lungs [30], in

IAV-infected Prnp0/0 lungs, we first perform Western blotting of IAV/PR8 (100 IFU)-infected

Prnp0/0 and WT lungs for XO. Expression of XO was increased in these infected lungs (Fig

8A). However, the expression levels of XO were higher in infected Prnp0/0 lungs than in control

WT lungs (Fig 8A). We then treated Prnp0/0 and WT mice with the XO inhibitor allopurinol

after intranasal infection with IAV/PR8 at 100 IFU, a dose higher than 1 MLD50 in WT mice.

Allopurinol treatment starting from one day before intranasal infection with IAV/PR8 to 14

dpi reduced the mortality of Prnp0/0 and WT mice to a similar rate (Fig 8B). Viral titers were

also decreased in Prnp0/0 lungs compared to those in WT lungs after treatment with allopuri-

nol (Fig 8B). These results suggest that XO could be a key ROS-generating enzyme in IAV-

infected Prnp0/0 and WT lungs, and that the higher expression of XO in IAV-infected Prnp0/0

lungs could be involved in the higher mortality of IAVs-infected Prnp0/0 mice probably

through producing higher levels of ROS.

We also investigated infected Prnp0/0 and WT lungs for the enzymatic activity of SOD, an

anti-oxidative enzyme in IAV-infected lungs [31]. Western blotting revealed similar expres-

sion of SOD1 and SOD2 between uninfected and infected Prnp0/0 or WT lungs (Fig 8C). How-

ever, the total SOD activity was significantly lower in uninfected Prnp0/0 lungs than in

uninfected WT lungs (Fig 8D). The SOD1-specific inhibitor diethyl-dithio-carbamate (DDC)

reduced SOD activity in both uninfected Prnp0/0 and WT lungs to the same levels (Fig 8D),

suggesting that SOD1 activity might be impaired in Prnp0/0 lungs. IAV/PR8 infection

increased the total SOD activity in both WT and Prnp0/0 lungs (Fig 8D). However, the activity

was lower in infected Prnp0/0 lungs than in control WT lungs (Fig 8D). DDC decreased the

SOD activity in infected Prnp0/0 and WT lungs to the levels in uninfected Prnp0/0 lungs (Fig

8D). These results suggest that SOD1 might not be fully activated in Prnp0/0 lungs after IAV

infection. Lower SOD1 activity was also detected in infected and uninfected Tg(PrPΔOR)/

Prnp0/0 lungs than in control WT lungs (Fig 8D). Cu ions, which are important for SOD1

activity, were lower in uninfected Prnp0/0 and Tg(PrPΔOR)/Prnp0/0 lungs than in control WT

intensity for podoplanin, SP-C, and CC10 in Prnp0/0 lungs was evaluated against that in uninfected WT lungs. (D) Immunofluorescence staining

of uninfected and IAV/PR8 (50 IFU)-infected WT and Prnp0/0 lungs at 5 dpi with antibodies against podoplanin, SP-C and CC10, and with

DAPI. Right panels: Immunofluorescent staining for the viral protein NP in the lungs of these mice. Bar, 400 μm. NS, not significant; �, p<0.05;
��, p<0.01. Error bars, SD.

https://doi.org/10.1371/journal.ppat.1007049.g006
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lungs (Fig 8E). These results suggest that PrPC might function to maintain Cu levels and

thereby might regulate SOD1 activity through the Cu-binding OR region in lungs.

Primary Prnp0/0 lung cells are susceptible to IAV infection

To further gain insights into the protective role of PrPC in IAV infection, we infected primary

lung cells from WT, Prnp0/0 and Tg(MoPrP)/Prnp0/0 mice with IAV/PR8 at 1.0 multiplicity of

Fig 7. BHA rescue Prnp0/0 mice from lethal infection with IAV. (A) DCF levels representing ROS levels in the lungs

of WT, Prnp0/0, and Tg(PrPΔOR)/Prnp0/0 mice uninfected and infected with IAV/PR8 (100 IFU) (n = 3 in each mouse

group) at 5 dpi. (B) DCF levels in the lungs of WT mice administrated with saline as a control and infected with IAV/

PR8 (100 IFU) at 5 dpi after treatment with BHA or DMSO (n = 3 in each group). (C) Mortality and body weight of

BHA-treated WT (n = 14) and Prnp0/0 (n = 13) mice and BHA-untreated WT (n = 13) and Prnp0/0 (n = 12) mice after

intranasal infection with 100 IFU of IAV/PR8. The p value for mortality: untreated vs treated WT mice, p = 0.3603;

untreated vs treated Prnp0/0 mice, p = 0.0005; untreated WT vs Prnp0/0 mice, p<0.0001; treated WT vs treated Prnp0/0

mice, p = 0.6706. Lower panel: Viral titers in the lungs of each group of mice uninfected (Un) and infected with IAV/

PR8 (100 IFU) at 3, 5, and 8 dpi (n = 3 in each mouse group). The 0 dpi in the graphs of survival rate and body weight

is 5–10 min after infection. ��, p<0.01; NS, not significant. Error bars, SD.

https://doi.org/10.1371/journal.ppat.1007049.g007
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infection (MOI). Prnp0/0 cells were more vulnerable to the infection than WT cells (S3A Fig).

