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Abstract. An essential step of nanoliposome formation in an aqueous lipid solution is the transition 

from discoidal lipid aggregate (bicelle) to vesicle. We here investigate the bicelle-vesicle transition 

of a binary lipid mixture of saturated and unsaturated phosphatidylcholine by performing 

nonequilibrium molecular dynamics simulations with the coarse-grained representation of di-

palmitoyl-phosphatidyl-choline (DPPC) and di-linoleoyl-phosphatidyl-choline (DLiPC). When 

DPPC molecules of a stable DPPC bicelle are randomly replaced to DLiPC molecules, the 

transition occurs for higher apparent DLiPC concentrations. On the other hand, when the DPPC 

molecules only in the core region of the bicelle are replaced, the transition occurs even for lower 

apparent DLiPC concentrations. For the bicelle where the head and tail layers are, respectively, 

pure DPPC and DLiPC monolayers, the side of DLiPC monolayer becomes the concave surface 

of bending bicelle. Controlling the local lipid compositions in binary lipid bicelle has the potential 

to determine the success of vesicle formation and the direction of bicelle bending. Our findings 

help explain nanoliposome formation with sonication and give useful information for controlling 

encapsulation efficiencies of nanoliposomes. 

 

 

 

 

 

 



 3 

Introduction 

Liposomes are vesicular structures composed of lipid bilayers, which can entrap molecules of 

various sizes. Nano-sized liposomes, i.e., nanoliposomes, have biocompatibility and 

biodegradability because of their nanoscale characteristics, and the application as vehicles to 

deliver exogenous molecules has been widely attempted in cosmetics, food technology, agriculture, 

and nanomedicine1–5. However, they are known to have some limitations such as stability, 

reproducibility, or molecular encapsulation efficiency. A fundamental understanding of 

nanoliposome formation is required for the development of nanoliposome applications. 

The transition from discoidal lipid aggregate (bicelle) to vesicle has been recognized as an 

essential step of liposome formation6–8. Qualitatively, the transition can be explained by a balance 

between bending and edge energies with approximated shapes and macroscopic mechanical 

properties of a single lipid aggregate. Molecular-scale simulations, such as molecular dynamics 

(MD)9–14 and Brownian dynamics simulations15, have complemented and improved the simple 

qualitative picture with detailed information about lipid molecular dynamics. For example, 

molecular simulations of nanoliposome formation from randomly distributed lipid in water have 

revealed the aggregation process of lipids9–14 and the effects of temperature or lipid compositions 

on detailed vesicle structure13,14. Previously, we investigated nanoliposome formation under 

sonication with coarse-grained (CG) MD simulations11. Sonication is one of the standard methods 

to prepare nanoliposomes4,5,16–19, which utilizes ultrasound cavitation phenomenon to reduce 

liposomal sizes. Our study revealed that, after collapsing a lipid-coated nanobubble, bicelle with 

folds of various amplitudes forms, and temporal bicelle structure affects the transition and detailed 

vesicle structure11. These molecular simulations suggest that lipid molecular dynamics and 

distributions in nanoscale lipid aggregate is an important factor governing the transition. 
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 Despite extensive molecular simulation studies on liposome formation for pure lipid systems9–

12, little is known for multi-lipid systems. To our knowledge, only the binary lipid systems 

composed of di-palmitoyl-phosphatidyl-choline(DPPC) and di-palmitoyl-phosphatidyl-

ethanolamine or DPPC and di-linoleoyl-phosphatidyl-choline (DLiPC) have been used in 

nanoliposome simulation studies13,14. In our previous study11, we investigated the effects of 

saturation of lipid tails on the liposome formation from a lipid-coated nanobubble composed of 

DPPC or DLiPC, but it was limited to single lipid systems. Experimentally, binary or ternary lipid 

systems have been used for liposome or bicelle studies, and it is speculated that the lipid 

composition of multi-lipid bicelle affects both static and dynamics behavior20–23. Furthermore, 

liposomes composed of multi-lipid mixtures are available in more practical applications1. 

