Calyciphylline Fの全合成

2019

佐藤 亮太

目次	
略語表	
序論	
第1章	Calyciphylline F の全合成
第2章	Microwave 照射による新規四級炭素構築法の開発
総括	
宝融佰	

実験項	P.21
参考文献	P.39

P.2

P.4

P.6

P.14

P.19

制托本		D / 1
动杆		P.41

略語表

Ac	acetyl
AIBN	2,2'-azobis(isobutyronitrile)
br	broad
Bn	benzyl
Bu	butyl
d	doublet
DIBAL	diisobutylaluminium hydride
DMAP	N,N-dimethyl-4-aminopyridine
DMF	N,N-dimethylformamide
DMSO	dimethylsulfoxide
equiv	equivalent
ESI	elctrospray ionization
Et	ethyl
EWG	electron withdrawing group
HMPA	hexamethylphosphoric triamide
IR	infrared spectroscopy
KHMDS	potassium hexamethyldisilazide
LRMS	low resolution mass spectrometry
m	multiplet
Me	methyl
Ms	Methanesulfonyl
MW	micro wave
n-	normal
NaHMDS	sodium hexamethyldisilazide
NMR	nuclear magnetic resonance
NOESY	nuclear Overhauser effect spectroscopy
[O]	oxidation
Ph	phenyl
Piv	pivaloyl
ppm	parts per million
q	quartet
quant	quantitative
rt	room temperature
S	singlet
t	triplet
t-	tertiary

TBS	tert-butyldimethylsilyl
temp	temperature
Tf	trifluoromethanesulfonyl
TFA	trifluoroacetic acid
THF	tetrahydrofuran
TLC	thin layer chromatography
TMS	trimethylsilyl
trig	trigonal
Ts	<i>p</i> -toluenesulfonyl
V-40	1,1'-azobis(cyclohexane-1-carbonitrile)
V-70	2,2'-azobis(4-methoxy-2,4-dimethylvaleronitrile)

序論

古来、漢方薬として用いられてきたユズリハ科植物は様々な薬理作用を示すことが知られており、それらの作用因子として多数のユズリハアルカロイド (*Daphniphyllum* alkaloid) 類がこれまでに単離構造 決定されている¹。これらユズリハアルカロイド類は、強力で多様な生物活性を持つだけでなく、それ ぞれが複雑に縮環したユニークな複素環骨格をもつことから、全合成研究の標的化合物としても多くの 注目を集めている²。

Calyciphylline F (1)は 2007 年に北海道大学の小林らによって、ユズリハ科植物の一種である Daphniphyllum calycinum から単離構造決定された新規ユズリハアルカロイドである^{3a}(Figure 1)。構造的 特徴として複雑に縮環したかご型五環性骨格と3つの四級炭素を含む7連続不斉中心を持つ。また、1 が内包するトロパン環に1炭素が架橋した8-アザトリシクロ[4.2.1.0^{4,8}]ノナン骨格は、250種を超える類 縁体が存在するユズリハアルカロイドの中でも、1と同時期に単離構造決定された Calyciphylline D (2)^{3b} のみが有する骨格である。

Figure 1. Calyciphylline F(1)および D(2)の構造的特徴

この特徴的な骨格構造に関しては単離者である小林らによって、次のような生合成仮説が提唱されている (Scheme 1)^{3b}。すなわち、類縁天然物である Daphnimacropine (3)⁴の C7 位の酸化により生じた中間体4 に対して、続く酸化的分解反応により N-C6 結合が形成されることで2 が生じるとする説である。

Scheme 1. 8-アザトリシクロ[4.2.1.0^{4,8}]ノナン骨格構造の生合成仮説

一方で、1 は天然からの供給量が少なく、その詳細な生物活性は明らかになっていないが、同骨格を 有する2においては神経成長因子のmRNA発現促進作用が報告されており^{3b}、1 にも同様の活性が期待 できる。以上のことから、著者はこのユニークな天然物の初の全合成と生物活性評価を視野に入れた効 率的な合成経路の確立を目指し、全合成研究に着手した。 1の全合成において、最大の鍵となるのは複雑なかご型五環性骨格の構築である。1は炭素骨格構築の 足掛かりとなる極性官能基をほとんど持たないため、本骨格構築には新規合成手法の開発が求められた。 そこで、当研究室では1の全合成に先立ち、複雑な五環性骨格構築の基盤となるトロパン環の効率的な 構築法の開発を行い、以下に示す新たな手法を確立した (Scheme 2)⁵。

