This is an Accepted Manuscript of an article published by American Physiological Society in American Journal of Physiology-Regulatory, Integrative and Comparative Physiology Volume 311 Issue 6 (Dec 2016) Pages R1022-R1031, available online: https://doi.org/10.1152/ajpregu.00521.2015.

1 Original Research

0	
~	
-	

3	8-prenylnaringenin promotes recovery from immobilization-induced disuse muscle
4	atrophy through activation of the Akt phosphorylation pathway in mice
5	
6	Rie Mukai ^{1*} , Hitomi Horikawa ¹ , Pei-Yi Lin ¹ , Nao Tsukumo ¹ , Takeshi Nikawa ² , Tomoyuki
7	Kawamura ³ , Hisao Nemoto ³ , Junji Terao ¹
8	
9	Departments of ¹ Food Science, ² Nutritional Physiology, and ³ Pharmaceutical Chemistry,
10	Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima 770-8503,
11	Japan
12	
13	*Corresponding author
14	Rie Mukai, Department of Food Science, Institute of Biomedical Sciences, Tokushima
15	University Graduate School, 3-18-15 Kuramoto-cho, Tokushima 770-8503, Japan; e-mail:
16	rmukai@tokushima-u.ac.jp; Tel: +81-88-633-9592; Fax: +81-88-633-7089
17	

Running head: 8-PN promotes recovery from muscle atrophy *via* Akt pathway

- 19
- 20 Author contributions: R. M. designed the research. R. M., T. N., and J. T wrote the manuscript.
- 21 R. M., H. H., P. L., and N. T. conducted the experiments. R. M. performed the statistical
- 22 analyses. T. K. and H. N. provided essential materials. All authors approved the final
- 23 manuscript.
- 24

25 ABSTRACT

26	8-Prenylnaringenin (8-PN) is a prenylflavonoid that originates from hop extracts and is thought
27	to help prevent disuse muscle atrophy. We hypothesized that 8-PN affects muscle plasticity by
28	promoting muscle recovery under disuse muscle atrophy. To test the promoting effect of 8-PN
29	on muscle recovery, we administered an 8-PN mixed diet to mice that had been immobilized
30	with a cast to one leg for 14 days. Intake of the 8-PN mixed diet accelerated recovery from
31	muscle atrophy, and prevented reductions in Akt phosphorylation. Studies on cell cultures of
32	mouse myotubes in vitro demonstrated that 8-PN activated the PI3K/Akt/P70S6K1 pathway at
33	physiologic concentrations. A cell-culture study using an inhibitor of estrogen receptors and an
34	in vivo experiment with ovariectomized mice suggested that the estrogenic activity of 8-PN
35	contributed to recovery from disuse muscle atrophy through activation of an Akt
36	phosphorylation pathway. These data strongly suggest that 8-PN is a naturally occurring
37	compound that could be used as a nutritional supplement to aid recovery from disuse muscle
38	atrophy.
39	

40 **Keywords:** Disuse muscle atrophy; 8-Prenylnaringenin; IGF1/PI3K/Akt pathway;

41 phosphorylation; nutritional supplement

42 INTRODUCTION

43	Skeletal muscle comprises approximately 40% of the weight of the human body, and is crucial
44	for locomotion, amino acid and glucose metabolism, heat generation, and bone homeostasis (7,
45	21). Therefore, maintenance of muscle mass has a crucial role in human health.
46	
47	Muscle unloading because of immobilization, bedridden status, or space flight travel activates
48	protein-degradation pathways such as the ubiquitin-proteasome system, and results in disuse
49	muscle atrophy (DMA) (27, 35). When muscles are released from the conditions responsible for
50	DMA, protein synthesis in skeletal muscle is promoted for recovery of the normal state.
51	
52	It has been demonstrated that insulin-like growth factor (IGF)-1 enhances phosphorylation of
53	phosphatidylinositol-3 kinase (PI3K), which in turn leads to Akt phosphorylation (4, 34).
54	Phosphorylated Akt represses nuclear translocation of the transcriptional factor forkhead box
55	protein O (Foxo), which is responsible for induction of DMA-related genes such as atrogin-1 in
56	the ubiquitin-proteasome system (36). Phosphorylated Akt also activates the kinase mechanistic
57	target of rapamycin (mTOR), whose downstream targets, 70-kDa ribosomal protein S6 kinase
58	(P70S6K) and eukaryotic inhibition factor 4E-binding protein (4E-BP1), have been shown to
59	activate protein synthesis in skeletal muscle (2, 14). In addition, mTOR signaling is enhanced in

60	response to the protein kinases ERK1/2 and P90RSK (33, 48). Therefore, it is assumed that
61	activation of these pathways is responsible for recovery from DMA through the promotion of
62	protein synthesis in skeletal muscle (4, 11). In particular, Akt phosphorylation acts as a principal
63	"switching regulator" in the balance between synthesis and degradation of proteins (4, 39). It
64	has been demonstrated that Akt activation is responsible for muscle hypertrophy in transgenic
65	mice in which active Akt is expressed inductively (19). Furthermore, muscle hypertrophy is
66	correlated with phosphorylation of P70S6K1 or 4E-BP1 (2, 48). Exercise and/or amino acid
67	supplementation can activate these signaling pathways to promote protein synthesis in skeletal
68	muscle (12, 18, 28, 48).
69	
70	
	8-Prenylnaringenin (8-PN: Fig. 1) is one of the polyphenols found in <i>Humulus lupulus</i> L (hop)
71	8-Prenylnaringenin (8-PN: Fig. 1) is one of the polyphenols found in <i>Humulus lupulus</i> L (hop) (41) and brewing products that use hop extracts. 8-PN is considered to be a "phytoestrogen"
71 72	8-Prenylnaringenin (8-PN: Fig. 1) is one of the polyphenols found in <i>Humulus lupulus</i> L (hop)(41) and brewing products that use hop extracts. 8-PN is considered to be a "phytoestrogen"because it can bind to estrogen receptors (ERs) in a similar manner to soy isoflavones (32).
71 72 73	 8-Prenylnaringenin (8-PN: Fig. 1) is one of the polyphenols found in <i>Humulus lupulus</i> L (hop) (41) and brewing products that use hop extracts. 8-PN is considered to be a "phytoestrogen" because it can bind to estrogen receptors (ERs) in a similar manner to soy isoflavones (32). Recently, we found that pre-feeding with 8-PN suppressed loss of muscle mass in denervated
71 72 73 74	 8-Prenylnaringenin (8-PN: Fig. 1) is one of the polyphenols found in <i>Humulus lupulus</i> L (hop) (41) and brewing products that use hop extracts. 8-PN is considered to be a "phytoestrogen" because it can bind to estrogen receptors (ERs) in a similar manner to soy isoflavones (32). Recently, we found that pre-feeding with 8-PN suppressed loss of muscle mass in denervated mice lacking locomotive activity (24). In that study, 8-PN accumulated in the gastrocnemius
 71 72 73 74 75 	 8-Prenylnaringenin (8-PN: Fig. 1) is one of the polyphenols found in <i>Humulus lupulus</i> L (hop) (41) and brewing products that use hop extracts. 8-PN is considered to be a "phytoestrogen" because it can bind to estrogen receptors (ERs) in a similar manner to soy isoflavones (32). Recently, we found that pre-feeding with 8-PN suppressed loss of muscle mass in denervated mice lacking locomotive activity (24). In that study, 8-PN accumulated in the gastrocnemius muscle (GM) at 2.66–6.44 nmol/g tissue, and caused inhibition of the protein
 71 72 73 74 75 76 	8-Prenylnaringenin (8-PN: Fig. 1) is one of the polyphenols found in <i>Humulus lupulus</i> L (hop) (41) and brewing products that use hop extracts. 8-PN is considered to be a "phytoestrogen" because it can bind to estrogen receptors (ERs) in a similar manner to soy isoflavones (32). Recently, we found that pre-feeding with 8-PN suppressed loss of muscle mass in denervated mice lacking locomotive activity (24). In that study, 8-PN accumulated in the gastrocnemius muscle (GM) at 2.66–6.44 nmol/g tissue, and caused inhibition of the protein degradation-inducing ubiquitin-proteasome system <i>via</i> Akt phosphorylation. Akt

