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Background: Previous studies suggested that changes in kinematics in total knee arthroplasty (TKA) affected
satisfaction level. The aim of this cadaveric study was to evaluate the effect of medial collateral ligament
(MCL) release by multiple needle puncture on knee rotational kinematics in posterior-stabilized TKA.
Methods: Six fresh, frozen cadaveric knees were included in this study. All TKA procedures were performed
with an image-free navigation system using a 10-mm polyethylene insert. Tibial internal rotation was
assessed to evaluate intraoperative knee kinematics. Multiple needle puncturing was performed 5, 10, and
15 times for the hard portion of the MCL at 90° knee flexion. Kinematic analysis was performed after every 5
punctures. After performing 15 punctures, a 14-mm polyethylene insert was inserted, and kinematic
analysis was performed.
Results: The tibial internal rotation angle at maximum knee flexion without multiple needle puncturing
was significantly larger (9.42°) than that after 15 punctures (3°). Negative correlation (Pearson r = —0.715,
P < .001) between tibial internal rotation angle at maximum knee flexion and frequency of puncture was
observed. The tibial internal rotation angle with a 14-mm insert was significantly larger (7.25°) compared
with the angle after 15 punctures.
Conclusion: Tibial internal rotation during knee flexion was reduced by extensive MCL release using
multiple needle puncturing and was recovered by increasing of medial tightness. From the point of view
of knee kinematics, medial tightness should be allowed to maintain the internal rotation angle of the
tibia during knee flexion which might lead to patient satisfaction.

© 2016 Elsevier Inc. All rights reserved.
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Total knee arthroplasty (TKA) is a procedure with successful
long-term outcomes, including pain relief and functional restora-
tion [1,2]. Despite favorable long-term implant survival after TKA,
patient-reported outcomes did not indicate satisfaction levels that
were comparable with those reported after total hip arthroplasty.
Bourne et al [3] reported that nearly 1 in 5 patients remained un-
happy after TKA, which was otherwise perceived by the surgeon as
successful. This dissatisfaction could be explained partly by changes
in kinematics after TKA [4]. The kinematic pattern in a normal knee
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is well known to have a medial pivot motion with internal rotation
of the tibia in flexion [5]. Several studies investigating the kine-
matic pattern after TKA showed a paradoxical motion that was
different from a normal knee [6,7]. Some previous studies
emphasized that tibial internal rotation increased during deep
flexion kneeling after TKA [8,9]. Moreover, Nishio et al [ 10] reported
that intraoperative medial pivot kinematic patterns with femoral
external rotation relative to the tibia resulted in larger flexion an-
gles and better patient-reported outcomes. Therefore, from the
point of view of kinematics, the surgical technique to maintain the
medial pivot motion in TKA is important to increase the patient
satisfaction.

On the other hand, for varus knee with late-stage osteoarthritis
(OA), TKA often involves release of the medial structures, especially
the medial collateral ligament (MCL), to realign the leg and achieve
soft tissue balance; a couple of previous studies reported that the
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maneuver was necessary in 76%-88% of OA varus knees [11-13].
Although incorrect soft tissue balancing can result in a number of
complications, the standard intraoperative soft tissue balancing
technique has not been established. Thus, performance of soft tis-
sue balancing is left to the discretion of the surgeon. However, Lee
et al [14] described that a surgeon's subjective view of the technical
quality of a procedure did not predict postoperative knee scores.

Consequently, we hypothesized that medial release affects the
rotational kinematics in TKA, which may also influence the patient
outcome. The aim of this cadaveric study was to evaluate the effect
of MCL release by multiple needle puncturing on knee rotational
kinematics in posterior-stabilized (PS) TKA.

Material and Methods

After obtaining approval from the institutional review board of
our hospital, 6 fresh, frozen cadavers stored at —20°C were included
in this study. There were 5 male specimens and 1 female specimen;
the mean age was 82.0 years (range, 61-91 years). The bodies were
complete in all specimens and were macroscopically intact without
gross evidence of prior surgery. A PS-type prosthesis (NexGen LPS-
Flex, Zimmer Biomet, Warsaw, IN) was used for each specimen
using an image-free knee navigation system (Stryker Navigation,
version 1.0; Stryker, Kalamazoo, MI), infrared cameras, and light-
emitting diodes.