Scheme 2. ピロールとオキシアリルカチオンとの[4+3]環化付加反応

すなわち、2-シロキシアリルアルコール5をTf₂NHで処理するとオキシアリルカチオン6を生じ、これに対して N-Ns ピロール7を作用させると[4+3]環化付加反応が進行し、トロパン環へと誘導可能なトロピノン8が簡便に得られるというものである。本反応では5あるいは7に予め置換基を導入しておくことで様々な置換様式のトロパン環を一挙に構築することが可能である。

著者は本手法を取り入れた合成経路にて、複雑なかご型五環性骨格構築を含む1の初の全合成を達成 した (Figure 2)。この詳細については第1章に記載する。第2章では、1の合成終盤において課題となっ た三級キサンテート由来の橋頭位ラジカルと、電子不足アルケンとの炭素-炭素結合形成反応に関して、 新たに開発した Microwave (MW)照射を利用した手法について述べる。

Figure 2. 論文概要

Calyciphylline Fの全合成

1-1 合成戦略

序論にて示した[4+3]環化付加反応を鍵反応とした Calciphylline F (1)の合成戦略について Scheme 3 に示す。

Scheme 3. Calyciphylline F (1)の合成戦略

後の構造活性相関研究と類縁体 Calyciphylline D(2)への誘導化を志向し、1の炭素側鎖部位は合成の終 盤でキサンテート 10 に対して橋頭位ラジカル反応を用いて導入する計画を立てた。また、10のかご型 五環性骨格に関しては基盤骨格となる三環性トロピノン 14 より順次環化反応を行うことでジアステレ オ選択的に構築できるものとした。また 14 は[4+3]環化付加反応をより効率的な分子内反応へと適用さ せることで、容易に得られると考えた。すなわち、14 は分子内に *N*-Ns ピロールと 2-シロキシアリルア ルコール部位を有する環化前駆体 9 より効率的に合成できるとした。9 はアルデヒド 15 とジシリルジェ ノールエーテル 16 を向山アルドール反応にてカップリングさせた後、数工程の誘導を行うことにより 得られると考えた。

1-2 分子内[4+3]環化反応前駆体の合成

まず、アルデヒド 15 とジシリルエノールエーテル 16 の合成を行った (Scheme 4)。市販の 2-ホルミル ピロール 17 に対して Wittig 反応により一炭素増炭した後、ピロールの Ns 化を行い、N-Ns ピロール 18 とした。続いて TsOH・H₂O を用いた加水分解反応を行うことでアルデヒド 15 を得た。一方で、シュウ 酸ジエチル 19 に対して、Grignard 剤など種々の増炭剤の検討を行ったところ、ヨードアルカン 20 から 用事調製した有機リチウム試薬を用いることで、収率よく増炭反応が進行し、α-ケトエステル 21 を収 率 67%で得た。続いて TIPSOTf とトリエチルアミンを用いて、21 を *E/Z* = 3:1 の TIPS エノールエーテ ル 22 へと変換した。22 のエステルに対して、HMPA 存在下 MeLi を作用させ、メチルケトンとし、最 後に TMSCI を用いてジシリルジェノールエーテル 16 を得た。16 はシリカゲルカラムによる精製に対し て不安定であったため、粗生成物のまま次の反応に用いることとした。

Scheme 4. アルデヒド 15 およびジシリルジエノールエーテル 16 の合成

続いて分子内[4+3]環化付加反応の前駆体 9 の合成を行った。得られたアルデヒド 15 とジシリルジェ ノールエーテル 16 を向山アルドール反応にてカップリング後、生じた二級水酸基に Ms 基を導入し、 Ms エーテル 23 を合成した (Scheme 5)。次に 23 に対して、種々の塩基、溶媒、温度の検討を行ったが、 目的とするエノン 24 を単一で得ることは難しく、望まないβ,γ-不飽和ケトン 25 との分離困難な混合物 が得られるのみであった。そこで、強力なヒドリド求核剤として知られる LiBHEt₃を用いた還元的除去 を試みたところ、中程度の収率ながらも目的とするケトン 26 を、エノン 24 との混合物として得ること に成功した。最後に得られたケトン 26 とエノン 24 の混合物に対して NaBH₄ を作用させ、全てケトン 26 とした後、ワンポットで Luche 還元を行うことで環化前駆体 9 を合成した。