78	promote muscle recovery from DMA. However, no studies have shown that polyphenols,
79	including 8-PN, can improve muscle recovery.
80	
81	In the present study, we aimed to assess the efficacy of 8-PN for recovery from DMA. Thus,
82	supplementation with an 8-PN-containing diet was started from the recovery phase in mice
83	already suffering from DMA (induced by cast immobilization of a hind limb). At the start of the
84	recovery phase, the cast was removed for release from immobilization, and an 8-PN mixed diet
85	was administered during the recovery phase. We also aimed to determine the effect of 8-PN on
86	the protein-synthesis pathway in muscle tissue in vivo and in vitro in a muscle cell model
87	(mouse C2C12 myotubes).
88	
89	
90	
91	
92	
93	
94	
95	

96 MATERIALS AND METHODS

97	Ethical approval of the study protocol
98	All experimental protocols were designed in accordance with the guidelines for the care and use
99	of laboratory animals set by the Graduate School of the Institute of Biomedical Sciences,
100	Tokushima University (Tokushima, Japan) and approved by the Committee on Animal
101	Experiments of Tokushima University. To minimize animal suffering, surgery was undertaken
102	under anesthesia using sodium pentobarbital.
103	
104	Materials
105	8-PN was synthesized as described in our previous report (16), and its purity was >95%.
106	Information about all other reagents used in this study is provided below.
107	
108	Animal experiment I: Estimation of loss and recovery of muscle weight by ankle fixation
109	Seven-week-old male C57/BL6 mice (Japan SLC, Shizuoka, Japan) were housed in a room
110	maintained at 23±1°C on a 12-h/12-h light/dark cycle. The mice had free access to a commercial
111	diet (AIN-93M; Oriental Yeast Company, Tokyo, Japan) and water.
112	

113 The experimental schedule is shown in Fig. 1. We set an instrument designed to fix the ankle of

114	the right limb of each mouse at the dorsiflexion position in a tube (immobilized condition:
115	"Im"). The tube was used as a cast. To prepare control muscles, the left hind limb remained free
116	from the tube cast (normal condition: "Nom"). The duration of ankle immobilization was 14
117	days.
118	
119	At day 14, the recovery period was started by removing the tube cast from the right ankle
120	(reloading: "RL") and the mice were placed under normal breeding conditions for 20 days (until
121	day 34). Sacrifice was carried at day 14 and 34, and the GM and tibialis anterior muscle (TA)
122	were collected. The extent of reduction in muscle mass was assessed by the ratio of the weight
123	of atrophied muscle (cast side) to the weight of control muscle in each mouse.
124	
125	Experiment II: Effect of 8-PN on recovery from DMA
126	Experiment II was performed using the same procedures for experiment I described above and
127	shown in Fig. 1. Male C57/BL6 mice or female C57/BL6 mice at 2 weeks after ovariectomy
128	were used. The tube cast was set to the right ankle of each mouse for 14 days. At day 14, the
129	tube cast was released, and the mice were randomly separated into two groups of six. The mice
130	were then supplied with the AIN-93M diet (control group) or an 8-PN (0.05% w/w: male mice;
131	0.0005% or 0.00005% w/w: female mice) mixed AIN-93M diet (0.05%: PN group; 0.0005%:

132	H-PN group; 0.00005%: L-PN34 group). In the 8-PN mixed diet, the cellulose content was
133	reduced to adjust the composition of the other nutrients. Pellets releasing 17β -estradiol (0.18
134	mg/day) (SE-121; Innovative Research of America, Sarasota, FL, USA) were implanted
135	subcutaneously into the estrogen group in ovariectomized mice. The TA weight was measured at
136	the end of the feeding experiment (day 34). The level of recovery of muscle mass was
137	calculated as the ratio of the weight of recovered muscle (cast side) to the weight of control
138	muscle in each mouse. Samples of tissue and plasma were stored at -80° C until western blotting
139	analysis (24).
140	
141	HPLC analyses

142HPLC analyses were carried out according to our previous report (24). Briefly, plasma (10 µL)

143was incubated with 100 U of β -glucuronidase type H-1 (possessing both β -glucuronidase

activity and sulfatase activity) in 0.1 M sodium acetate buffer (pH 5.0; 90 µL) and 50 mM 144

```
145
       ascorbic acid (20 µL) for 45 min. 8-PN was extracted with ethyl acetate and evaporated using a
```

- 146centrifugal evaporator. The sample was injected into an HPLC-UV detection system
- (SPD-10AV; Shimadzu, Tokyo, Japan) equipped with a TSK-gel ODS-80Ts HPLC column (150 147
- 148× 4.6 mm; Tosoh, Tokyo, Japan) using a λ_{max} value of 292 nm. In the mobile phase, solvent A
- was 0.5% phosphoric acid and solvent B was methanol containing 0.5% phosphoric acid. For 149

150 8-PN detection, solvent B was 65%. The flow rate was 1.0 mL/min.