Surgical Procedure and Evaluation of Intraoperative Kinematics

Each surgery was performed using the standard medial para-
patellar approach. Soft tissue release was not performed except for
portions that required osteotomy. Registration of the navigation
system was done for each case, following the manufacturer's pro-
tocol. Measured resection technique was used for bone resection.
The anterior cruciate ligament and posterior cruciate ligament
were sacrificed. Using the navigation system, the distal femur and
proximal tibia were resected perpendicular to the mechanical axis
on the coronal plane. On the sagittal plane, the femoral flexion
angle and tibial posterior slope were set as 3° and 5°, respectively.
The amount of cut bone was set as component thickness. To
determine femoral rotation as parallel to the surgical epicondylar
axis, posterior condylar angle was used which was measured from
preoperative CT. Tibial rotational alignment was directed along a
line from the medial border of the tibial tubercle to the middle of
the posterior cruciate ligament [ 15]. The patella was not resurfaced.
A 10-mm polyethylene insert was appropriate in all knees. After the
trial component was assembled, intraoperative kinematic analysis
was performed to evaluate the knee.

A multiple needle puncturing technique, which was described
by Bellemans et al [16], was used to release the MCL. The amount of
MCL release was classified into the following 4 steps. Using an 18-G
needle, puncturing was performed 5 times, 10 times, and 15 times
on the hard portion of the MCL at 90° knee flexion. Kinematic
analysis was performed at each stage of medial release. After 15
times of multiple needle puncturing, it became possible to place a
14-mm polyethylene insert. Kinematic analysis was also performed
with a 14-mm insert.

During evaluation of intraoperative kinematics, the dissected
fascia was closed with 2 forceps. For each knee, kinematic analysis
was performed once by the same examiner using the navigation
system. The knee was flexed by placing the specimen's heel on the
examiner' open palm to allow for freedom of tibial rotation while
the other hand of the examiner was placed beside the specimen's
knee for support [17]. Care was taken to avoid intentional rotation
of the knee throughout flexion. The navigation system auto-
matically recorded the rotation angle of the tibia at maximum

extension, 30°, 60°, 90°, 120°, and maximum flexion during passive
knee motion; internal rotation was designated as positive.

Statistical Analysis

To evaluate the differences in the internal rotation angle of the
tibia at maximum knee flexion at each stage of MCL pie crusting, 1-
way analysis of variance was used followed by the Tukey's multiple
comparison tests. Correlation between tibial internal rotation angle
at maximum knee flexion and frequency of needle puncturing was
also assessed. Data after 15 times of pie crusting were compared
with those after placement of a 14-mm insert using Student ¢ test.
All statistical analyses were performed using IBM SPSS statistical
software (SPSS, version 21.0, for Mac OS X). A power analysis of the
study and effect size were performed in relation to the internal
rotation angles of the tibia at maximum knee flexion in each status
of the knee. An effect size of 0.47 and power of 0.95 were obtained,
which was considered adequate.

Results

The results of the internal rotation angle of the tibia during knee
flexion are summarized in Figure 1. The mean values for tibial in-
ternal rotation angle at maximum knee flexion were 9.42° in PS
knees without multiple needle puncturing and 3° in PS knees after
15 times of multiple needle puncturing. Tukey's 1-way analysis of
variance revealed that there was significant difference (F [3, 20] =
7.186, P = .002) in PS knees between before and after multiple
needle puncturing (Fig. 2). The internal rotation angle of the tibia
on deep knee flexion tended to decrease as the number of multiple
needle puncturing increased. Tibial internal rotation angle at
maximum knee flexion was observed to be correlated with the
frequency of needle puncturing (Pearson's r = 0.715, P < .001).

The changes in the internal rotation angle of the tibia due to
insert thickness are summarized in Figure 3. The mean internal
rotation angle of the tibia with a 14-mm insert was 7.25°; this was
significantly larger compared with the mean angle in MCL-released
knees at maximum knee flexion (t [9.957] = —3.248, P =.009).

Discussion

To our knowledge, this study was the first to report on the
relationship between quantity of medial release and tibial internal
rotation in TKA using a navigation system. Our results had 2 major
findings. First, MCL release reduced the internal rotation angle of
the tibia in deep knee flexion. Second, increasing the insert thick-
ness increased the internal rotation of the tibia during knee flexion.
Our results support the hypothesis that medial release affects the
rotational kinematics in TKA and also indicate that medial tightness
is needed to rotate the tibia internally during knee flexion.