In contrast, Tg(MoPrP)/Prnp0/0 cells were highly resistant to the infection (S3A Fig). Higher

Fig 8. Higher expression of XO and lower activity of SOD1 in IAV-infected Prnp0/0 lungs. (A) Western blotting of

the lungs of WT and Prnp0/0 mice uninfected (Un) and infected with IAV/PR8 (100 IFU) at 5 dpi for XO. Actb is an

internal control. Right panel: Quantification of XO after normalization against β-actin. Signal intensity of XO in lungs

was evaluated against that in uninfected WT lungs. (B) Mortality and body weight of allopurinol-treated WT (n = 24)

and Prnp0/0 (n = 11) mice and of control PBS-treated WT (n = 11) and Prnp0/0 (n = 10) mice after intranasal infection

with 100 IFU of IAV/PR8. The p value for mortality: PBS-treated vs allopurinol-treated WT mice, p = 0.0104; PBS-

treated vs allopurinol-treated Prnp0/0 mice, p = 0.0005; PBS-treated WT vs Prnp0/0 mice, p<0.0001; allopurinol-treated

WT vs Prnp0/0 mice, p = 0.0529. Right panel: Viral titers in the lungs of each group of mice uninfected (Un) or infected

with IAV/PR8 (100 IFU) at 3, 5, and 8 dpi (n = 3 in each mouse group). (C) Western blotting of the lungs of WT and

Prnp0/0 mice uninfected and infected with IAV/PR8 (100 IFU) at 5 dpi for SOD1 and 2. Actb is an internal control.

(D) SOD activity in the lungs of WT, Prnp0/0, and Tg(PrPΔOR)/Prnp0/0 mice uninfected and infected with IAV/PR8

(100 IFU) after treatment with or without DDC (n = 3 for each mouse group). (E) Cu ion content in uninfected WT,

Prnp0/0, and Tg(PrPΔOR)/Prnp0/0 lungs (n = 3 for each mouse group). The 0 dpi in the graphs of survival rate and

body weight is 5–10 min after infection. Un, uninfected. ��, p<0.01; NS, not significant. Error bars, SD.

https://doi.org/10.1371/journal.ppat.1007049.g008
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expression of viral proteins NP, HA and M2 was observed in Prnp0/0 cells than in WT cells at 2

dpi (S3B Fig). In contrast, their expression was lower in Tg(MoPrP)/Prnp0/0 cells than in WT

cells (S3B Fig). Higher activation of caspase 3 was detected in infected Prnp0/0 cells than con-

trol WT cells (S3B Fig). In contrast, activation of caspase 3 was lower in infected Tg(MoPrP)/

Prnp0/0 cells than in control WT cells (S3B Fig). siRNA-mediated knockdown of PrPC in the

A549 human lung epithelial cells also caused higher expression of NP, HA and M2 and higher

activation of caspase 3 after infection with IAV/PR8 (S3C Fig). ROS levels were also higher in

infected Prnp0/0 cells and lower in infected Tg(MoPrP)/Prnp0/0 cells compared to those in con-

trol WT cells (S3D Fig). In contrast, SOD activity was lower in Prnp0/0 cells and higher in Tg

(MoPrP)/Prnp0/0 cells after infection with IAV/PR8 compared to that in infected WT cells

(S3E Fig). These results are consistent with those from the in vivo experiments, suggesting that

PrPC might exert a protective activity against IAV infection in a cell-autonomous way.

Lipopolysaccharide (LPS) induces similar injuries in Prnp0/0 and WT lungs

Intranasal administration of LPS is known to cause lung injuries in mice [39]. To investigate

whether PrPC might be also protective against LPS-induced lung injuries, we intranasally

administrated LPS into Prnp0/0 and WT mice. No Prnp0/0 and WT mice died from the admin-

istration (S4A Fig). The body weight of Prnp0/0 and WT mice was similarly reduced by 3 days

after administration and thereafter increased (S4A Fig). Caspase 3 was similarly activated in

WT and Prnp0/0 lungs 24 h after administration with LPS (S4B Fig). ROS and inflammatory

cytokines, including TNF-α and IFN-γ, were also similarly elevated between Prnp0/0 and WT

lungs 24 h after administration with LPS (S4C Fig). These results suggest that PrPC might have

no protective activity against LPS-induced lung injuries.

Discussion

In the present study, we showed that Prnp0/0 mice were highly susceptible to infection with

IAVs, with markedly higher mortality, compared to control WT mice. Pathological changes

were more severe, inflammatory cytokines including IL-6, TNF-α, and IFN-γ were higher, and

viral loads were higher in IAV/PR8-infected Prnp0/0 lungs. We confirmed that the higher mor-

tality of infected Prnp0/0 mice is due to lack of PrPC, by demonstrating that transgenic expres-

sion of mouse PrPC rescued Prnp0/0 mice from lethal infection with IAV/PR8. We also showed

that mouse PrP lacking the OR region failed to protect Prnp0/0 mice from the lethal infection

with IAV/PR8. These results suggest that PrPC could have a protective role against lethal infec-

tion with IAVs through the OR region in mice.