151

152	Cell culture and sample collection for western blotting analysis
153	As described in our previous study (24), the mouse myoblast cell line C2C12 (American Type
154	Culture Collection, Manassas, VA, USA) was obtained and its differentiation was initiated with
155	2% horse serum-containing DMEM for 96 h. The differentiated cells were then desensitized
156	with 0.1% BSA-containing DMEM for 16 h, exposed to 8-PN (0.1–10 $\mu M)$ or vehicle (0.1%
157	DMSO) for 0.25, 1, or 4 h, and washed with ice-cold HBSS. An ER inhibitor (fulvestrant;
158	AdooQ BioScience, Irvine, CA, USA) at 50 μ M was added to the cells at 10 min before PN
159	treatment. The final concentration of DMSO in the medium was set at 0.1%. Cell lysates were
160	collected with 100 μ L of lysis buffer (50 mM Tris-HCl pH 7.5, 150 mM NaCl, 5 mM EDTA,
161	1% Triton X-100, protease inhibitor (Complete EDTA-free; Roche, Basel, Switzerland),
162	phosphatase inhibitor (PhosSTOP; Roche)). The protein content of each lysate was measured by
163	the Bradford assay (5). Samples were stored at -80° C until western blotting analysis.
164	

165 Western blotting

- 166 Western blotting analyses were carried out as described in our previous study (24). Briefly,
- 167 samples were separated by 10% SDS-PAGE, and transferred onto polyvinylidene difluoride

168	membranes (GE Healthcare, Piscataway, NJ, USA). The membranes were then incubated with
169	commercial blocking buffer (Blocking-One P (for phosphorylated proteins) or Blocking-One
170	(for other proteins); Nacalai Tesque, Kyoto, Japan) for 1 h to block non-specific binding. After
171	detection of total protein by Ponceau S staining (0.1% w/w Ponceau S in 5% acetic acid aq.), the
172	membranes were incubated for 1 h at room temperature with the following primary antibodies:
173	anti-Akt (pan) (11E7) rabbit antibody, anti-PI3K antibody, anti-phospho-PI3K p85 (Tyr458)/p55
174	(Tyr199) antibody, anti-phospho-P70S6K (Thr389) (1A5) mouse antibody, anti-GAPDH rabbit
175	mAb, anti-pERK rabbit antibody, anti-ERK42/44 antibody, anti-p4E-BP1 Thr37/46 antibody,
176	anti-p90RSK1 Thr359/Ser363 antibody (1:1000 dilution; Cell Signaling Technology, Danvers,
177	MA, USA), anti-phospho-Akt (Ser473) (193H12) rabbit mAb, anti-P90RSK1/2/3 antibody
178	(1:500 dilution; Cell Signaling Technology), or anti-P70S6K1 antibody (1:1000 dilution; Santa
179	Cruz Biotechnology, Santa Cruz, CA, USA). After washing with TBS containing 0.05%
180	Tween-20 (TBST), the membranes were incubated with peroxidase-labeled secondary
181	antibodies for 1 h. After three washes with TBST, the immunocomplexes were visualized with a
182	chemiluminescence detection kit (ECL prime; GE Healthcare) and analyzed using ImageJ
183	software (National Institutes of Health, Bethesda, MD, USA). Phosphorylated proteins (except
184	for 4E-BP1) were normalized by the total amount of each protein.

185

186	Statistical	analyses
-----	-------------	----------

187	Data are shown as means	\pm SE. The data	ι shown in Figs.	3C, 3D, 5	and 6 were	analyzed by
			<i>(</i> 7)	-) -) -	-	

- one-way ANOVA with the Tukey multiple comparison test (P < 0.05). The data shown in Figs. 2,
- 189 3B, and 4 were analyzed by a two-sided Student's *t*-test (P < 0.05).

```
191 RESULTS
```

192 Change in muscle mass in mice with fixation of the right ankle at maximum dorsiflexion

193 To observe the recovery of muscle mass from immobilization, we developed a new model of

194 DMA by fixing the right ankle at maximum dorsiflexion in a tube cast. The TA of the leg

- immobilized with the tube cast for 14 days decreased in weight to 66.7% of the initial weight,
- 196 while the mass of the GM was maintained at 103% (Fig. 2). Over a period of 20 days after
- 197 reloading (34 days from start of fixation), the weight of the TA increased significantly to reach
- 198 82.8% of the initial weight (P = 0.026). Therefore, we confirmed that our newly developed
- 199 method was suitable for estimating recovery of muscle mass from DMA.
- 200

201 Promotion of recovery of muscle weight after DMA by intake of an 8-PN mixed diet

- 202 To estimate the effect of 8-PN on the recovery from DMA induced by cast immobilization, an
- 203 8-PN mixed diet was administered to mice during the period of reloading (from release of

204 immobilization at day 14). Food intake during the entire experiment and body weight at the 205final point of dissection did not vary between the control group and the 8-PN mixed-diet group 206(Fig. 3A, B). At 20 days after reloading (day 34), the control group (RL-C) and 8-PN group (RL-PN) had recovered from DMA. The 8-PN mixed-diet group showed significantly higher 207muscle weight than the control group (Fig. 3C; ANOVA $P = 4.58 \times 10^{-9}$), suggesting that 8-PN 208 209 promoted muscle recovery after release from immobilization by the tube cast. The plasma IGF-1 210concentration in the PN group at day 34 was significantly higher than that in the control group 211(Fig. 3D; ANOVA $P = 9.68 \times 10^{-11}$). 212

213 Effect of 8-PN on a protein synthesis-related pathway in the TA

214	Among the signaling pathways responsible for muscle synthesis upon 8-PN intake, we first
215	detected changes in Akt phosphorylation (Fig. 4). At day 14, immobilization significantly
216	attenuated Akt phosphorylation ($P = 0.004$). At day 34, higher Akt phosphorylation was
217	observed in the normal leg (Nom-C: without immobilization with the control diet for 34 days),
218	while the reloaded leg (RL-C: 14 days of immobilization and 20 days of reloading with the
219	control diet) showed significantly lower phosphorylation of Akt ($P = 0.032$). In contrast, no
220	reduction in Akt phosphorylation was observed in the PN group. RL-C ($P = 0.045$) and RL-PN
221	(P = 0.012) showed higher Akt phosphorylation compared with Im-C. Phosphorylation of

222 mTOR (p-mTOR) in RL-C was significantly higher than that in Im-C (P = 0.019).

223	Phosphorylation of mTOR was also increased in RL-PN compared with Im-C, but a significant
224	difference was not found. In addition, the level of p4E-BP1 was increased in RL-PN compared
225	with Im-C. P70S6K1 in RL-PN showed slightly higher phosphorylation compared with Im-C
226	(Fig. 4). These data suggested that immobilization attenuated signaling pathways that included
227	phosphorylation of Akt and 4E-BP1. Phosphorylation of mTOR and P70S6K1 was increased in
228	the recovery phase, and 8-PN accelerated muscle recovery by changing the phosphorylation of
229	Akt, 4E-BP1, mTOR, and P70S6K1 during reloading. No changes were observed in total
230	protein between the interventions (data not shown). Among the above four targets, pAkt and
231	pP70S6K showed different trends compared with the control diet (at day 34), although the
232	results of this animal experiment could not explain the effects of 8-PN on the phosphorylation
233	of these proteins in vivo. Thus, we carried out additional cell-culture experiments to clarify the
234	influence of 8-PN on the phosphorylation of the proteins responsible for muscle recovery.
235	
236	Activation of the PI3K/Akt signaling pathway by 8-PN in mouse myotubes
237	The plasma 8-PN concentrations in 8-PN-fed mice were determined to ascertain the 8-PN
238	concentration applied for the experiments on C2C12 myotubes. The concentrations were found

239 to be $1.19 \pm 0.18 \ \mu\text{M}$ at day 34 in the 8-PN-fed mice. We detected changes in phosphorylation