Consequently, it is a principal research object to understand the effects of lipid compositions and 

dynamics on nanoliposome formation in lipid mixtures. 

In this study, we investigate the bicelle-vesicle transition of a binary lipid mixture composed of 

phosphatidylcholine (PC) lipid molecules with saturated and unsaturated tails in aqueous solution 

by CG MD simulations. We clarify the effects of the apparent and local concentrations of 

unsaturated lipid molecules on the transition in lipid mixture systems at the molecular scales with 

DPPC/DLiPC lipid mixtures. We numerically demonstrate that forcibly-concentrated unsaturated 

lipid molecules in the core region of a stable bicelle facilitate the bicelle-vesicle transition. Also, 

with biased-initial bicelle configurations where the head and tail layers are, respectively, saturated- 

and unsaturated- lipid monolayers, the side of unsaturated lipid layer becomes the concave surface 

of bending bicelle. Our findings help explain nanoliposome formation with sonication and may 

give useful information for controlling encapsulation efficiencies of nanoliposome. 
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Methods 

Nonequilibrium MD Simulation of DPPC/DLiPC Mixtures 

We consider the bicelle-vesicle transition of a binary-lipid mixture composed of DPPC and 

DLiPC molecules in water. To model molecules, we use the MARTINI force field24, which is a 

CG model suitable for semi-quantitative evaluation of lipid aggregation dynamics with MD 

simulation while reducing computational cost. The MARTINI DPPC and DLiPC lipid molecules 

have the same CG headgroup, but the CG tail of DLiPC is developed accounting for the flexible 

character of the polyunsaturated linoleyl tail and the polarizable nature of the double bond14,24,25. 

Consistently to analyze effects of local unsaturated lipid compositions on the transition, we regard 

the MARTINI DPPC and DLiPC as representative saturated and unsaturated PC lipid molecules 

with similar tail length, respectively. The initial structure is a single disk-like lipid aggregate 

(bicelle) composed of 600 DPPC molecules in 78,501 MARTINI water beads with periodic 

boundary conditions. The DPPC bicelle is stable at 1 bar and 323 K as shown in the previous 

study11. In order to investigate the effects of the local lipid composition on the bicelle-vesicle 

transition, the DPPC molecules of the bicelle are replaced to DLiPC molecules at various apparent 

DLiPC concentrations. The apparent DLiPC concentration C is defined as u lC N N , where uN

is the number of DLiPC molecules and lN  is the total number of lipid molecules. We set the lipid 

selection method as the random selection, the core selection, the head and tail selection, and their 

combination (see below). For the head and tail selection, we develop a selection algorithm with 

gyration tensor26 consistently to divide lipid molecules into the head or tail monolayer of bicelle. 

To this end, we first calculate the gyration tensor of bicelle and obtain the eigenvalues and 

eigenvectors. As the eigenvector of the smallest eigenvalue is a normal vector of the bicelle surface, 



 6 

we can allocate lipid molecules to head or tail of bicelle by the inner product of the normal vector 

and the position vector of each phospholipid molecule with respect to the center of bicelle.  

After replacing lipid molecules in the bicelle, to relax the lipid systems, we perform short 

constant volume and temperature and constant pressure and temperature MD simulations for at 

least 0.4s. The leap-frog algorithm is used to integrate the equation of motions, and the time step 

is 20 fs. The velocity-rescale method27 is used to relax and maintain the temperature at 323 K with 

the coupling constant of 1.0 ps. The Berendsen method28 is used to relax and keep the pressure at 

1 bar with the time constant of 2.0 ps. Because interpretations of nonequilibrium MD simulations 

of lipid systems require statistical treatment29,30, we perform MD simulations started from at least 

ten different initial configurations for each condition. All MD simulations are performed with 

GROMACS 4.6.731–33 and with common MARTINI CG parameters. For visualization, Visual 

Molecular Dynamics (VMD)34 is used. Note that, considering the current improvement of MD 

simulation algorithms and parameter-verification for the MARTINI force field, we verified the 

effects of them on the results with GROMACS 5.1.5 and newer MARTINI CG parameters35, 

although the selection of them have minor effects on the outcomes.  