Prnp0/0 mice activated innate and adaptive immune responses against IAV infection. These

results rule out the possibility that lack of PrPC might cause defective immune responses

against IAV infection, therefore Prnp0/0 mice being highly susceptible to IAV infection. PrPC

was expressed in alveolar AT1 and 2 epithelial cells and bronchiolar Clara epithelial cells in

lungs. Other investigators also reported expression of PrPC in alveolar walls and Clara cells

[8,40]. Consistent with the previous report showing that AT1 cells were resistant to infection

with IAV/PR8 in WT mice [38], AT1 cells were unaffected by infection with IAV/PR8 not

only in WT lungs but also in Prnp0/0 lungs. In contrast, infection with IAV/PR8 markedly

damaged AT2 and Clara cells in Prnp0/0 and WT lungs. However, these epithelial cells in

Prnp0/0 lungs were more susceptible to the infection than those in WT lungs. Caspase 3 was

activated more robustly in Prnp0/0 lungs than in WT lungs after infection with IAV/PR8.

TUNEL staining also displayed more abundant apoptotic cells in the alveolar and bronchiolar

epithelial areas of infected Prnp0/0 lungs than in control WT lungs. Primary Prnp0/0 lung cul-

ture cells were also vulnerable to IAV/PR8 infection-induced apoptosis compared to control
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WT lung cells. These results suggest that AT2 and Clara epithelial cells in Prnp0/0 lungs might

be more vulnerable to IAV infection-induced apoptosis than those in WT lungs, and that PrPC

might play an anti-apoptotic role in these lung epithelial cells in a cell-autonomous way. How-

ever, intranasal administration with LPS, which induces lung injuries through binding to Toll-

like receptor 4 (TLR4) [41], similarly activated caspase 3 in Prnp0/0 and WT lungs, suggesting

that the anti-apoptotic activity of PrPC has no effect on the LPS/TLR4-induced apoptosis in

lungs.

Viral loads were significantly but only slightly higher in Prnp0/0 lungs than in WT lungs

after infection with IAV/PR8. It has been shown that caspase 3 activation induces efficient rep-

lication of IAV in cells [42]. It is thus possible that the slightly higher viral loads in IAV/

PR8-infected Prnp0/0 lungs might be associated with the higher activation of caspase 3

observed in the lungs. Thus, PrPC might exert its protective activity against IAV infection

through its anti-apoptotic activity in lung epithelial cells, not through directly affecting viral

replication efficiency in lungs. However, the possibility remains unanswered if PrPC could

directly affect IAV replication in the lungs, thereby reducing viral loads and eventually repress-

ing caspase 3 activation in the lungs.

AT2 cells are small cuboidal cells covering about 2–5% of the alveolar surface area and

secreting surfactant proteins, which are important to reduce alveolar surface tension [43,44].

Clara cells are the predominant cell type in bronchioles and known as important progenitor

cells for the repair of bronchiolar epithelia [45]. Recently, it was reported that Clara cells are

also major progenitor cells for alveolar epithelial regeneration through differentiation to AT1

and 2 alveolar cells after IAV infection [46,47]. AT2 and Clara cells were more severely dam-

aged in Prnp0/0 lungs than in WT lungs after infection with IAV/PR8. It is thus possible that

the AT2 cells-mediated regulation of alveolar surface tension and the Clara cells-mediated

alveolar and bronchiolar epithelia regeneration after IAV infection might be disturbed more

severely in Prnp0/0 lungs than in WT lungs after infection with IAVs, eventually causing higher

mortality in Prnp0/0 mice infected with IAVs.

We showed that ROS levels were higher in IAV/PR8-infected Prnp0/0 lungs than in control

WT lungs. We also showed that the ROS scavenger BHA rescued Prnp0/0 mice from lethal

infection with IAV/PR8, reducing mortality to the levels in IAV/PR8-infected, BHA-treated

control WT mice, suggesting that the higher ROS levels in infected Prnp0/0 lungs could be

responsible for the higher mortality of Prnp0/0 mice infected with IAVs. It has been shown that

Prnp0/0 cells were more susceptible to treatment with agents inducing oxidative stress, readily

succumbing to apoptosis, compared with WT cells [23,48], suggesting that PrPC could have a

protective role against oxidative stress-induced apoptosis. Therefore, PrPC might play an anti-

oxidative role in lungs after infection with IAVs, thereby reducing ROS levels and protecting

lung epithelial cells from IAV infection-induced apoptosis. We also demonstrated higher ROS

levels in Tg(PrPΔOR)/Prnp0/0 lungs than in WT lungs after infection with IAV/PR8, suggest-

ing that the OR region could be important for PrPC to exert the anti-oxidative activity in lungs

after infection with IAVs.

XO was shown to be a major ROS-generating enzyme in IAV-infected lungs [30]. We

showed that XO expression was elevated in infected Prnp0/0 lungs compared to control WT

lungs. We also showed that the XO inhibitor allopurinol rescued Prnp0/0 mice from lethal

infection with IAV/PR8. These results suggest that the XO up-regulation observed in infected

Prnp0/0 lungs might be responsible for the higher mortality in Prnp0/0 mice infected with IAVs.

It has been shown that inflammatory cytokines such as TNF-α and IFN-γ up-regulate the

expression of XO [49–51]. Higher levels of these cytokines were detected in infected Prnp0/0

lungs than in control WT lungs, suggesting that the higher expression of XO in infected Prnp0/

0 lungs might be induced by the higher levels of these cytokines in the lungs.
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We also showed that IAV/PR8 infection increased SOD1 activity in Prnp0/0 and WT lungs.

However, SOD1 was not fully activated in infected Prnp0/0 lungs compared to control WT

lungs, suggesting that SOD1 activation might be disturbed in Prnp0/0 lungs infected with IAVs.