240	of Akt, P70S6K1, and PI3K in C2C12 myotubes. 8-PN increased Akt phosphorylation without
241	changing the total level of Akt (non-phosphorylated and phosphorylated Akt) in C2C12
242	myotubes (Fig. 5). Treatment with 8-PN for 1 h elicited significant activation of Akt
243	phosphorylation (ANOVA $P = 0.003$). Phosphorylation of PI3K, Akt, and P70S6K1 was
244	increased upon 8-PN treatment without changes in the total amounts of these proteins, or those
245	of GAPDH (Fig. 6). 8-PN (0.1 or 1 μ M) activated PI3K phosphorylation, while P70S6K1 (0.1
246	or 1 μ M) and 8-PN (1 or 10 μ M) increased Akt phosphorylation.
247	
248	Involvement of estrogenic activity in the contribution of 8-PN to recovery of muscle mass
940	
249	Fulvestrant is an ER inhibitor. Fulvestrant suppressed 8-PN-induced phosphorylation of Akt and
249 250	Fulvestrant is an ER inhibitor. Fulvestrant suppressed 8-PN-induced phosphorylation of Akt and P70S6K1 in C2C12 cells (Fig. 7). In ovariectomized mice, 8-PN promoted recovery of muscle
249 250 251	Fulvestrant is an ER inhibitor. Fulvestrant suppressed 8-PN-induced phosphorylation of Akt and P70S6K1 in C2C12 cells (Fig. 7). In ovariectomized mice, 8-PN promoted recovery of muscle mass in the H-PN34 group (0.0005% 8-PN group at day34) in comparison with the C34 group
249250251252	Fulvestrant is an ER inhibitor. Fulvestrant suppressed 8-PN-induced phosphorylation of Akt and P70S6K1 in C2C12 cells (Fig. 7). In ovariectomized mice, 8-PN promoted recovery of muscle mass in the H-PN34 group (0.0005% 8-PN group at day34) in comparison with the C34 group (control-diet group at day34) (Fig. 8). Administration of 17β-estradiol also enhanced recovery
 249 250 251 252 253 	Fulvestrant is an ER inhibitor. Fulvestrant suppressed 8-PN-induced phosphorylation of Akt and P70S6K1 in C2C12 cells (Fig. 7). In ovariectomized mice, 8-PN promoted recovery of muscle mass in the H-PN34 group (0.0005% 8-PN group at day34) in comparison with the C34 group (control-diet group at day34) (Fig. 8). Administration of 17β-estradiol also enhanced recovery of muscle mass, because the muscle mass in the E34 group (Estrogen tablet group at day 34)
 249 250 251 252 253 254 	Fulvestrant is an ER inhibitor. Fulvestrant suppressed 8-PN-induced phosphorylation of Akt and P70S6K1 in C2C12 cells (Fig. 7). In ovariectomized mice, 8-PN promoted recovery of muscle mass in the H-PN34 group (0.0005% 8-PN group at day34) in comparison with the C34 group (control-diet group at day34) (Fig. 8). Administration of 17β-estradiol also enhanced recovery of muscle mass, because the muscle mass in the E34 group (Estrogen tablet group at day 34) was significantly higher than that in the C34 group. Therefore, it is likely that the estrogenic
 249 250 251 252 253 254 255 	Fulvestrant is an ER inhibitor. Fulvestrant suppressed 8-PN-induced phosphorylation of Akt and P70S6K1 in C2C12 cells (Fig. 7). In ovariectomized mice, 8-PN promoted recovery of muscle mass in the H-PN34 group (0.0005% 8-PN group at day34) in comparison with the C34 group (control-diet group at day34) (Fig. 8). Administration of 17β-estradiol also enhanced recovery of muscle mass, because the muscle mass in the E34 group (Estrogen tablet group at day 34) was significantly higher than that in the C34 group. Therefore, it is likely that the estrogenic activity of 8-PN is involved in its promotion of recovery of muscle mass from an atrophied
 249 250 251 252 253 254 255 256 	Fulvestrant is an ER inhibitor. Fulvestrant suppressed 8-PN-induced phosphorylation of Akt and P70S6K1 in C2C12 cells (Fig. 7). In ovariectomized mice, 8-PN promoted recovery of muscle mass in the H-PN34 group (0.0005% 8-PN group at day34) in comparison with the C34 group (control-diet group at day34) (Fig. 8). Administration of 17β-estradiol also enhanced recovery of muscle mass, because the muscle mass in the E34 group (Estrogen tablet group at day 34) was significantly higher than that in the C34 group. Therefore, it is likely that the estrogenic activity of 8-PN is involved in its promotion of recovery of muscle mass from an atrophied condition.

DISCUSSION

259	Muscle atrophy is caused by immobilization, space flight, or aging. Food components that can
260	promote muscle recovery are undoubtedly helpful for human health. The present study
261	demonstrated that 8-PN derived from foods and beverages can promote recovery of muscle
262	mass after DMA.
263	
264	We developed an appropriate model to estimate muscle recovery. Experiments involving
265	suspension or denervation of rodent tails have generally been used as models of DMA. However,
266	access to a diet and water during tail suspension is difficult, and neurologic disorders can occur
267	in denervated animals. These conditions hinder estimations of the effects of diet or drugs on
268	DMA. In humans, immobilization with a cast can reflect the realities of DMA, but it is difficult
269	to create the same extent of fixation throughout experiments. The method developed in the
270	present study can be used to estimate how an agent promotes protein synthesis under DMA in
271	mice. We fixed the right ankle of each mouse at maximum dorsiflexion with a tube, which acted
272	as a cast. This technology is currently awaiting a patent (number #2015-074324). The region of
273	atrophied muscle is dependent on the position and degree of flexion (9). We fixed the ankle of
274	the mice at maximum dorsiflexion in the tube cast. This position of fixation induced muscle loss
275	not in the posterior region of the leg (GM), but in the anterior region of the leg (TA). Normal

276	mobilization (a fundamental physical condition for protein synthesis) of the hind limb was
277	observed at 2 days after reloading. The mass of the TA of the atrophied leg was increased at 20
278	days after reloading (Fig. 2), suggesting the promotion of protein synthesis upon physical
279	activity. Our method for targeting promotion of the recovery of muscle mass by release of
280	cast-based immobilization appears able to accurately reflect human rehabilitation after cast
281	immobilization, bed rest, or space flight. Therefore, this model can be suitable for estimating
282	muscle recovery after atrophy. It should be noted that the phosphorylation of mTOR, ERK, and
283	P70S6K1 in Nom-C at 34 days was unexpectedly higher than that in Nom-C at 14 days. The leg
284	without a cast at 34 days would be affected by mobilization signals occurring in RL-C, because
285	the exercise (mobilization) condition affects the protein synthesis pathway through the secretion
286	of hormonal factors (8, 30). However, comparisons between a leg with a cast and a leg without a
287	cast in the same body can avoid the influences of nutrient intake, and this model therefore
288	appears suitable for estimating the effect of 8-PN on muscle recovery from DMA.
289	
290	Epigallocatechin gallate and resveratrol applied to tail-suspended mice have been shown to
291	regulate muscle mass by suppressing an apoptotic pathway and activating the proliferation of
292	satellite cells (1, 3). In those studies, epigallocatechin gallate and resveratrol affected the
293	degradation and synthesis of muscle because supplementation was started at the initial point of