Evaluation of Bending Modulus  

The bending modulus ck  of a DPPC/DLiPC mixture is estimated based on the Fourier 

transformation of DPPC/DLiPC bilayer undulations36. The bilayer systems are composed of 8,192 

lipid molecules and 392,928 MARTINI water beads with periodic boundary conditions for various 

apparent DLiPC concentrations. The bilayer systems equilibrate in the MD simulation at constant 

temperature (323 K) and constant pressure (1 bar) for at least 0.6 μs. The bending modulus ck  is 

obtained by using the following relationship,   c
4

u B ,S q k T ak q  where  uS q  is the fluctuation 
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spectra of the bilayer surface with respect to the magnitude of wave vector q, a is the area per lipid, 

Bk is Boltzmann’s constant, and T is the temperature, under the assumption of vanishing bilayer 

surface tension and small q. The wave vector is defined as    x, 2π , yx y nq L m Lq q  with n, 

m = 0, ±1, ±2, ±3…, the projected area of the bilayer 
x yL L , and 2 2

x yq q q  q . We fit the 

above function to the spectra under 0.7 nm-1 with the largest box length max 50L  nm. In order to 

compare the qualitative trend, ck s for various DLiPC concentrations are normalized with respect 

to the value for pure DPPC. Note that ck  for a pure DPPC bilayer obtained here is ~15 2010 J, 

which is larger than those obtained with previous undulation analysis, but close to the values 

obtained with the recent orientation analysis and the shape fluctuation analysis by experiments37. 

Because our bilayer system (8,192 lipid molecules) is larger than previous bilayer systems37 

(typically, 640~6,400 lipid molecules), we believe that our results with the undulation analysis are 

reasonable to fit the above relationship to the spectra of the bilayer undulations. 

Evaluation of Line Tension 

The line tension   of a DPPC/DLiPC mixture is estimated based on the pressure balance of 

bilayer ribbon systems38. The base system of bilayer ribbon is composed of 512 DPPC molecules 

and 40,987 MARTINI water beads with periodic boundary conditions. The simulation box size is 

12.5621.56 21.56   nm3 in the x, y, and z directions, respectively, where the y-direction is the 

axial direction of the ribbon. The bilayer ribbon system equilibrates in the MD simulation at 

constant temperature (323 K), constant pressure in the x- and z-directions (1 bar), and constant 

length of the simulation box in the y-direction for 0.5 s. After the equilibration, the DPPC 

molecules of the ribbon are randomly selected and replaced to DLiPC molecules at various 
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apparent concentrations. The binary-lipid bilayer ribbon systems are further equilibrated for 2.5 

μs, and the trajectories during the final 1.5 μs are used in the analyses. The line tension   is 

calculated using   2 2zzxx yy x ylP PP l   , where iiP  and il  are the pressure tensor and the 

simulation box length in the i-direction (i = x, y, or z), respectively. The results for various apparent 

concentrations are normalized with respect to the value for pure DPPC ribbon system (50.6 pN), 

which is close to the value reported previously39. 

Results  

Bicelle to Vesicle Transition of DPPC/DLiPC Mixture 

During relaxation MD simulations of DPPC/DLiPC bicelle prepared with the random selection 

method, lipid molecules rearrange in bicelle. The transition from bicelle to vesicle occurs via bowl-

like shape (Fig. 1 (A)) depending on the apparent DLiPC concentration C. Figure 1 (B) shows the 

probability to the vesicle formation P, which is defined as V TP N N , where VN is the number 

of trials of vesicle formation during relaxation and TN  is the total number of trials. Pure DPPC 

bicelle remains stable ( t 00 aP C  ), whereas pure DLiPC bicelle spontaneously transitions to 

vesicular shape ( 1 at 1P C  ), as confirmed in the previous study11. For 0.6C  , P  increases 

and reaches 1.0 at 0.9C  . This result suggests that the critical concentration for the transition of 

a DPPC/DLiPC mixture can be found for 0.6C  . 