Together with the reported results that administration of pyran polymer-conjugated SOD1

successfully reduced the mortality of WT mice infected with IAV [31], it is suggested that the

lower activity of SOD1 in infected Prnp0/0 lungs might be responsible for the higher mortality

of Prnp0/0 mice infected with IAVs. Cu ions are important for the SOD1 enzymatic activity.

We found that Cu ion content were lower in Prnp0/0 lungs than in WT lungs, suggesting that

the lower activity of SOD1 in Prnp0/0 lungs might be due to the lower Cu content in the lungs.

Reduced SOD1 activity and lower Cu content were also detected in Tg(PrPΔOR)/Prnp0/0

lungs. It is thus possible that PrPC might have a role to maintain Cu levels in lungs through the

OR region, thereby regulating SOD1 activity and eventually exerting an anti-oxidative activity

in lungs. PrPC is known to bind to Cu ions via the OR region, suggesting that PrPC might

transfer the bound Cu ions to and activate SOD1 [23,24]. However, the exact mechanism of

how PrPC is involved in the activation of SOD1 remains to be determined. It has been also pro-

posed that PrPC itself could have SOD activity [52]. However, other investigators failed to con-

firm this proposed SOD activity in PrPC [53,54]. Elucidation of the mechanism underlying the

anti-oxidative function of PrPC could be helpful for further understanding the pathogenesis of

IAV infection and for development of anti-influenza therapeutics based on the PrPC-mediated

protective mechanism.

Anti-oxidative therapeutics against IAV infection, by targeting the ROS-generating

enzymes or by administrating anti-oxidants or anti-oxidant enzymes, has been shown to suc-

cessfully protect mice from lethal infection with IAVs [30–33]. Our current results showing

that PrPC could have a protective role against lethal infection with IAVs in mice possible by

exerting ant-oxidative activity, suggest PrPC to be a new target molecule for anti-oxidative

therapeutics against IAV infection. It has been reported that PrPC elicited a protective signal

against anisomycin-induced apoptosis in neurons via interaction with stress-inducible protein

1 (STI1), a STI1-derived peptide, or anti-PrP antibodies [55,56], and that the interaction with

STI1 could be involved in PrPC-dependent activation of SOD [57]. It is thus interesting to

investigate whether these ligands could elicit the protective activity of PrPC against IAV

infection.

Materials and methods

Ethics statement

All animal experiments were conducted in compliance with Japanese legislation (Act on Wel-

fare and Management of Animals). The Ethics Committee of Animal Care and Experimenta-

tion of Tokushima University approved the animal experiments in this study (approval

number T27-86). Animals were cared for in accordance with The Guiding Principle for Ani-

mal Care and Experimentation of Tokushima University and guidelines under the jurisdiction

of the Ministry of Education, Culture, Sports, Science and Technology, Japan.

Animals

C57BL/6 mice were purchased from Japan SLC Inc. (Shizuoka, Japan). Prnp0/0 mice used in

this study had been obtained elsewhere by at least more than 9 time-backcrosses to C57BL/6

mice with Prnp0/0 mice, which originally carry a mixed background of C57BL/6×129Sv×FVB

mice [37,58]. The backcrossed Prnp0/0 mice were maintained by intercrossing the backcrossed

Prnp0/0 mouse pairs and used in this study. Prnp0/0 and Prnp+/+ littermates used in this study

were produced by intercross of the backcrossed Prnp0/+ mouse pairs, which were produced by
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intercrossing the backcrossed Prnp0/0 mice with C57BL/6 mice. Tg(MoPrP)/Prnp0/0 mice were

obtained elsewhere by intercross between the backcrossed Prnp0/0 mice and Tg(MoPrP) mice

with a FVB background [36]. Prnp0/0 and Tg(MoPrP)/Prnp0/0 littermates used in this study

were produced by intercross between the resulting Tg(MoPrP)/Prnp0/0 mice and the back-

crossed Prnp0/0 mice. Tg(PrPΔOR)/Prnp0/0 mice with the C57BL/6 background were produced

elsewhere [37]. Tg(PrPΔOR)/Prnp0/0 mice were maintained by intercrossing the backcrossed

Prnp0/0 mice and Tg(PrPΔOR)/Prnp0/0 mice and used in this study. The Tg allele was detected

by PCR using a primer pairs (SH3UT-S, 5’-tcggacgacaagagacaatc-3’; SHPA-A, 5’-taggggccaca-

cagaaaaca-3’), which specifically amplifies the 3’ UTR region of the hamster PrP gene used in

the Tg construct. The knockout allele was detected by PCR for the neomycin resistant gene

using primer pairs (Neo163S, 5’-ggtgccctgaatgaactgca-3’; Neo390A, 5’-ggtagccggatcaagcgtat-

3’). The PrP allele was detected by PCR using primer pairs (PrP-23aa-S, 5’-aaaaagcggc-

caaagcctgga-3’; PrP-231aa-AS, 5’-gctggatcttctcccgtcgtaataggcctg-3’).

Virus preparation

IAV A/PR/8/34 (H1N1), A/Aichi/2/68 (H3N2), and A/WSN/33 (H1N1) were injected into the

allantoic sac of 11-day-old chicken embryos in eggs and incubated at 36˚C for 48 h. The eggs

were chilled at 4˚C for at least for 4 h prior to harvesting the allantoic fluids. Cellular debris in

the allantoic fluids was removed by centrifugation at 2,380×g at 4˚C for 30 min. The clarified

allantoic fluids were layered over a 20% sucrose cushion and centrifuged at 25,000×g at 4˚C

for 120 min. The pellet containing viruses was suspended in phosphate-buffered saline (PBS),

and stored in multiple aliquots at -80˚C until used.