294	suspension (1, 3). Indeed, it has also been demonstrated that these polyphenols downregulate
295	the protein-degradation pathway during the development of muscle atrophy (13, 46, 47). Here,
296	we focused on the specific effect of 8-PN on muscle during the recovery phase. 8-PN
297	supplementation was started at the beginning of the recovery (reloading) period. This is the first
298	report showing that a natural polyphenol can elicit muscle recovery after DMA onset. The total
299	intake of the diet was identical among the groups (Fig. 3A), meaning that no nutrients other than
300	8-PN affected the muscle recovery differently between the control-diet group and the 8-PN
301	group. The plasma concentration of 8-PN reached >1 μ M in our study, and muscular
302	accumulation of 8-PN at 2.66–6.44 nmol/g tissue was observed in our previous study (24).
303	Intake of an 8-PN diet during the recovery period appeared to enable accumulation of 8-PN in
304	the TA, and revealed a promotive effect. 8-PN "lodges" in myotubes through its prenyl-group,
305	and is not excreted from myotubes via ATP-binding cassette transporters (24). Prenylated
306	quercetin also accumulates in tissue (including skeletal muscle) after its continuous intake (23,
307	42). Thus, prenylation of flavonoids is advantageous for accumulation in skeletal muscle. In
308	addition, greater amounts of 8-PN compared with non-prenylated molecules were found to
309	accumulate in skeletal muscle in vivo and activate Akt phosphorylation (24). The major
310	polyphenol catechin can activate PI3K phosphorylation in myotubes, and its effect is enhanced
311	by acylation (43). These observations may suggest that modification of polyphenols by a

- hydrophobic functional group (e.g., prenylation) can enhance their biologic effects in skeletal
 muscle.

315	8-PN promoted recovery of muscle mass even though the food intake and weight increase were
316	identical between the 8-PN-diet group and the control-diet group (Fig. 3). Thus, the
317	phenomenon induced by 8-PN was not derived from the balance of nutrient intake and/or
318	expenditure of total energy, but instead arose through changes in the synthesis and/or
319	breakdown of muscle. IGF-1 secretion was activated by 8-PN (Fig. 3), although IGF-1 signaling
320	was lost during DMA because unloading stress triggers IRS-1 degradation (26). Therefore, 8-PN
321	exerted its effect on skeletal muscle directly. pAkt, pmTOR, pP70S6K1, and p4E-BP1 were
322	increased in the RL-C muscle (Fig. 4). These phosphorylations are activated by exercise (10,
323	22), meaning that reloading trigged this signaling pathway. In the 8-PN group, these proteins
324	were also activated during reloading, but their activation was similar to that in the control-diet
325	group. Amino acids such as leucine activate protein-signaling pathways to synthesize proteins in
326	normal muscle (17), while 8-PN (or other polyphenols) that suppress muscle atrophy do not
327	increase muscle mass under normal conditions (24, 25). Ascertaining the additional effect of
328	8-PN on normal mobility (reloading) when the TA has almost reached a plateau in its normal
329	muscle mass would be difficult. In contrast, 8-PN enhances Akt phosphorylation in acutely

330	atrophied muscle (24). These findings imply that 8-PN could accelerate these signaling
331	pathways during recovery at an early stage. The Akt phosphorylation pathway plays an
332	important part in protein synthesis during recovery from DMA (4, 39). A reduction in the level
333	of Akt phosphorylation in the TA with a cast led to acceleration of protein degradation by
334	immobilization (Fig. 4). Akt phosphorylation was relatively stable in the 8-PN group at day 34
335	because the TA had almost reached a plateau of protein synthesis. The extent of Akt
336	phosphorylation in this group was sufficient to maintain the muscle mass because the level was
337	similar to that in Nom-C at day 14. P70S6K1 phosphorylation is significantly correlated with
338	muscle recovery from atrophy (6). The phosphorylation status of P70S6K1 in the 8-PN group
339	tended to be different from that in the control group. This phosphorylation state was responsible,
340	at least partly, for the protein synthesis in the RL-PN group. The phosphorylation detected in
341	our study could not have occurred simultaneously. Time-course experiments are required to
342	assess the time-dependent changes in the phosphorylation of each signaling molecule.
343	
344	To estimate the effect of 8-PN at physiologic concentrations, we first measured the mean plasma
345	concentration in test mice and determined it to be 1.19 μ M. Rad <i>et al.</i> (29) showed that 8-PN
346	circulates at $\leq 0.1 \ \mu$ M in human plasma after single ingestion of 8-PN at 750 mg. A plasma
347	concentration of >1 μ M 8-PN was detected at 24 h after a single ingestion of 8-PN in a rodent

348	study (24). That rodent study suggested that the presence of an active aglycone, together with its
349	conjugated metabolites, in the circulation after oral ingestion of 8-PN (24). Thus, we applied an
350	aglycone of 8-PN (0.1–10 μ M) to cultured cells. 8-PN at these concentrations was able to
351	activate PI3K/Akt/P70S6K1 phosphorylation within 1 h (Fig. 6). The maximum cellular
352	accumulation of 8-PN in C2C12 cells was accomplished within 1 h, and its accumulation was
353	maintained until 24 h (24). These data suggest that 8-PN accumulated in muscle cells activates a
354	pPI3K/Akt/P70S6K1 pathway. Promotion of a protein-synthesis signaling pathway involving
355	phosphorylation of Akt followed by phosphorylation of P70S6K1 is activated by amino-acid
356	supplementation and/or resistance exercise (15, 24, 37). 8-PN may boost the promoting effects
357	of nutrients and exercise on protein synthesis in skeletal muscle.
358	
359	8-PN is a phytoestrogen <i>in vitro</i> and <i>in vivo</i> (29, 32). In ovariectomized rats, 8-PN was shown to
360	have similar effects to estradiol (31). It has been reported that estrogen can affect the
361	maintenance of skeletal muscle regardless of sex (38, 40). ER β activation leads to the growth
362	and regeneration of muscle (45), and 8-PN can bind to ER β (32). 17 β -estradiol activates
363	PI3K/Akt phosphorylation via ERs in murine myotubes (44), and increases the number of
364	satellite cells in muscle after exercise via PI3K phosphorylation (but not IGF-1 secretion) (20).
365	Fulvestrant diminished the effects of 8-PN (i.e., enhancement of Akt and P70S6K1

366	phosphorylation (Fig. 7)). In addition, the increased muscle mass after 8-PN consumption was
367	reproduced by administration of 17β-estradiol (Fig. 8). Thus, PI3K phosphorylation is possibly
368	triggered by binding of 8-PN to ER β . The mechanism of action for 8-PN-dependent acceleration
369	of muscle recovery from DMA may be related to its estrogenic activity.
370	
371	Our data confirmed that 8-PN accelerates muscle recovery after DMA onset. Furthermore, 8-PN
372	was found to activate the phosphorylation of Akt, 4E-BP1, and P70S6K1 during reloading in
373	mice. At physiologic concentrations, 8-PN activated the phosphorylation of PI3K, Akt, and
374	P70S6K1 in myotube cells, and this 8-PN-dependent activation of phosphorylation seemed to be
375	associated with its estrogenic activity. As basic nutritional supplementation and exercise are
376	critical for muscle recovery, taking 8-PN as a supplement could enhance the effects of these
377	factors during rehabilitation after DMA. The effect of 8-PN on muscle recovery could provide
378	reference information for developing supplements supporting muscle maintenance.
379	
380	Perspectives and Significance
381	This is the first study to demonstrate the promoting effect of a dietary flavonoid on recovery
382	from disuse muscle atrophy in rodents. A cure for atrophy of skeletal muscle can help toward
383	improvement of quality of life by suppression of metabolic disorders. The effect is different

