ZNF350 promoter methylation accelerates colon cancer cell migration

SUPPLEMENTARY MATERIALS

 $Supplementary\ Table\ 1:\ Primer\ sets\ used\ for\ qPCR\ and\ cloning\ ZNF350\ sequence,\ and\ oliginucleotide\ sequences\ for\ siRNA$

Primers for qPCR				
Targets	primer sequences (5'-3')			
CDH1	forward	TGGAGGAATTCTTGCTTTGC		
	reverse	CGCTCTCCTCCGAAGAAAC		
SNAIL1	forward	GCTGCAGGACTCTAATCCAGA		
	reverse	ATCTCCGGAGGTGGGATG		
ZEB1	forward	GGAGGATGACACAGGAAAGG		
	reverse	TCTGCATCTGACTCGCATTC		
VIM	forward	TGTCCAAATCGATGTGGATGTTTC		
	reverse	TTGTACCATTCTTCTGCCTCCTG		
ZNF350	forward	TCTTGTGTATCTGGAGAAAATAGAGGT		
	reverse	AAGAAATGGTGAACCCCAAA		
<i>GAPDH</i>	forward	AGCCACATCGCTCAGACAC		
	reverse	GCCCAATACGACCAAATCC		
Primers for ZNF350 promo	oter cloning			
ZNF350 (-297)	forward	AAAAACTCGAGTGATAAAGCCTGAGTCTCTGAAAATCTGC		
ZNF350 (-161)	forward	AAAAACTCGAGTTTCAAACATGGCTGCCGTCAGGAGC		
ZNF350 (-56)	forward	AAAAACTCGAGTTCTCCTCGGCCGCCGTAGGTGGACCATAAAC		
ZNF350 (-29)	forward	AAAAACTCGAGTAAACCCGTGCGAGGACTCCAGAAG		
ZNF350 (-13)	forward	AAAAACTCGAGCTCCAGAAGTAGGAGCAGTTTACGGAAG		
ZNF350 (+49)	reverse	AAAAAAAGCTTTCTCCAGATACACAAGAAGGGCCTC		
Primers for ZNF350 coding	g sequence clonin	g		
ZNF350 (ENST00000243644)	forward	AAAAAGGATCCATGATCCAGGCCCAGGAATC		
	reverse	AAAAAGCGGCCGCCTATGGGTTTTCTGTAACATA		
Sequence of siRNAs				
Name		Sequence (5'-3')		
<i>ZNF350</i> siRNA #1	0 siRNA #1 GAAAUCAGGUCUCAUUAAA			
<i>ZNF350</i> siRNA #2		ACAGGAACGUAGUCCUUGU		

Supplementary Table 2: Primers used for pyrosequencing experiment

Region	Forward primer (5'-3')	Reverse primer (5'-3')	Sequencing primer (5'-3')
1	GGAGTTAGGGAAG AAGAGAAGTT	Biotin-AACAATTTAACTT ACCCCATATTTACC	GGAAGAAGAAGTTATTG
2	Biotin-ATTTAAAATGTTTA AAAGAGTAAGGATAAG	TAACTTCTCTTCT TCCCTAACTCC	CTATACCTCCAATTTTCAAACATAA
3	GGTTTTTGGTTTAA AAATTTGTTATTGT	Biotin-AAACCACACACTA ACCTCTATTT	TTGTTTTTTAAATATTTTAGGTTT
4	AGGATTTTAGAAG TAGGAGTAGT	Biotin-ACCACACAC TAACCTCTATT	ATTTTAGAAGTAGGAGTAGTTT

Supplementary Figure 1: Visualization of HCT116 cell migration for isolate MG and non-MG cells after one- or five passages under standard cell culture conditions. The migrating cells were visualized by Diff-Quick staining (left panel). Expression of *CDH1*, *SNAIL1*, *ZEB1*, and *VIM* mRNA in the both types of cells were assayed by qPCR using *GAPDH* mRNA as an endogenous quantitative control. Data are expressed as the mean relative changes \pm SD (n = 4) compared to those in control non-MG cells. *P < 0.05, unpaired Student's t - test.

Supplementary Figure 2: (A) *SNA12* and *TRIM28* mRNA levels in the MG and non-MG cells were assayed by qPCR. mRNA expression in the MG cells was calculated with the comparative $\Delta\Delta$ Ct method using *GAPDH* mRNA as an endogenous quantitative control and are expressed as relative changes compared with their expression in the control non-MG cells. Data are presented as the means \pm SD (n = 4). *P<0.05, unpaired Student's *t*-test. (**B and C**) *SNA12* mRNA levels in the MG cells transfected with mock or ZNF350 vector and in the non-MG cells transfected with siRNAs targeting *ZNF350* were assayed by qPCR. mRNA expression in the MG cells was calculated with the comparative $\Delta\Delta$ Ct method using mock or control siRNA as an endogenous quantitative control and are expressed as the relative changes compared with expression in the control MG cells and non-MC cells. Data are presented as the means \pm SD (n = 4). *P<0.05, unpaired Student's *t*-test.

Supplementary Figure 3: Ingenuity pathway analysis (IPA) of differentially expressed *BRCA1*-related genes in the MG cells, focusing on the functions of migration and invasion of cells. Up-regulated and down-regulated genes in the MG cells are shown in red and green, respectively.