Intranasal infection with IAVs

Male and female mice aged 5 weeks were intranasally inoculated with IAVs in a total volume

of 20 μL (10 μL in each nasal cavity), and monitored for survival and weight loss for 14 days.

The IAV stock aliquot was thawed and diluted in saline before used.

Intranasal administration with LPS

Sixty micrograms of LPS (026:B6, Sigma-Aldrich, St Louis, MO) in 20 μL PBS were intrana-

sally administered into a mouse using a micropipette (10 μL in each nasal cavity). PBS was sim-

ilarly administered as a control.

Treatment with BHA and allopurinol

BHA and allopurinol were purchased from Sigma-Aldrich. BHA was dissolved in dimethyl

sulfoxide (DMSO) and stored at -20˚C until use. BHA was orally administered at 200 mg/kg/

day using a sonde needle from 2 to 5 dpi. According to the Material Safety Data Sheet (MSDS)

(ScienceLab. com, Inc. Dickinson, Texas), the oral LD50 of BHA is 1,100 mg/kg in mice. Allo-

purinol was prepared in PBS and then stored at -20˚C until use. Allopurinol was orally admin-

istered at 2 mg/kg/day using a sonde needle from -1 to 14 dpi. According to the MSDS

(Sigma-Aldrich), the oral LD50 of allopurinol is 78 mg/kg in mice.

Tissue and cell homogenization

Tissues were homogenized using a Polytron homogenizer (PT 2100, Brinkman Instruments,

Inc., Westbury, NY) in 2 mL of PBS for measurement of cytokines and Cu ions, and in a lysis

buffer (0.5% Triton X-100, 0.5% sodium deoxycholate, 150 mM NaCl, 50 mM Tris-HCl, pH

7.4, 1 mM EDTA) containing protease inhibitor cocktail (Nakalai Tesque, Kyoto, Japan) for
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Western blotting and for measurement of ROS levels and SOD activity. Cells were homoge-

nized in a protease inhibitor cocktail (Nakalai Tesque)-containing lysis buffer and subjected to

Western blotting and measurement of ROS levels and SOD activity. The homogenates were

clarified by centrifugation at 1,000×g for 2 min at 4˚C. Protein concentration of the homoge-

nates was measured using the BCA method (Thermo Scientific, Rockford, IL).

Determination of virus titers

Virus titers were expressed as IFU/mL. IFU/mL was determined using Madin-Darby canine

kidney (MDCK) cells as follows. MDCK monolayer cells were incubated with 10-fold serial

dilutions of each sample of interest for 14 h at 37˚C. The cells were then fixed with 4% parafor-

maldehyde, permeabilized with 0.3% Triton-X100 in PBS, and immunostained with anti-NP

monoclonal antibodies (GeneTex, Irvine, CA). Signals were visualized using horseradish per-

oxidase (HRP)-conjugated anti-rabbit IgG antibodies (GE Healthcare, Waukesha, WI) and

True Blue Peroxidase Substrate (KPL, Gaithersburg, MD). IFU/mL was defined as the number

of the cells positive for the anti-NP signals in 1 mL of each sample.

Hematoxylin-eosin (H-E) staining

After euthanasia of mice, lungs were quickly removed, fixed with 4% paraformaldehyde, dehy-

drated, embedded in paraffin, and sliced into 5 μm-thick tissue sections. The sections were

deparaffinized, rehydrated, and stained with hematoxylin for 5 min and eosin for 30 sec.

Determination of atelectatic lung areas

The atelectatic lung area was evaluated using Photoshop software (Adobe, San Jose, CA)

and ImageJ software (NIH, Bethesda, MD). Briefly, the original RGB color images of H-E

stained lung sections were converted to black-on-white images using Photoshop software

and saved in TIFF format. The binary images in TIFF format were again converted into a

white-on-black image using the ImageJ application. Atelectatic lung area was expressed as

the area of white pixels, which represent solid areas, against total lung area (white and black

pixels).

Immunofluorescence staining

Five micrometer-thick tissue sections on glass slides (Matsunami, Tokyo, Japan) coated with

poly-L-lysin (Wako Pure Chemicals, Osaka, Japan) were deparaffinized and rehydrated, and

treated with proteinase K (Wako Pure Chemicals, 20 mg/ml in 10 mM Tris HCl, pH 7.6) at

37˚C for 30 min. After washed with PBS, the sections were incubated with primary antibodies

against PrP (IBL-N, Immuno Biological Laboratories, Gunma, Japan), podoplanin (MBL,

Nagoya, Japan), SP-C (Santa Cruz Biotechnology), CC10 (Santa Cruz Biotechnology), and NP

virus protein (GeneTex) overnight at 4˚C, and stained with Alexa Fluor 594 goat anti-rabbit

IgG (Invitrogen) for IBL-N anti-PrP antibodies, Texas Red-X goat anti-rat IgG (Invitrogen)

for anti-podoplanin antibody, Alexa Fluor 488 donkey anti-goat IgG (Invitrogen) for anti-

SP-C and anti-CC10 antibody, and Alexa Fluor 488 goat anti-rabbit IgG (Invitrogen) for anti-

NP antibody for 2 h at room temperature. The sections were mounted with CC/Mount (Diag-

nostic BioSystems, Pleasanton, CA) containing DAPI (Dojindo Laboratories, Kumamoto,

Japan). Fluorescent images were visualized using BIOREVO BZ-9000 (Keyence, Osaka,

Japan).
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TUNEL staining

TUNEL staining was performed using the in situ cell death detection kit and fluorescein

(Roche Diagnostics, Mannheim, Germany) in accordance with the manufacturer’s protocol.