The macroscopic theory of vesicle formation predicts that a balance between bending and edge 

energies determines the shape of lipid aggregate6,7. Considering the constant number of lipid 

molecules ( 600 ) in the bicelle system, the bending modulus ck  and line tension   of a 

DPPC/DLiPC mixture would be essential factors for the energy balance. We estimate ck  and   
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based on the Fourier transformation of DPPC/DLiPC bilayer undulations36 and the pressure 

balance of DPPC/DLiPC ribbon system38, respectively. ck  of DPPC/DLiPC bilayer decreases with 

the apparent DLiPC concentration of bilayer system bC  (Fig. 1 (C)). Likewise,  of DPPC/DLiPC 

ribbon decreases with the apparent concentration of the ribbon system rC , but becomes almost 

unchanged for r 0.4C   (Fig. 1 (D)). Because the DLiPC concentration per edge length of the 

ribbon becomes saturated around r .4~ 0C   (Fig. S1), it is suggested that   of DPPC/DLiPC 

bicelle depends not on the apparent concentration but the DLiPC concentration per edge length as 

in DPPC/DLiPC ribbon systems. 

In binary DPPC/DLiPC bicelle, when started from random DLiPC distributions (Fig. 2 (A), left), 

DLiPC molecules rapidly cap the edge of bicelle to reduce the edge energy, while concentrating 

DPPC molecules in the core region of bicelle (Fig. 2 (A), right). Figure 2 (B) shows the 

relationships between the core DLiPC concentration CC , which is calculated for the lipid 

molecules within 2.0 nm lateral distance in the bicelle plane from the center of mass of bicelle, 

and the apparent DLiPC concentration C. The relationship exhibits low DLiPC concentration in 

the core region of DPPC/DLiPC bicelle, i.e., the high DLiPC concentration in the edge region. 

Such partitioning of lipid molecules in bicelle can be confirmed in other studies, although it 

depends on the compositions of lipid mixtures21,40.  
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Figure 1. Representative snapshots (cutaways) of the transition from bicelle to vesicle via 

bowl-like shape for 0.85C   (A), the probabilities of vesicle formation from the DPPC/DLiPC 

bicelle P for the apparent concentration C  (B), the bending modulus of the DPPC/DLiPC 

bilayer ck  for the concentration of bilayer bC  (C), and the line tension of the DPPC/DLiPC 

ribbon   for the concentration of ribbon rC  (D). The PC headgroups are shown in yellow, the 

DLiPC tails in green, the DPPC tails in purple, and water in cyan. Note that ck  and   are 

normalized with respect to those for the pure DPPC system. The error bars represent the 

standard errors calculated by comparing 50 ns and 250 ns blocks for  ck  and  , respectively. 
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Figure 2. Representative snapshots (top and side views) of a DPPC/DLiPC bicelle before (left) 

and after (right) relaxation from a random DLiPC distribution for 0.50C  (A) and the 

relationship between the core and apparent concentrations of DLiPC molecules in DPPC/DLiPC 

bicelle (B). Water molecules in top views are not shown for clarity. The error bars in Fig. 2 (B) 

shows the standard deviation. 

 

Effects of Local Lipid Compositions 

Deducing from the transition associated with the spatial distribution of DLiPC molecules in 

bicelle (see above), the initial spatial distribution of DLiPC molecules in DPPC/DLiPC bicelle 

could be involved in the transition. Numerically to confirm this, we perform relaxation MD 

simulations from biased-initial configurations of binary lipid mixture. Specifically, as initial 
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configurations, we replace DPPC to DLiPC molecules only in the core region of pure DPPC bicelle 

(Fig. 3 (A), inset). During relaxation, the bowl-like shape forms immediately from the biased-

initial configuration (Fig. 3 (B), upper and middle), followed by vesicle formation even for the 

lower apparent concentrations 0.15C  (Fig. 3 (A)). However, once the bowl-like shape fails the 

transition to vesicle, DLiPC molecules spread from the core region and cap the edge, resulted in 

stable bicelle structure (see, e.g., Fig.2 (A)).  