384	from that of glucocorticoids (which strengthen anabolism of skeletal muscle), because the
385	8-prenylnaringenin (8-PN) used in this study only exerted a promoting effect under the
386	atrophied condition. The present study provides: (i) basic information on the development of
387	nutritional therapy by flavonoids; and (ii) a candidate that can boost the effect of rehabilitation
388	of skeletal muscle. Flavonoids other than 8-PN that possess estrogenic activity may also exert a
389	similar effect, because the promoting effect of 8-PN appeared to be associated with its
390	estrogenic activity. 8-PN is a prenylated flavonoid. Prenylation may improve the effect of
391	natural products (including flavonoids) under development for the treatment of muscle atrophy.
392	Demonstration of a synergistic effect between 8-PN supplementation and exercise or amino-acid
393	supplementation is crucial to establish utility in clinical practice.
394	ACKNOWLEDGMENTS
395	Grants This research was supported in part by JSPS KAKENHI Grant Numbers 26892020,
396	16K12721 (to R. M.), and 25292075 (to J. T.) from the Ministry of Education, Culture, Sports,
397	Science and Technology of Japan.
398	
399	Disclosures Rie Mukai, Hitomi Horikawa, Pei-Yi Lin, Nao Tsukumo, Takeshi Nikawa,

Tomoyuki Kawamura, Hisao Nemoto, and Junji Terao have no conflicts of interests.

403	REFERENCES		
404	1	Alway SE, Bennett BT, Wilson JC, Edens NK, and Pereira SL.	
405	Epigallocatechin-3-gallate improves plantaris muscle recovery after disuse in aged rats. <i>Ex</i>		
406	Gerontol 50: 82-94, 2014.		
407	2.	Baar K, and Esser K. Phosphorylation of p70(S6k) correlates with increased	
408	skeletal r	nuscle mass following resistance exercise. Am J Physiol 276: C120-C127, 1999.	
409	3.	Bennett BT, Mohamed JS, and Alway SE. Effects of resveratrol on the recovery of	
410	muscle mass following disuse in the plantaris muscle of aged rats. <i>PLoS One</i> 8: e83518,		
411	2013.		
412	4. I	Bodine SC, Stitt TN, Gonzalez M, Kline WO, Stover GL, Bauerlein R, Zlotchenko E,	
413	Scrimgeour A, Lawrence JC, Glass DJ, and Yancopoulos GD. Akt/mTOR pathway is a crucial		
414	regulator of skeletal muscle hypertrophy and can prevent muscle atrophy in vivo. Nat Cell		
415	<i>Biol</i> 3: 1014-1019, 2001.		
416	5.	Bradford MM. A rapid and sensitive method for the quantitation of microgram	
417	quantitie	s of protein utilizing the principle of protein-dye binding. Anal Biochem 72: 248-254,	
418	1976.		
419	6.	Childs TE, Spangenburg EE, Vyas DR, and Booth FW. Temporal alterations in	
420	protein si	gnaling cascades during recovery from muscle atrophy. Am J Physiol Cell Physiol	
421	285: C393	1-C398, 2003.	
422	7.	Cianferotti L, and Brandi ML. Muscle-bone interactions: basic and clinical aspects.	
423	Endocrin	e 45: 165-177, 2014.	
424	8.	Esbjornsson M, Norman B, Suchdev S, Viru M, Lindhgren A, and Jansson E.	
425	Greater g	rowth hormone and insulin response in women than in men during repeated bouts	
426	of sprint	exercise. Acta Physiol (Oxf) 197: 107-115, 2009.	
427	9.	Fujita N, Fujimoto T, Tasaki H, Arakawa T, Matsubara T, and Miki A. Influence of	
428	muscle le	ngth on muscle atrophy in the mouse tibialis anterior and soleus muscles. Biomed	
429	<i>Res</i> 30: 39-45, 2009.		
430	10.	Gil JH, and Kim CK. Effects of different doses of leucine ingestion following eight	
431	weeks of a	resistance exercise on protein synthesis and hypertrophy of skeletal muscle in rats.	
432	J Exerc Nutrition Biochem 19: 31-38, 2015.		
433	11.	Gwag T, Park K, Kim E, Son C, Park J, Nikawa T, and Choi I. Inhibition of C2C12	
434	myotube atrophy by a novel HSP70 inducer, celastrol, via activation of Akt1 and ERK1/2 $$		
435	pathways. Arch Biochem Biophys 537: 21-30, 2013.		

Ham DJ, Caldow MK, Lynch GS, and Koopman R. Arginine protects muscle cells
from wasting in vitro in an mTORC1-dependent and NO-independent manner. *Amino Acids*46: 2643-2652, 2014.

Hemdan DI, Hirasaka K, Nakao R, Kohno S, Kagawa S, Abe T, Harada-Sukeno A,
Okumura Y, Nakaya Y, Terao J, and Nikawa T. Polyphenols prevent clinorotation-induced
expression of atrogenes in mouse C2C12 skeletal myotubes. *J Med Invest* 56: 26-32, 2009.

442 14. Johnson SC, Rabinovitch PS, and Kaeberlein M. mTOR is a key modulator of
443 ageing and age-related disease. *Nature* 493: 338-345, 2013.

Kakigi R, Yoshihara T, Ozaki H, Ogura Y, Ichinoseki-Sekine N, Kobayashi H, and
Naito H. Whey protein intake after resistance exercise activates mTOR signaling in a
dose-dependent manner in human skeletal muscle. *Eur J Appl Physiol* 114: 735-742, 2014.

447 16. Kawamura T, Hayashi M, Mukai R, Terao J, and Nemoto H. An Efficient Method
448 for C8-Prenylation of Flavonols and Flavanones. *Synthesis* 44: 1308-1314, 2012.

Kramer IF, Verdijk LB, Hamer HM, Verlaan S, Luiking Y, Kouw IW, Senden JM,
van Kranenburg J, Gijsen AP, Poeze M, and van Loon LJ. Impact of the Macronutrient
Composition of a Nutritional Supplement on Muscle Protein Synthesis Rates in Older Men:
A Randomized, Double Blind, Controlled Trial. *J Clin Endocrinol Metab* 100: 4124-4132,
2015.

Kubica N, Bolster DR, Farrell PA, Kimball SR, and Jefferson LS. Resistance
exercise increases muscle protein synthesis and translation of eukaryotic initiation factor
2Bepsilon mRNA in a mammalian target of rapamycin-dependent manner. *J Biol Chem* 280:
7570-7580, 2005.