In brief, the deparaffinized tissue sections were treated with 20 μg/mL proteinase K in 10 mM

Tris-HCl for 30 min at room temperature and incubated in the TUNEL reaction mixture for 1

h at 37˚C in a humidified dark chamber. The sections were washed with PBS for 5 min 3 times

and signals were then detected using BIOREVO BZ-9000 (Keyence).

Western blotting

Proteins in each sample were denatured by boiling for 5 min in Laemmli’s sample buffer and

subjected to sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Proteins were electri-

cally transferred onto Immobilon-PVDF membranes (Millipore, Bedford, MA), and mem-

branes were blocked for 2 h with 5% non-fat dry milk-containing TBST (0.1% Tween-20, 100

mM NaCl, 10 mM Tris-HCl, ph 7.6). Primary antibodies against PrP (6D11, COVANCE, Ded-

ham, MA; SAF32, Cayman Chemical Company, Ann Arbor, MI; 3F4, BioLegend, San Diego,

CA), pro-caspase 3 (Cell Signaling, Beverly, MA), the cleaved caspase 3 (Cell Signaling), NP

(GeneTex), NS1 (GeneTex), HA (GeneTex), M2 (GeneTex), podoplanin (MBL), SP-C (Santa

Cruz Biotechnology), CC10 (Santa Cruz Biotechnology), XO (Santa Cruz Biotechnology),

SOD1 (Abcam, Cambridge, UK), SOD2 (Abcam) and β-actin (Sigma-Aldrich) were incubated

with the membrane overnight at 4˚C. Signals were visualized using HRP-conjugated anti-

mouse IgG antibodies (GE Healthcare), anti-rabbit IgG antibodies (GE Healthcare), anti-rat

IgG antibodies (GE Healthcare), or anti-goat IgG antibodies (R&D systems, Minneapolis,

MN), and detected using a chemiluminescence image analyzer LAS-4000 mini (Fujifilm Co.,

Tokyo, Japan). Signal intensities were measured using ImageJ 64.

Enzyme-linked immunosorbent assay (ELISA) for cytokines

IL-6, TNF-α, and IFN-γ levels in samples were determined using a Quantikine ELISA kit

(R&D systems) according to the respective protocols provided by the manufacturer. In brief,

the samples were diluted 1:1 with the assay diluent provided in the kit and added to the ELISA

microplate wells. The protein standards for IL-6, TNF-α, and IFN-γ were also added to other

wells. The plates were then left for 2 h at room temperature, and the wells were washed with

wash buffer 5 times and mouse IL-6, TNF-α, or IFN-γ conjugate added followed by incubation

for 2 h. The wells were then washed with the wash buffer and the substrate reagent added fol-

lowed by incubation for 30 min. The reaction was stopped by addition of the stop solution.

The optical density of each well was measured at 450 nm in an automated microplate reader

(Thermo LabSystems, MA, USA). The amounts of IL-6, TNF-α, or IFN-γ in each sample were

determined using the standard curve for the amounts of IL-6, TNF-α, or IFN-γ.

ROS measurement

ROS concentration in samples was measured using an OxiSelect Intracellular ROS Assay Kit

(Cell Biolabs, San Diego, CA). The assay uses 2’,7’-dichlorodihydrofluorescin diacetate

(DCFH-DA), which is deacetylated to non-fluorescent 2’,7’-dichlorodihydrofluorescin and

then oxidized by ROS to highly fluorescent 2’,7’-dichlorofluorescin (DCF). Each of the samples

were mixed with 1×DCFH-DA solution in a 96-well black plate and incubated at 37˚C for 48

h. ROS concentration in the samples was measured by determining the fluorescence intensities

of DCF at 480 nm using Spectra Max Gemini EM (Molecular devices, Sunnyvale, CA).
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Measurement of SOD activity

SOD activity in samples was determined using an OxiSelect Superoxide dismutase activity

assay kit (Cell Biolabs). This assay uses a xanthine/XO system to produce superoxide anions,

which reduce chromagen to produce a formazan dye, which is colorimetrically detectable at

490 nm. SOD activity in the samples was determined as the inhibition of formazan dye pro-

duction. Each of the samples was mixed with 1× XO solution in a 96-well black plate and incu-

bated at 37˚C for 60 min and the formazan dye produced was colorimetrically detected at 490

nm using Spectra Max Plus (Molecular devices). SOD1 inhibition was achieved by the addition

of DDC (Sigma-Aldrich) to a final concentration of 1 mM into the mixture as described else-

where [59–61].

Measurement of Cu ions

Total copper levels in samples were assessed using the Metallo assay low copper LS kit (Metal-

logenics, Chiba, Japan) according to the manufacturer’s instructions. The pH of the samples

was adjusted to 3.0 by adding a small amount of 0.25 mM HCl. Color reagent was then added

and incubated at room temperature for 10 min. The copper concentration in the samples

was calculated by measuring the absorbance at 580 nm using Spectra Max Plus (Molecular

devices).