 

Figure 3. The probabilities of vesicle formation from the biased initial configuration of 

DPPC/DLiPC bicelle (inset) for various apparent concentrations (A) and representative 

snapshots of the vesicle formation via bowl-like shape for 0.20C   (B). 

 

Transition from Bicelle to Bowl-like shape 
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For the hydrophilic small molecular encapsulation41, the transition from bicelle to bowl-like 

shape should be an essential process because solutions beside a concave surface of bending bicelle 

are primarily taken into the inside of a nanoliposome (Fig. S2). According to the macroscopic 

theory7, the direction of spontaneous bending of bicelle to bowl-like shape is primarily statistical 

in pure lipid bicelle. Considering the difference of mechanical properties between pure DPPC and 

DLiPC aggregate (e.g., Fig. 1 (C)), the spatial DLiPC distribution in DPPC/DLiPC bicelle may 

affect the direction of the bicelle bending. We numerically investigate the effect of DLiPC 

distribution in the bicelle on the bending direction by performing relaxation MD simulations from 

a biased-initial configuration, where the head and tail monolayers of bicelle are composed of a 

pure DLiPC and DPPC monolayer, respectively (Fig. 4 (A), upper). The side of DLiPC monolayer 

always becomes the concave surface of bowl-like shape (Fig. 4 (A), middle), which might relate 

to the inverted cone-shaped characteristic of DLiPC14. However, the bowl-like shape recovers to 

bicelle in due course, and the bicelle structure becomes stable (Fig. 4 (A), lower) because the 

apparent concentration of the bicelle is 0.5 (see Fig. 1 (B)), and DLiPC molecules rapidly cap the 

bicelle edge (Fig. 4 (A), lower).  

Higher DLiPC concentration in the core region of bicelle enhances the transition to vesicle (Fig. 

3). We further replace DPPC molecules in the core region of the side of pure DPPC monolayer to 

DLiPC molecules in the head and tail initial configuration (Fig.4 (B), inset). As expected, the 

transition to vesicle can be confirmed (Fig. 4 (B)), while the direction of bending, i.e., the concave 

surface, is the side of DLiPC monolayer in the biased bicelle.  
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Figure 4. Representative snapshots of bicelle bending from the head and tail initial configuration 

(see text) (A) and the probabilities of vesicle formation from the biased initial configuration of 

DPPC/DLiPC bicelle (Fig. 4 (B) inset). 

 

Discussion 

 During relaxation of DPPC/DLiPC bicelle, we found the transition to vesicle generally occurs for 

higher apparent DLiPC concentrations, 0.6C   (Fig. 1 (B)). This result can be explained by the 

conventional energetic consideration6,7, where a balance between bending and edge energies 

determines the stable shape of lipid aggregate. For lower C, the edge energy gain is dominant by 

decreasing in   due to higher DLiPC concentration in the edge region (Fig. 1 (D) and Fig. 2 (B)), 

and, hence, bicelle structure is stable. On the other hand, for higher C, the bending energy gain 

becomes dominant because of the saturated edge-energy gain while the lowering of ck  (see Fig. 1 

(C) and (D)). Accordingly, vesicle transition should be favorable for higher C ( ~ 0.5P   for 
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0.8C   in Fig. 1 (B)), where the core DLiPC concentration CC  closes to the apparent 

concentration C (Fig. 2 (B)). Toward the quantitative estimation, other factors, e.g., local area per 

lipids, bicelle shape approximation, and saddle splay modulus should be investigated. Moreover, 

because the resulted DPPC/DLiPC vesicles have radii of ~5 nm (Fig. 1 (A) and Fig. S3), it might 

be needed to consider the curvature-dependent elastic moduli to evaluate the free energy of small 

unilamellar vesicles with lipid mixture more precisely42,43. 