Scheme 5. 分子内[4+3]環化付加反応前駆体 9 の合成

1-3 分子内[4+3]環化反応と 8-アザトリシクロ[4.2.1.0^{4,8}]ノナン骨格の構築

得られた環化前駆体 9 を用いて、分子内[4+3]環化付加反応の検討を行った。種々条件を検討した結 果、9 をジクロロメタン溶媒中、−78℃で1 当量の Tf₂NH で処理することでオキシアリルカチオン A を 経由した望む分子内[4+3]環化付加反応が円滑に進行することを見出した。本手法により、2 種の三環性 トロピノン 14 および 27 が混合物として得られた (14:27 = 2:1)。この混合物は分離困難であったが、続 く Ns 基の脱保護によって得られたアミン体においてシリカゲルカラムでの分離が可能となり、それぞ れアミン 28 および 29 を得た (Scheme 6)。

Scheme 6. 分子内[4+3]環化付加反応およびアミン 28, 29 の合成

得られたアミン 28 および 29 に対する NOESY 測定の結果を Figure 3 に示す。矢印に示す相関から、 それぞれ C5 位でのジアステレオマーであることが分かった。これにより、両生成物とも分子内[4+3]環 化付加反応において *endo* 型で反応が進行したことが明らかとなった。また、Calyciphylline F (1)の全合 成に利用可能な C5 位の立体化学をもつアミン 28 が主生成物であった。

Figure 3. アミン 28 および 29 に対する NOESY 測定

この立体選択性に関しては、分子内[4+3]環化付加反応が協奏的に進行し、環化前駆体9のエノールエ ーテルの EZ 比が環化体の C5 位のジアステレオマー比に反映されたと考えた (Figure 4)。すなわち、9 の E 体および Z 体がそれぞれ遷移状態 B、C を経て、環化体 14、27 を形成したと現在のところ考察し ている。

Figure 4. 分子内[4+3]環化付加反応の立体選択性

次に C9 位の立体化学の反転と、8-アザトリシクロ[4.2.1.0^{4,8}]ノナン骨格の構築を行った (Scheme 7)。 アミン 28 に対して種々条件を検討した結果、脱気したメタノール溶媒中、炭酸カリウムで処理するこ とで C9 の立体化学の異性化が最も収率よく進行し、所望のジアステレオマー30 を収率 75%で得た。続 いて 30 の二級アミンをアルキル化し、メチルエステル 31 とした。31 に対して THF 溶媒中、-78°C で KHMDS および TMSCI を作用させることで、分子内アルドール反応と続くアルコキシドの保護が進行 し、8-アザトリシクロ[4.2.1.0^{4,8}]ノナン 32 を二工程収率 97%で単一のジアステレオマーとして合成する ことに成功した。

Scheme 7. 8-アザトリシクロ[4.2.1.0.4,8]ノナン 32 の合成

合成した **32** の NOESY 測定の結果を Figure 5 に示す。矢印に示す相関により、**32** の相対立体配置を 決定した。以上、8-アザトリシクロ[4.2.1.0^{4,8}]ノナン骨格を含む Calyciphylline F (1)の四環性骨格の構築を 達成したので、続いてかご型五環性骨格の構築に向け、残る六員環の構築に着手した。

Figure 5. 8-アザトリシクロ[4.2.1.0.4.8]ノナン 32 に対する NOESY 測定

1-4 かご型五環性骨格の構築

まず、メチルエステル 32 に対して Grignard 反応を行い、イソプロピルケトン 33 を収率 78%で合成した (Scheme 8)。続いて、Pd/C 触媒を用いた水素添加反応による 33 の内部オレフィンと Bn 基の除去を試みた。種々条件を検討した結果、1 当量の TFA 存在下で Bn エーテルを活性化した場合でのみ Bn 基の脱保護が進行し、生じた一級水酸基に対して Appel 反応を行い、ヨウ素化することでヨードアルカン 34 を得た。この際、34 と副生成物であるトリフェニルホスフィンオキシドとの分離が困難であったため、混合物のまま次の反応に用いた。34 の混合物に対して、用事調製した SmI₂ を作用させたところ、円滑にラジカル環化反応が進行し、六員環が形成されたアルコール 35 を合成することに成功した。次に 35 に対して三級水酸基の除去を試みたが、酸性条件下での E1 脱離反応は全く進行せず、近傍の TMS エーテル基の立体障害により水酸基を官能基化することも困難であった。