Preparation of primary lung cell culture and viral infection

After euthanasia of mice, whole lungs were removed after perfusion of the mice with saline.

The lungs were then cut into pieces and sieved through a 40 μm nylon cell strainer (BD Falcon,

Franklin Lakes, NJ) with PBS. Lung cells were then collected by centrifugation at 1,000×g at

4˚C for 2 min. The collected cells were suspended in Ham’s F-12K medium (Life Technologies,

Grand Island, NY) supplemented with 15% FBS and cultured for 24 h. The cells were then cul-

tured in F-12K medium without FBS in a 96-well plate at a density of 5.0×104 cells/well for

another 24 h, and infected with IAV/PR8 at a 1 MOI in the presence of 0.05% trypsin (Invitro-

gen). Cell viability was assessed using a Cell Counting Kit-8 (Dojindo).

Knockdown of PrPC expression and IAV infection in A549 cells

Human lung epithelial A549 cells were maintained in Dulbecco’s modified Eagle’s medium

(DMEM, Wako Pure Chemicals) with 10% FBS and transfected with non-targeting control

siRNA (cat: D-001210-01-05, Thermo Scientific) and human PrP-specific siRNA (cat: D-

011101-02, Thermo Scientific). Briefly, 6.25 μL of RNAiMAX transfection reagent (Invitrogen)

was mixed with 125 μL of Opti-MEM (Life Technologies) and incubated for 5 min at room

temperature. In a separate tube, siRNA was added to 125 μL of Opti-MEM at a final concentra-

tion of 150 nM and the solution was then mixed with the RNAiMAX mixture for 20 min at

room temperature. The siRNA/RNAiMAX mixture was then added to A549 cells in a 6-well

plate. At 24 h after transfection, cells were washed with PBS and infected with IAV/PR8 at 1

MOI in 10% FBS-containing DMEM. Cells were collected, lysed, and subjected to Western

blot analysis 24 h after infection.

Preparation of splenocytes

After euthanasia of mice, whole spleens were removed and sieved through a 40 μm nylon cell

strainer (BD Falcon) with PBS. Splenocytes were then harvested by centrifugation at 1,000×g

for 2 min at 4˚C. The resulting pellet was suspended in ACK buffer (0.15 M NH4Cl, 1.0 mM

KHCO3, 0.1 mM Na2EDTA, pH 7.2) at room temperature for 2 min to disrupt red blood cells
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and centrifuged at 1,000×g for 2 min at 4˚C. The collected splenocytes were adjusted to a con-

centration of 2.5×106 cells/mL in RPMI 1640 medium (Sigma-Aldrich) supplemented with

10% FBS, 1% L-glutamine (Sigma-Aldrich), 2 μM L-glutamate (Sigma-Aldrich), non-essential

amino acids (Sigma-Aldrich), 10 mM HEPES, and 1 mM sodium pyruvate.

RT-PCR

RT-PCR was performed using OneStep RT-PCR Kit (QIAGEN, Hilden, Germany) according

to manufacturer’s recommendations. Total RNA was first extracted from tissues using RNeasy

Mini Kit (QIAGEN). Tissue homogenates in buffer RLT were transferred to a QIAshredder

spin column (QIAGEN). The flow-through was mixed with 1 volume of 70% ethanol and then

transfer to an RNeasy spin column (QIAGEN). Total RNA bound to the membrane was

washed with buffer RW1 and then with buffer RPE, and eluted with RNase-free water. Eight

ng of total RNA was then mixed with primers, dNTPs and OneStep RT-PCR enzyme mix. The

mixture was incubated at 50˚C for 30 min at RT and then subjected to PCR reaction (Initial

PCR activation step at 95˚C for 15 min; 3-step cycling: Denaturation at 94˚C for 30 sec,

Annealing at 56˚C for 30 sec, Extension at 72˚C for 1 min; Final extension at 72˚C for 10 min).

Sequences of the primers used and the number of PCR cycles used for each gene examined are

given in S1 Table. The products were analyzed by 2% agarose gel electrophoresis.

Determination of IAV/PR8-specific IgG and IgM titers

IAV/PR8-specific IgG and IgM titers in plasma were determined by ELISA. Each well of a 96

well immunoplate (Thermo Fisher Scientific, Roskilde, Denmark) were coated with the already

prepared split IAV/PR8 vaccine [62] in PBS overnight at 4˚C. The wells were then washed

with PBS 3 times and blocked with PBS containing 4% Block Ace (Megmilk Snow Brand Co.,

Ltd., Hokkaido, Japan) for 1 h at 37˚C. Mouse plasma samples were first diluted to 1:16 and

subsequently 1:2 in PBS and added to the wells at 37˚C for 4 h. The wells were washed with

PBS containing 0.05% Tween-20 3 times, and immune complexes were detected using HRP-

conjugated goat anti-mouse IgM or IgG antibodies (Bethyl Laboratories, Inc., Montgomery,

TX) and 1-Step Ultra TMB-ELISA (Thermo Scientific). The signals were detected spectropho-

tometrically at 450 nm using Spectra Max Plus (Molecular devices). Antibody titers are defined

as the reciprocal of the highest dilution of samples for which the optical density was at least

twice of that of the negative control samples, and are expressed as reciprocal log2 titers.