Lai KM, Gonzalez M, Poueymirou WT, Kline WO, Na E, Zlotchenko E, Stitt TN,
Economides AN, Yancopoulos GD, and Glass DJ. Conditional activation of akt in adult
skeletal muscle induces rapid hypertrophy. *Mol Cell Biol* 24: 9295-9304, 2004.

461 20. Mangan G, Bombardier E, Mitchell AS, Quadrilatero J, and Tiidus PM.

462 Oestrogen-dependent satellite cell activation and proliferation following a running exercise
463 occurs via the PI3K signalling pathway and not IGF-1. *Acta Physiol (Oxf)* 212: 75-85, 2014.

464 21. Marette A, Liu Y, and Sweeney G. Skeletal muscle glucose metabolism and

inflammation in the development of the metabolic syndrome. *Rev Endocr Metab Disord* 15:
299-305, 2014.

467 22. Mayhew DL, Kim JS, Cross JM, Ferrando AA, and Bamman MM. Translational
468 signaling responses preceding resistance training-mediated myofiber hypertrophy in young
469 and old humans. JAppl Physiol (1985) 107: 1655-1662, 2009.

470 23. Mukai R, Fujikura Y, Murota K, Uehara M, Minekawa S, Matsui N, Kawamura T,
471 Nemoto H, and Terao J. Prenylation enhances quercetin uptake and reduces efflux in Caco-2

472 cells and enhances tissue accumulation in mice fed long-term. J Nutr 143: 1558-1564, 2013.

473 24. Mukai R, Horikawa H, Fujikura Y, Kawamura T, Nemoto H, Nikawa T, and Terao J.

474 Prevention of disuse muscle atrophy by dietary ingestion of 8-prenylnaringenin in

475 denervated mice. *PLoS One* 7: e45048, 2012.

- 476 25. Mukai R, Nakao R, Yamamoto H, Nikawa T, Takeda E, and Terao J. Quercetin
 477 prevents unloading-derived disused muscle atrophy by attenuating the induction of
 478 ubiquitin ligases in tail-suspension mice. J Nat Prod 73: 1708-1710, 2010.
- 479 26. Nakao R, Hirasaka K, Goto J, Ishidoh K, Yamada C, Ohno A, Okumura Y, Nonaka I,
 480 Yasutomo K, Baldwin KM, Kominami E, Higashibata A, Nagano K, Tanaka K, Yasui N,
- 481 Mills EM, Takeda S, and Nikawa T. Ubiquitin ligase Cbl-b is a negative regulator for
- 482 insulin-like growth factor 1 signaling during muscle atrophy caused by unloading. *Mol Cell*483 *Biol* 29: 4798-4811, 2009.
- Nikawa T, Ishidoh K, Hirasaka K, Ishihara I, Ikemoto M, Kano M, Kominami E,
 Nonaka I, Ogawa T, Adams GR, Baldwin KM, Yasui N, Kishi K, and Takeda S. Skeletal
 muscle gene expression in space-flown rats. *Faseb j* 18: 522-524, 2004.
- 28. Nobukuni T, Joaquin M, Roccio M, Dann SG, Kim SY, Gulati P, Byfield MP, Backer
 JM, Natt F, Bos JL, Zwartkruis FJ, and Thomas G. Amino acids mediate mTOR/raptor
 signaling through activation of class 3 phosphatidylinositol 3OH-kinase. *Proc Natl Acad Sci*USA 102: 14238-14243, 2005.
- 491 29. Rad M, Humpel M, Schaefer O, Schoemaker RC, Schleuning WD, Cohen AF, and
 492 Burggraaf J. Pharmacokinetics and systemic endocrine effects of the phyto-oestrogen
 493 8-prenylnaringenin after single oral doses to postmenopausal women. Br J Clin Pharmacol
 494 62: 288-296, 2006.
- 30. Rezaee S, Kahrizi S, and Hedayati M. Hormonal responses of combining
 endurance-resistance exercise in healthy young men. J Sports Med Phys Fitness 54: 244-251,
 2014.
- 498 31. Rimoldi G, Christoffel J, and Wuttke W. Morphologic changes induced by oral
 499 long-term treatment with 8-prenylnaringenin in the uterus, vagina, and mammary gland of
 500 castrated rats. *Menopause* 13: 669-677, 2006.
- 501 32. Roelens F, Heldring N, Dhooge W, Bengtsson M, Comhaire F, Gustafsson JA,
- 502 **Treuter E, and De Keukeleire D**. Subtle side-chain modifications of the hop phytoestrogen
- 503 8-prenylnaringenin result in distinct agonist/antagonist activity profiles for estrogen
- 504 receptors alpha and beta. *J Med Chem* 49: 7357-7365, 2006.
- 33. Rolfe M, McLeod LE, Pratt PF, and Proud CG. Activation of protein synthesis in
 cardiomyocytes by the hypertrophic agent phenylephrine requires the activation of ERK and
 involves phosphorylation of tuberous sclerosis complex 2 (TSC2). *Biochem J* 388: 973-984,

508 2005.

50934. Rommel C, Bodine SC, Clarke BA, Rossman R, Nunez L, Stitt TN, Yancopoulos GD, 510and Glass DJ. Mediation of IGF-1-induced skeletal myotube hypertrophy by 511PI(3)K/Akt/mTOR and PI(3)K/Akt/GSK3 pathways. Nat Cell Biol 3: 1009-1013, 2001. 51235. Sandri M. Protein breakdown in muscle wasting: role of autophagy-lysosome and 513ubiquitin-proteasome. Int J Biochem Cell Biol 45: 2121-2129, 2013. 514Sandri M, Sandri C, Gilbert A, Skurk C, Calabria E, Picard A, Walsh K, Schiaffino 36. 515S, Lecker SH, and Goldberg AL. Foxo transcription factors induce the atrophy-related 516ubiquitin ligase atrogin-1 and cause skeletal muscle atrophy. *Cell* 117: 399-412, 2004. 51737. Schiaffino S, Dyar KA, Ciciliot S, Blaauw B, and Sandri M. Mechanisms regulating 518skeletal muscle growth and atrophy. Febs j 280: 4294-4314, 2013. 51938. Sitnick M, Foley AM, Brown M, and Spangenburg EE. Ovariectomy prevents the 520recovery of atrophied gastrocnemius skeletal muscle mass. JAppl Physiol (1985) 100: 521286-293, 2006. 52239. Stitt TN, Drujan D, Clarke BA, Panaro F, Timofeyva Y, Kline WO, Gonzalez M, 523Yancopoulos GD, and Glass DJ. The IGF-1/PI3K/Akt pathway prevents expression of muscle 524atrophy-induced ubiquitin ligases by inhibiting FOXO transcription factors. Mol Cell 14: 525395-403, 2004. 526Sugiura T, Ito N, Goto K, Naito H, Yoshioka T, and Powers SK. Estrogen 40. 527administration attenuates immobilization-induced skeletal muscle atrophy in male rats. J528Physiol Sci 56: 393-399, 2006. 529Tekel J, De Keukeleire D, Rong H, Daeseleire E, and Van Peteghem C. 41. 530Determination of the hop-derived phytoestrogen, 8-prenylnaringenin, in beer by gas chromatography/mass spectrometry. JAgric Food Chem 47: 5059-5063, 1999. 53153242. Terao J, and Mukai R. Prenylation modulates the bioavailability and 533bioaccumulation of dietary flavonoids. Arch Biochem Biophys 559: 12-16, 2014. 53443. Ueda-Wakagi M, Mukai R, Fuse N, Mizushina Y, and Ashida H. 5353-O-Acyl-epicatechins Increase Glucose Uptake Activity and GLUT4 Translocation through 536Activation of PI3K Signaling in Skeletal Muscle Cells. Int J Mol Sci 16: 16288-16299, 2015. 53744. Vasconsuelo A, Milanesi L, and Boland R. 17Beta-estradiol abrogates apoptosis in 538murine skeletal muscle cells through estrogen receptors: role of the phosphatidylinositol 5393-kinase/Akt pathway. J Endocrinol 196: 385-397, 2008. 540 45. Velders M, Schleipen B, Fritzemeier KH, Zierau O, and Diel P. Selective estrogen 541receptor-beta activation stimulates skeletal muscle growth and regeneration. Faseb j 26: 5421909-1920, 2012. 54346. Wang DT, Yin Y, Yang YJ, Lv PJ, Shi Y, Lu L, and Wei LB. Resveratrol prevents