Scheme 8. SmI₂を用いた六員環の構築

以上のことから、三級水酸基を経由しない新たな合成経路を立案した (Scheme 9)。すなわち、四環性 基質 32 に対してまず接触還元を行い、内部オレフィンと Bn 基を除去した後、生じた一級水酸基を TBS 基にて保護し、TBS エーテル 37 とした。続いて 37 のメチルエステル部位に対して、DIBAL 還元と Swern 酸化を行うことにより、アルデヒド 38 を合成した。次に得られた 38 に対して Wittig 反応によるイソプ ロペニル基の導入を試みたが、系内が複雑化し、所望のイソプロペニル 39 は全く得られなかった。そ こで (-)-Spirotryprostatin B の全合成における Carreira らの手法⁶を参考に、より求核性の高い PT スルホ ン **40** を用いた Julia-Kocienski 反応を行ったところ、反応は円滑に進行し、**39** を収率 71%で得ることに 成功した。

Scheme 9. イソプロペニル 39 の合成

次に HF を用いて **39** の 2 つのシリル基を除去し、ジオール **41** を合成した (Scheme 10)。得られた **41** の 1 級水酸基に対して Appel 反応によるヨウ素化を試みたが、目的のヨードアルカン **42** は痕跡量しか 得られず、遊離の三級水酸基との環化反応が進行したテトラヒドロフラン **43** が主生成物として得られ た。そこで、副反応の原因となる三級水酸基を保護した基質を用いて六員環の構築を行うこととした。

Scheme 10. ジオール 41 に対する Appel 反応によるヨウ素化の検討

種々検討を行った結果、ジシリルエーテル 39 に対してメタノール溶媒中、1 当量の TFA を作用させ ることで三級 TMS 基を損なうことなく、一級 TBS 基のみを選択的に脱保護することに成功し、アルコ ール 44 を得た (Scheme 11)。次に 44 を、Finkelstein 反応を含む二工程の変換でヨードアルカン 45 とし た。45 に対して AIBN、水素化トリブチルスズを作用させたところ、6-exo-trig 型のラジカル環化反応が 円滑に進行し、所望の六員環が形成された 46 を 2:1 のジアスレテオマー混合物として得た。これによ り、Calyciphylline F (1)の複雑なかご型五環性骨格の構築に成功した。最後に HF を用いて三級 TMS 基 を脱保護し、アルコール 47 とした。

Scheme 11. かご型五環性骨格 47 の合成

1-5 橋頭位ラジカル反応のモデル検討と Calyciphylline F の全合成

Me

AIBN

全合成に向け、残る課題は四級炭素を含む側鎖の導入である。そこでまず、構造を簡略化したモデル キサンテート 48 を用いて橋頭位ラジカル反応のモデル研究を行った (Table 1)。なお、本検討は少量系 で行ったため、正確な収率は算出できていない。

Table 1. 橋頭位ラジカル反応のモデル研究

まず一般的なラジカル発生条件として、ラジカル開始剤として AIBN、還元剤として水素化トリブチ ルスズを用いて、アクリル酸メチルとの反応を行ったところ、キサンテート 48 からラジカルは全く発 生せず、原料を回収する結果となった (Entry 1)。ラジカルが発生しない原因が、分子内に存在する三級 アミンの孤立電子対にあると考え、Entry 2 では 48 と Tf₂NH を反応させ、三級アミンをプロトン化した 後に同ラジカル条件に付した。すると、ラジカルの発生は確認できたものの、還元体である 50 が得ら

си

NC

V-40

れるのみであった。そこで、より嵩高い還元剤を用いれば、発生した橋頭位ラジカルと還元剤との反応 が抑制できると考え、Entry 3 では嵩高い還元剤として(TMS)₃SiH を用いて反応を行ったところ、ESI-LRMS にて所望の四級炭素が構築された 49 の生成を確認することができた。Entry 4 ではアクリル酸メ チルのポリマー化を抑制するため、温度を 80℃まで下げて反応を行ったが、Entry 3 と同様の結果とな った。また、Entry 5 では原料である 48 を消費するため、130℃まで昇温したが 48 が分解する結果とな った。一方で、Entry 6 ではシリンジポンプを用いて試薬を系中に徐々に加える手法を試みたが、還元体 50 が得られる結果となった。以上より、全合成経路では Entry 3 の条件を用いることとした。