ELISPOT assay

ELISPOT assay for TNF-α- and IFN-γ-secreting cells in lungs and spleens was performed

using Mouse TNF-α ELISpotBASIC (HRP) kit (Mabtech Inc., Cincinnati, OH) and Mouse IFN-

γ ELISpotBASIC (HRP) kit (Mabtech Inc.), respectively, according to the manufacturer’s recom-

mendations. In brief, each well of the 96-well nitrocellulosebottomed Millititer HA plate

(Millipore) was coated with capture MT1C8/23C9 anti-TNF-α antibody (Mabtech Inc.) and

capture AN18 anti-IFN-γ antibody (Mabtech Inc.) in PBS overnight at 4˚C. Primary lung cells

(4×104 cells/well) and splenocytes (2.5×105 cells/well) from mice at 14 dpi were added to the

wells and stimulated with 5 nM of the IAV peptide PA224-233 (Anaspec Inc., Fremont, CA)

for 3 days at 37˚C in a humidified chamber with 5% CO2 in air. The wells were then washed

with PBS 5 times and immune complexes were detected with biotin-conjugated detection anti-

bodies (Mabtech Inc., MT11B10-biotin for TNF-α and R4-6A2-biotin for IFN-γ), Streptavi-

din-HRP (Mabtech Inc.), and 1-Step Ultra TMB-ELISA (Thermo Scientific). The number of

the spots in the wells was quantified using a computerized ELISPOT reader (CTL-Immuno-

spot S6 analyzer, Cellular Technology Ltd., Cleveland, OH).
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Statistical analysis

Survival rates were analyzed using the log-rank test. All other data were analyzed using the Stu-

dent’s t-test.

Supporting information

S1 Table. List of genes, sequences of the primers, and the number of cycles used for

RT-PCR gene expression analysis.

(DOCX)

S1 Fig. Similar expression levels of PrPC in the lungs of male and female WT mice. Left

panel: Western blotting of the lungs of male and female WT mice with 6D11 anti-PrP anti-

body. Right panel: Quantification of the intensity for PrPC after normalization against that for

β-actin (Actb). Signal intensity of PrPC in female lungs was evaluated against that in male

lungs. NS, not significant. Error bars, standard deviation (SD).

(TIF)

S2 Fig. Active innate and adaptive immune responses against IAV/PR8 infection in Prnp0/0

mice. (A) Upper panels: RT-PCR gene expression analysis on agarose gels of innate immu-

nity-related genes and the viral NP gene in the lungs of Prnp0/0 and WT mice uninfected (Un)

and infected with IAV/PR8 (50 IFU) at 3 and 5 dpi. Lower panels: Quantification of the signal

intensity for each of the genes against that of uninfected (Un) control WT. (B) Serum levels of

IAV/PR8-specific IgM and IgG in Prnp0/0 (n = 3) and WT (n = 3) mice administrated with

saline as uninfected controls or with IAV/PR8 (50 IFU) at 10 and 14 dpi. (C) ELISPOT analysis

for TNF-α- or IFN-γ-secreting cells in the lungs and spleens of Prnp0/0 (n = 3) and WT (n = 3)

mice administrated with saline as uninfected controls or with IAV/PR8 (50 IFU) at 14 dpi. �,

p<0.05; ��, p<0.01. NS, not significant. Error bars, SD.

(TIF)

S3 Fig. Higher vulnerability of Prnp0/0 primary lung cells to IAV/PR8 infection. (A) Tripli-

cate analysis for cell viability of WT, Prnp0/0, and Tg(MoPrP)/Prnp0/0 primary lung cells 2 days

after infection with (+) or without (-) IAV/PR8 at 1 MOI. (B) Western blotting of WT, Prnp0/0,

and Tg(MoPrP)/Prnp0/0 primary lung cells 2 days after infection with (+) or without (-) IAV/

PR8 at 1 MOI for the viral proteins NP, HA and M2, pro-caspase 3, and the cleaved caspase 3

fragments. Actb is an internal control. (C) Western blotting of A549 cells treated with control

(Ctr) and human PrP-specific siRNAs 24 h after infection with (+) or without (-) IAV/PR8 at 1

MOI for PrPC, the viral proteins NP, HA and M2, pro-caspase 3, and the cleaved caspase 3

fragments. Actb is an internal control. (D) Triplicate analysis for DCF levels in WT, Prnp0/0,

and Tg(MoPrP)/Prnp0/0 primary lung cells 2 days after infection with (+) or without (-) IAV/

PR8 at 1 MOI. (E) Triplicate analysis for SOD activity in WT, Prnp0/0, and Tg(MoPrP)/Prnp0/0

primary lung cells 2 days after infection with (+) or without (-) IAV/PR8 at 1 MOI. �, p<0.05;
��, p<0.01. Error bars, SD.

(TIF)

S4 Fig. Similar lung injuries in WT and Prnp0/0 mice after intranasal administration with

LPS. (A) Mortality and body weight of Prnp0/0 and WT mice after intranasal administration

with LPS (Prnp0/0, n = 5; WT, n = 5). (B) Left panels: Western blotting of the lungs of WT and

Prnp0/0 mice 24 h after administration with (+) or without (-) LPS for pro-caspase 3 and its

cleaved fragments. Actb is an internal control. Right panel: Quantification of the signal inten-

sity for the cleaved caspase 3 fragments against that for LPS-untreated WT. (C) TNF-α and

IFN-γ levels in the lungs of WT (n = 3) and Prnp0/0 (n = 3) mice 24 h after administration with
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(+) or without (-) LPS. NS, not significant. Error bars, SD.

(TIF)
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