When the DPPC molecules only in the core region of a stable DPPC bicelle are replaced to 

DLiPC, the transition occurs even for lower apparent DLiPC concentrations (Fig. 3). The 

procedure might lower the local bending modulus while keeping the line tension to be higher value 

temporally (Fig. 1 (C) and (D)), which is favorable for the transition to vesicle according to the 

energetic consideration6,7. Also, vesicles of various sizes can be formed for the vesicles from the 

biased initial configurations (Fig. S3). This finding proves that the initial DLiPC distribution in 

DPPC/DLiPC bicelle is an essential factor to form a vesicle, especially for lower DLiPC 

concentration. Under sonication, ultrasound cavitation creates and collapses lipid-coated 

nanobubbles4,18, and, just after the collapse, bicelle with complicated structure forms11, which 

implies that sonication can temporarily induce inhomogeneous lipid distribution in bicelle. 

Experimentally, multi-lipid vesicle prepared with sonication shows bi-modal size distribution at 

the nanoscales depending on the sonication time4. Although the typical sonicated vesicles have 

radii of ~15 nm with considerable variation44 and composed of more complexed lipid compositions, 

the temporary inhomogeneous lipid distribution due to collapsing bubbles seems to be a part of 

reasons why the sonication is favorable to decreases multi-lipid vesicles to nanosize and yields bi-

modal size distributions of vesicles in a mixture of lipids. 
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Our simulations have also revealed that controlling the local lipid compositions in binary lipid 

bicelle has the potential to determine the direction of bicelle bending (Fig. 4). Recent lipid 

experiments have suggested that plasma-induced lipid oxidation techniques have the potential to 

induce the local chemical modification of lipid tails45, which may relate to structural changes of 

lipid aggregate at the molecular scale46. Moreover, the recent simulation study on oxidized lipid 

bilayer47 suggests the possibility to control the level of oxidation via the introduction of protective 

molecules. Although further investigations are required, the techniques to control local lipid 

compositions in bicelle may be favorable to encapsulate small hydrophilic molecules combined 

with various methods for liposome preparation41,48.  

In the binary DPPC/DLiPC bicelle, we observed the migration of DLiPC to the edge of bicelle 

(Fig. 2). Based on the rigid shape model for single lipid systems49, both the cylindrical shaped 

DPPC and the inverted-cone shaped DLiPC should be unfavorable to residing in the edge region. 

Because of the flexible tails of DLiPC14, the DLiPC might be more adaptable to the edge, at least, 

for DPPC/DLiPC bicelle. Also, we speculate that the less hydrophobic nature of the double bonds 

of polyunsaturated linoleyl tails may affect the DLiPC migration too. For example, because the 

hydrophobic tails would be partly exposed to water at the edge of bicelle (Fig. S4), the unsaturated-

tail/water interface, i.e., less hydrophobic interface, could be favorable for binary 

saturated/unsaturated lipid system. Accordingly, the line tension decreases with the DLiPC 

concentration of DPPC/DLiPC mixture (Fig. 1 (D)). Strictly, each CG lipid model corresponds to 

a range of atomistic structure25, and it might be required systematically to investigate packing in 

multi-lipid systems with all-atom or united atom lipid representation, although it is beyond the 

scope of this work.  
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Conclusions 

We have investigated the bicelle-vesicle transition of a DPPC/DLiPC mixture in aqueous 

solution by CG MD simulations. We have demonstrated that the critical value of the apparent 

concentration of DLiPC for the transition of the DPPC/DLiPC bicelle can be found in the 

concentrations larger than 0.6, and the value significantly decreases when DLiPC lipid molecules 

are forcibly concentrated only in the core region of bicelle. Also, the local DLiPC concentrations 

of a DPPC/DLiPC bicelle can control the spontaneous bending direction of DPPC/DLiPC bicelle 

and the success of vesicle formation. The inhomogeneous lipid distribution in bicelle, which may 

be induced by collapsing bubbles, may relate to the bi-modal size distribution of multi-lipid 

vesicles with sonication at the molecular scale. Our findings suggest that controlling the local lipid 

compositions in a binary lipid bicelle has a potential to determine the success of vesicle formation 

and the direction of bicelle bending, which may be useful information to control encapsulation 

efficiency of nanoliposomes. Numerical information of lipid molecular dynamics associated with 

nanoliposome formation promotes further experimental studies on liposome formation in multi-

lipid mixtures and the development of nanoliposome formation methods for further applications. 
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Local Concentration of DLiPC in DPPC/DLiPC Ribbon 