モデル研究での結果を踏まえ、まず、かご型五環性基質 47 の三級水酸基をキサンテート化し、51 と した (Scheme 12)。この際、三級アミンがメチル化された四級アンモニウム塩 52 も副生成物として得ら れた。得られた 51 に対してモデル研究での最適条件を適用したところ、橋頭位ラジカル反応が進行し、 ESI-MS にて所望の四級炭素が構築された Calyciphylline F (1)の生成を確認することができた。

Scheme 12. Calyciphylline F (1)の全合成

以上より終盤の反応条件に改良の余地はあるものの、Calyciphylline F(1)の初の全合成を達成した。また、本合成はピロールとオキシアリルカチオンとの分子内[4+3]環化付加反応を利用した天然物全合成の初の成功例である。

第2章

Microwave 照射による新規四級炭素構築法の開発

2-1 橋頭位ラジカル反応の課題

第1章において Calyciphylline F (1)の全合成は達成したものの、合成終盤の橋頭位ラジカル反応による四級炭素構築には未だ改善の余地を残していた。本反応では、三級キサンテートからラジカルを発生させるために、強酸である Tf₂NH を添加剤として用いていたが、これによりアクリル酸メチルのポリマー化が加速してしまうことが、低収率となる原因であった (Scheme 13)。

Scheme 13. 橋頭位ラジカル反応の問題点

ところで、橋頭位ハライドを含む三級ハライドから発生させたラジカルを用いて、四級炭素を構築し ている例はこれまでに多数の報告例があるものの^{7,8}、より入手容易な三級アルコールから発生させたラ ジカルを用いて分子間炭素-炭素結合を形成している例はこれまでに数例しか報告されていない⁹。最近、 Overman、MacMillan らは三級ラジカルの発生源として、三級アルコールから誘導したシュウ酸塩を用い た光レドックス触媒反応を報告している¹⁰。そこで、モデル三級アルコール 53 を用いてシュウ酸塩へ の誘導化を試みたが、強力な電子求引性基であるシュウ酸と三級アミンが反応した後、望まない転位反 応が進行した構造不明物が得られるのみで、所望のシュウ酸 54 を合成することはできなかった。

Scheme 14. モデル三級アルコール 53 のシュウ酸塩への誘導化

一方で、53の三級アルコールに対してキサンテートの導入は可能であったが、三級キサンテートから 発生させたラジカルを用いた分子間炭素-炭素形成反応は、ビニルスルホンとの一例%を除けば、アリル トリブチルスズとの反応に限定されていた¹¹。以上のことから、三級キサンテートと様々な電子不足ア ルケンとの簡便な分子間炭素-炭素形成反応の開発に取り組んだ。

2-2 三級キサンテートを用いた分子間炭素-炭素結合形成反応の開発

全合成でのモデル研究を意図し、基質として既知の橋頭位キサンテートである 1-アダマンチルキサン テート 55 を設定し¹²、アクリル酸メチル 56a とのラジカル反応条件を模索した (Table 2)。また、全合 成終盤での少量反応を考慮し、シリンジポンプを利用しない条件を試みた。

SMe 56a (Initiator Reducta Solvent 55 Temp, 1				ne uiv) DI%) equiv) A)	CO ₂ Me	
Entry	Initiator	Reductant	Solvent	Temp. (°C)	Time (min)	Yield (%) ^a
1	V-40	Bu₃SnH	PhMe ^b	110	120	27
2	V-40	Bu₃SnH	xylene ^b	140	120	32
3	V-40	Bu₃SnH	xylene	140 (MW)	10	84
4	V-40	Bu₃SnH	PhMe	110 (MW)	10	38
5	V-40	Bu₃SnH	xylene	180 (MW)	10	92
6	V-70	Bu₃SnH	xylene	180 (MW)	10	96
7	AIBN	Bu₃SnH	xylene	180 (MW)	10	99
8	AIBN	(TMS)₃SiH	xylene	180 (MW)	10	99
9 ^c	AIBN	Bu₃SnH	xylene	180 (MW)	10	82
10	AIBN	Bu₃SnH	xylene	180 (MW)	5	99

Table 2. 三級ラジカルの分子間炭素-炭素形成反応の最適化

a. NMR yield using CHBr₃ as an internal standard.

b. The reaction was conducted in 0.075 M solution.

c. 2.5 equiv of 56a was used.