544	TNF-alpha-induced muscle atrophy via regulation of Akt/mTOR/FoxO1 signaling in C2C12		
545	myotubes. Int Immunopharmacol 19: 206-213, 2014.		
546	47. Wang H, Lai YJ, Chan YL, Li TL, and Wu CJ. Epigallocatechin-3-gallate effectively		
547	attenuates skeletal muscle atrophy caused by cancer cachexia. Cancer Lett 305: 40-49, 2011.		
548	48. Williamson DL, Kubica N, Kimball SR, and Jefferson LS. Exercise-induced		
549	alterations in extracellular signal-regulated kinase 1/2 and mammalian target of rapamycin		
550	(mTOR) signalling to regulatory mechanisms of mRNA translation in mouse muscle. J		
551	<i>Physiol</i> 573: 497-510, 2006.		
552			
553	Figure legends		
554			
555	Figure 1. (A) Structure of 8-PN. (B) Experimental schedule: day 0 to day 14 was the		
556	atrophy-development period; day 14 to day 34 was the recovery period. To induce atrophy, the		
557	right hind leg of each mouse was immobilized with a tube cast, and the left hind leg remained		
558	free from the tube cast. At day 14, the tube cast was removed from the right leg. At day 14 and		
559	day 34, muscles were collected to estimate the level of atrophy.		
560			
561	Figure 2. Muscle atrophy and recovery from DMA in the right hind leg of mice. DMA was		
562	induced by immobilization using a tube cast (see Fig. 1). The muscle masses after 14 days of		
563	immobilization (Im) and 20 days of reloading (RL) are shown in the GM (A) and TA (B). These		
564	levels were calculated using the ratio of atrophied muscle (with cast) to normal muscle (without		
565	cast). Data are means \pm SE ($n = 4$). * $P < 0.05$, significant difference compared with Im.		

567	Figure 3. Effect of intake of an 8-PN mixed diet on recovery of muscle mass from DMA. The		
568	immobilization with the cast lasted for 14 days, and the mice were then released from the cast.		
569	Recovery was estimated at day 34. (A) Mean intake of food per day in all experiments. (B)		
570	Body weight at the end of the experiment (day 34). (C) Muscle mass in the TA. These levels		
571	were calculated using the ratio of atrophied muscle (with cast) to normal muscle (without cast).		
572	(D) Plasma concentration of IGF-1. Im-C: at day 14; RL-C: at day 34 (after recovery from		
573	immobilization) with the control diet; RL-PN: at day 34 (after recovery from immobilization)		
574	with the 8-PN mixed diet. Different letters represent significant differences ($P < 0.05$) by		
575	one-way ANOVA with the Tukey multiple comparison test.		
576			
577	Figure 4. Effect of an 8-PN mixed diet on a protein-synthesis pathway in the TA. The		
578	phosphorylation of target proteins was evaluated by western blotting. (A) Typical images of		
579	western blotting. (B) Density analysis for the phosphorylation level within each total protein.		
580	Data are means \pm SE. * <i>P</i> < 0.05, significant difference between Nom and another group. [†] <i>P</i> <		
581	0.05, significant difference between Im-C and RL. Nom: without tube cast; Im: with tube cast;		
582	RL: reloading; C: control diet; PN: 8-PN diet.		
583			

584	Figure 5. Enhancement of Akt phosphorylation by 8-PN in C2C12 myotubes. Murine C2C12			
585	myotubes were treated with 8-PN (1 μ M) for 0.25–4 h. Phosphorylated Akt was determined by			
586	western blotting. (A) Typical images of western blotting. (B) Band densities for phosphorylated			
587	Akt. Data are means \pm SE ($n = 3$). Different letters represent significant differences ($P < 0.05$)			
588	by ANOVA with the Tukey multiple comparison test.			
589				
590	Figure 6. Effects of 8-PN on phosphorylation of PI3K, Akt, and P70S6K1 in murine C2C12			
591	myotubes. (A) Typical images of western blotting. (B–D) Band densities for phosphorylated			
592	PI3K (B), phosphorylated Akt (C), and phosphorylated P70S6K1 (D). Data are means \pm SE ($n =$			
593	3). Different letters represent significant differences ($P < 0.05$) by ANOVA with the Tukey			
594	multiple comparison test.			
595				
596	Figure 7. Contribution of estrogenic activity of 8-PN to Akt/P70S6K phosphorylation. Murine			
597	C2C12 myotubes were treated with 8-PN (1 μ M) for 1 h in the presence of an ER inhibitor			
598	(fulvestrant). (A) Typical images of western blotting. (B) Band densities for phosphorylated			
599	proteins. Data are means \pm SE ($n = 3$). Different letters represent significant differences ($P <$			
600	0.05) by ANOVA with the Tukey multiple comparison test.			
601				

602	Figure 8. Effects of ovariectomy and estradiol supplementation on muscle mass of atrophied
603	mice. An 8-PN (0.0005% w/w: H-PN group; 0.00005% w/w: L-PN group) mixed diet or pellets
604	releasing 17 β -estradiol (E) were supplied to mice. The muscle mass in the TA was calculated
605	using the ratio of atrophied muscle (with cast) to normal muscle (without cast). Different letters
606	represent significant differences ($P < 0.05$) by ANOVA with the Tukey multiple comparison

607 test.

В

Α

	Control diet	Experiment I: Control diet Experiment II: Control , PN diet, or 17β		
	Right leg: with tube cast (Im) Left leg: without tube cast (Nom)	Right leg: release from tube cast (RL) Left leg: without tube cast (Nom)		
Day-0				
	N	<i>,</i>	\checkmark	
Day-14				

В

F. 2

D

В

Α