To calculate the spatial distribution of DLiPC and DPPC molecules in DPPC/DLiPC ribbon, we define 

the local axis (ξ) on the ribbon as the eigenvector of the largest eigenvalue of the gyration tensor on 

the x-z plain. We calculate the local DLiPC concentration as a function of the distance from the center 

of mass (COM) of bilayer ribbon along the ξ-axis. The core region of the bilayer ribbon is defined as 

where the distance from COM along the ξ-axis is within 1 nm and the edge region as where the distance 

from the bilayer edge is within 1 nm. The position of the lipid molecule is represented by that of the 

phosphate bead in the head group of the lipid molecule. Fig. S1 shows the DLiPC concentrations in 

the core and the edge regions as a function of the apparent concentration Cr. As with the bicelle (Fig. 

2(B)), the DLiPC concentration in the core of the bilayer ribbon is lower than the apparent 

concentration Cr. With increasing Cr, the DLiPC concentration in the edge increases and becomes 

saturated around Cr = ~0.4.  

 

Figure S1. The relationship between the local DLiPC concentrations in the core and edge regions and 

the apparent DLiPC concentration of the bilayer ribbon. 
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Figure S2. Representative snapshots of the bicelle-vesicle transition of a DPPC lipid aggregate. The 

lipid (DPPC) molecules are shown in violet and the CG water beads that are enclosed when vesicle 

forms are shown in cyan. Other water beads are not shown. 

 

Structure of small DPPC/DLiPC vesicles 

To investigate the structure of DPPC/DLiPC vesicles for 600 lipid systems, we analyzed the radius 

of gyration tensor gR  as a measure of vesicle sizes and the inner/outer lipid ratio io in outR N N , 

where inN  and outN  are the number of lipids of the inner and outer monolayers, respectively1 (Fig. 

S3). gR  ranges from ~4.5 to ~5.0 nm, and the number of lipids in the inner monolayer is smaller than 

that of the outer monolayer ( io ~ 0.4R  ) due to significant differences in curvatures between inner and 

outer monolayers (e.g., Fig. 1(A)). ioR  increases with gR , and the results are confirmed for single 

lipid vesicles1. Furthermore, we analyzed the inner/outer DLiPC concentration ratio 

   io-DLiPC in-DLiPC in out-DLiP uC o t/ /R N N N N  , where in-DLiPCN   and out-DLiPCN   are the number of 

DLiPC of the inner and outer monolayers, respectively (Fig. S3). The vesicles generated from biased 

initial configurations (Figs. 3 and 4) have a higher DLiPC concentration in the inner monolayer with 

large variations ( io-DLiPC 1.0R   ). On the other hand, the DLiPC concentration is similar between the 

inner and outer monolayers for the vesicles from random initial configurations ( io-DLiPC ~ 1.0R  ). A 
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minor enrichment of DLiPC in the inner monolayer of a vesicle can be found for the DPPC/DLiPC 

vesicle composed of 2,528 lipids with 0.50C  2. 

  

Figure S3. Relationships between ioR  and gR  (upper) and between io-DLiPCR  and gR  

(lower). The black circles show the results for the vesicles from the random configurations, the 

red triangles from the core configurations, and the blue squares from the head-tail with core 

configurations. 
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Figure S4. An enlarged side view of the edge of a DPPC/DLiPC bicelle for 0.50C  . The number 

of CG water beads are reduced for clarity. 
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