まずトルエン溶媒中、110℃でラジカル開始剤として V-40、還元剤として水素化トリブチルスズを用 いた一般的な条件に付したところ、所望の炭素-炭素結合が形成されたメチルエステル 57a が 27%と低 収率で得られた (Entry 1)。次に反応温度を 140℃に昇温したところ、収率は 32%にわずかに向上した (Entry 2)。一方で、同様の反応を 10 分間の Microwave (MW)照射下で行ったところ、収率は 84%に大幅 に改善された (Entry 3)。Microwave 照射が三級キサンテートからのラジカル反応に効果的であると分か ったので、次に温度の検討を行った。Microwave 照射下、110℃で反応を行ったところ、収率は 32%と低 下した (Entry 4)が、180℃の条件では収率は 92%まで向上した (Entry 5)。次にラジカル開始剤を V-70、 AIBN に変更して反応を行ったところ、いずれも高収率で 57a を与える結果となった (Entries 6, 7)。ま た、水素化トリブチルスズの代わりにシランを還元剤とした場合も、定量的に 57a が得られた (Entry 8)。 一方で、アクリル酸メチル 56a の当量を 2.5 当量まで減らすと、収率は 82%とわずかに低下した (Entry 9)。最後に、反応時間を 5 分間に変更しても、同様に定量的に 57a を与えると分かった (Entry 10)。

以上より、Microwave 照射を利用した分子間炭素-炭素結合形成反応の効果的な条件を見出すことがで きたので、次に様々な電子不足アルケンを用いて、その適応範囲を調査した (Table 3)。

a. NMR yield using CHBr₃ as an internal standard.

b. inseparable from reagents

まず、不飽和エステルとしてフェニルエステル 56b を用いて反応を行ったところ、所望の基質 57b を 収率 96%で合成できた。また、アミド 56c、ニトリル 56d、スルホン 56e のような電子求引性基をもつ 基質においても、それぞれ 99%、99%、85%と高収率で付加体が得られた。一方で、ホスホン酸 56f を 用いた際は、収率が 64%に低下した。次にα置換されたα,β-不飽和エステルを検討した。メチル置換され たアクリロニトリル 56g においても反応は問題なく進行し、付加体を収率 97%で与えた。また、クロロ 置換された 56h においても、官能基を損なうことなく目的物が得られた。遊離のカルボン酸をもつ 56i では中程度の収率ながらも、付加体が得られた。しかしながら、付加体 57h および 57i はシリカゲルカ ラムによる試薬との分離が困難であった。次にβ位にメチル基、フェニル基をもつ 56j、56k を用いて反 応を行ったところ、それぞれ収率 71%、67%で付加体を与えた。シクロペンタン-1-オン 56l においても、 反応は進行したが、22%と低収率であった。また、β位が二置換となった 56m では立体障害の影響が大 きく、反応は全く進行しなかった。

以上のことから、Microwave 照射を利用した本反応は様々な電子不足アルケンに対しても適用可能で あると分かった。そこで次に、橋頭位ではない三級キサンテート基質に対しても本反応が適用できるか を調査した (Table 4)。

a. NMR yield using CHBr₃ as an internal standard.

まず、シクロヘキサン環を有するキサンテート 55b とビニルスルホン 56e との反応を行ったところ、 所望の付加体 58b が収率 68%で合成できた。次に 55b に対してα置換アルケンである 56g を作用させた ところ、58l が収率 59%で得られた。一方で、ホモベンジル位に三級キサンテートを有する 2-インダノ ン誘導体 55c でも Chugaev 脱離を起こすことなく反応が進行し、58c を収率 90%で与えた。また、鎖状 基質 55d においても反応は中程度の収率で進行し、付加体 58d が得られた。したがって、橋頭位キサン テート以外の三級キサンテート基質においても、本反応が有効であることが分かった。