The MCL is always released to some extent during initial ante-
romedial arthrotomy. Release of the deep MCL and posteromedial
capsule is usually sufficient to correct a mild varus deformity
[18-20]. The superficial MCL is often released to correct any residual
varus deformity [21-23]. However, Hunt et al [24] reported that
there remains a lack of consensus on quantification of medial
release; therefore, interpretation of surgical procedures remains
difficult. To quantify releasing, a pie-crusting technique for
posterolateral release using scalpel blade was described by Mihalko
and Krackow [25]. Some previous studies have also suggested pie-
crusting release of MCL [26,27]. However, Meneghini et al [28] re-
ported that MCL pie crusting was likely technique dependent since
failure may occur within the ligament itself. On the other hand, the
multiple needle puncturing technique is also a quantitative method
for MCLrelease. Bellemans et al described that the procedure which
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Fig. 1. Internal rotation of the tibia during knee flexion in each stage of MNP. Error bars indicate standard error. MNP, multiple needle puncturing.

was considered successful for correction of medial tightness was
present to such an extent that mediolateral joint line opening
measuring 2-4 mm during extension and 2-6 mm during flexion.
Instability due to over-release was seen in 1 of 35 knees [16]. In
addition, in present study, the multiple needle puncturing was to
contribute to the quantitative assessment of the MCL release.
Nevertheless, concerning with our results, additional MCL release
for correction of medial tightness reduces internal rotation angle of
tibia during deep knee flexion. From the point of view of knee ki-
nematics, medial tightness might be allowed instead of the addi-
tional release of MCL.

A previous cadaveric study indicated that medial release influ-
enced a laxity of the knee joint. Matsueda et al [29] evaluated
medial soft tissue release with calipers and stated that an increase
in coronal angulation and medial gap occurred after the release of
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Fig. 2. Comparison of tibial internal rotation at maximum knee flexion during each
stage of MNP. Error bars indicate standard error. P < .05, *°P < .01.

anteromedial sleeves 8 cm from the medial joint line. Whiteside
et al [13] reported that complete MCL release, regardless of the fi-
bers, increased the laxity in flexion and extension. Crottet et al [30]
assessed the contact force of the knee joint and stated that the
medial contact force was reduced by 20% and 46% after minor and
major collateral ligament releases, respectively. lizawa et al [31]
reported a significant increase in valgus and rotatory instability
after deep MCL and posterior oblique ligament release in TKA. In
the present study, the internal rotation angle of the tibia during
knee flexion tended to decrease as the number of needle punctures
on the MCL increased. Furthermore, the decrease in the internal
rotation angle of the tibia after MCL release during knee flexion
significantly recovered after placement of 14-mm insert. This result
indicated that recovery of medial tightness increased the internal
rotation angle of the tibia during knee flexion.

This study had some limitations. First, we assessed only the in-
ternal rotation angle of the tibia during flexion. There is a lack
of kinematic data on anteroposterior, mediolateral, and super-
oinferior dimensions because knee kinematics included 6 degrees of
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Fig. 3. Comparison of tibial internal rotation at maximum knee flexion after 15 times
of needle puncturing and with a 14-mm insert. Error bars indicate standard error.
P < .0l
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freedom. Especially, anterior—posterior translation should be
examined to evaluate knee flexion kinematics; unfortunately, this
could not be assessed in our navigation system. Second, the condi-
tion during assessment of tibial internal rotation was not weight
bearing. Many previous studies on intraoperative nonweight-
bearing kinematics evaluation stated this limitation; however, a
recent study reported that femoral external rotation with intra-
operative medial pivot motion was associated with postoperative
deep knee flexion angle [10]. Therefore, even in a nonweight-
bearing kinematics situation, tibial internal rotation was an
important parameter of postoperative knee flexion. Although this
study was a cadaveric study using a whole body, our conditions
were similar to those of clinical studies of patients under anesthesia.
Third, cadaveric normal knees were used to assess intraoperative
kinematics in the present study. Our data from normal knees might
be different from those with OA. This issue should be examined in
navigation-assisted TKKA of OA cases. Fourth, the reproducibility of
kinematic analysis was not evaluated and may be questionable
because the analysis was performed manually. Nevertheless, our
previous study revealed that intraoperative kinematic analysis had
high reproducibility [17]. Therefore, we believe that the present
data, which were assessed by the same method, had sufficient
reproducibility. Finally, the ideal medial tightness has not been
revealed, and the procedure to quantitatively evaluate medial
tightness has not been developed. Although our data indicated that
recovery of medial stability increased the internal rotation angle of
the tibia during knee flexion, further study is needed to determine
the appropriate medial stability and insert thickness.

In conclusion, extensive MCL release by multiple needle punc-
turing reduced tibial internal rotation during knee flexion. This
decrease in the internal rotation angle of the tibia after MCL release
during knee flexion significantly recovered after placement of a 14-
mm insert, which increased the medial tightness. Recovery of
medial tightness increased the internal rotation angle of the tibia
during knee flexion. Therefore, from the point of view of knee ki-
nematics, medial tightness might be allowed instead of the addi-
tional release of MCL.
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