以上より、Microwave 照射を利用することで、三級キサンテート由来の三級ラジカルと、様々な電子 不足アルケンとの新規分子間炭素-炭素結合形成反応を開発することができた¹³。本反応は橋頭位以外の 三級キサンテートと電子不足アルケンとの分子間炭素-炭素結合形成反応の初めての例である。 最後に開発した Microwave 反応を用いて、Calyciphylline F(1)の橋頭位ラジカル反応のモデル研究を行った (Scheme 15)。分子内に電子不足アルケンを有する三級キサンテート 59 に対して、従来の Tf₂NH を 添加したラジカル反応を行うと、還元体 60 が得られるのみであった。一方、今回開発した条件に付し たところ、還元体は全く得られず、所望の四級炭素が構築された七員環ラクトン 61 を定量的に得る結 果となった。61 はメタノリシスを含む変換により、Calyciphylline F(1)へと誘導可能であるので、今後本 手法を全合成経路に取り入れることで、経路の短工程化と総収率向上が期待できる。

Scheme 15. Microwave 照射を用いた橋頭位ラジカル反応のモデル研究

総括

今回、著者はユニークな 8-アザトリシクロ[4.2.1.0^{4,8}]ノナン骨格を有する新規ユズリハアルカロイド である Calyciphylline F (1)の初の全合成を達成した (Scheme 16)。すなわち、分子内に N-Ns ピロールと 2-シロキシアリルアルコール部位を有する前駆体9に対して、分子内[4+3]環化付加反応を用いることで、 三環性トロパン骨格 14 を効率的に構築した。その後、数工程のジアスレテオ選択的な変換により、8-ア ザトリシクロ[4.2.1.0^{4,8}]ノナン骨格を含むかご型五環性骨格 51 を合成した。最後に、51 の三級キサンテ ート部位に対して橋頭位ラジカル反応を用いることで四級炭素を含む炭素側鎖を導入し、Calyciphylline F(1)の初の全合成を達成した。また、本合成はピロールとオキシアリルカチオンとの分子内[4+3]環化付 加反応を利用した天然物全合成の初の成功例である (第一章)。

Scheme 16. Calyciphylline F(1)の全合成

また、効率的な全合成に向けて、三級キサンテート由来の三級ラジカルと、電子不足アルケンとの簡 便な分子間炭素-炭素形成反応を開発した (Scheme 17)。すなわち、様々な三級キサンテート基質に対し、 5 分間の Microwave 照射下、AIBN、水素化トリブチルスズ、電子不足アルケンを 180℃で作用させると、 炭素-炭素結合が円滑に形成され、様々な四級炭素が構築された。

Scheme 17. Microwave 照射を利用した四級炭素構築法の開発

本手法は、容易に入手可能な三級アルコールから簡便に調製できる三級キサンテートを利用しており、 短時間かつ良好な収率で四級炭素の構築が行えるため、全合成分野において有効な手法として利用が期 待できる (第二章)。

General Information

All the reactions were carried out under an argon atmosphere. Tetrahydrofuran (THF) was freshly prepared by distillation from benzophenone ketyl before use. Anhydrous hexane, acetone, CH₂Cl₂, DMF, MeOH, PhMe and xylene were purchased from Kanto Chemical Co. Inc. All commercially obtained reagents were used as received. All microwave-irradiation reaction was carried out with CEM DiscoverTM SP in sealed heavy-walled Pyrex tubes with constant temperature, pressure, and irradiation power (300 W).

NMR spectra were recorded on a JEOL JNM-AL400 (400 MHz), a Bruker AV400N (400 MHz) and AV500N (500 MHz). Chemical shifts were reported in parts per million (ppm), and signals were expressed as singlet (s), doublet (d), triplet (t), quartet (q), multiplet (m) and broad (br). For ¹H NMR spectra (CDCl₃ or CD₃OD), the residual solvent peaks were used as the internal reference (7.26 ppm or 3.31 ppm), whereas the central solvent peak was used as the reference (77.0 ppm) for ¹³C NMR spectra (CDCl₃). Mass spectra were recorded on a Water/Micromass LCT PREMIER. Infrared (IR) spectra were recorded on a JASCO FT/IR-4200 spectrometer using KBr plate. Analytical thin layer chromatography (TLC) was performed with E. Merck pre-coated TLC plates, silica gel 60F-254, layer thickness 0.25 mm. Flash chromatography was performed on Kanto Chemical 60N (0.040-0.050 mm) mesh silica gel. Merck aluminiumoxid 90 aktiv basisch (0.063–0.200 mm) was used for the treatment of basic aluminium oxide.

第1章

2-(2-Methoxyvinyl)-1*H*-pyrrole (18)

To a solution of methoxymethyl triphenylphosphonium chloride (50.2 g, 147 mmol) in THF (88 mL) was added NaHMDS (1.0 M solution in THF, 147 mL, 147 mmol) at 0 °C. After the reaction mixture was stirred at 0 °C for 30 min, a solution of 2-formyl pyrrole **17** (5.00 g, 52.6 mmol) in THF (17 mL) was added. After stirring at 0 °C for 1 h, the reaction was quenched with saturated aqueous NH₄Cl at 0 °C and the mixture was extracted with hexane (x3). The combined organic layers were washed with brine, dried over MgSO₄, filtered and concentrated under reduced pressure. The residue was purified by flash silica gel column chromatography (hexane/EtOAc = 20/1 to 2/1) to give **1S** (quant, E/Z = 1:5) as a purple oil. (*Z*)-**1S**: ¹H NMR (400 MHz, CDCl₃): δ 3.63 (s, 3H), 5.72 (d, *J* = 6.6 Hz, 1H), 5.96 (d, *J* = 6.6 Hz, 1H), 6.04 (m, 1H), 6.15 (m, 1H), 6.75 (m, 1H), 9.18–9.48 (1H, br); (*E*)-**1S**: ¹H NMR (400 MHz, CDCl₃): δ 3.63 (s, 3H), 5.72 (d, *J* = 13.2 Hz, 1H), 6.04 (m, 1H), 6.16 (m, 1H), 6.68 (m, 1H), 6.68 (m, 1H), 6.68 (m, 1H), 6.75 (m, 1H), 5.16 (m, 1H), 5.20 (m, 1H)

2-(2-Methoxyvinyl)-1-(2-nitrophenylsulfonyl)-1H-pyrrole (18)

To a solution of **1S** (2.59 g, 21.0 mmol) in THF (47 mL) was added KHMDS (1.0 M solution in THF, 37.8 mL, 37.8 mmol) at -78 °C. After the reaction mixture was stirred at -60 °C for 30 min, a solution of NsCl (6.98 g, 31.5 mmol) in THF (21 mL) was added. After stirring at -60 °C for 1 h, the reaction was quenched with saturated aqueous NaHCO₃ at -60 °C and the mixture was extracted with EtOAc (x3). The combined organic layers were washed with brine, dried over MgSO₄, filtered and concentrated under reduced pressure. The residue was purified by flash silica gel column chromatography (hexane/EtOAc = 6/1 to 4/1 to 2/1) to give **18** (3.40 g, 53%, *E/Z* = 1:5) as a brown solid. (*Z*)-**18**: ¹H NMR (400 MHz, CDCl₃): δ 3.74 (s, 3H), 5.67 (d, *J* = 7.2 Hz, 1H), 6.06 (d, *J* = 7.2 Hz, 1H), 6.37 (t, *J* = 3.4 Hz, 1H,), 6.78 (m, 1H), 7.20 (m, 1H), 7.27 (m, 1H), 7.61 (m, 1H), 7.71 (m, 1H), 7.81 (m, 1H); (*E*)-**18**: ¹H NMR (400 MHz, CDCl₃): δ 3.59 (s, 3H), 5.90 (d, *J* = 12.8 Hz, 1H), 6.17 (m, 1H), 6.28 (m, 1H), 6.67 (d, *J* = 12.8 Hz, 1H), 7.33 (m, 1H), 7.34 (m, 1H), 7.61 (m, 1H), 7.76 (m, 1H).

2-(1-(2-Nitrophenylsulfonyl)-1H-pyrrol-2-yl)acetaldehyde (15)

To a solution of **18** (1.26 g, 4.09 mmol) in acetone (70 mL) and H₂O (4.0 mL) was added TsOH·H₂O (916 mg, 5.32 mmol) at room temperature. After stirring at 60 °C for 48 h, the reaction was quenched with saturated aqueous NaHCO₃ at 0 °C and the mixture was extracted with EtOAc (x3). The combined organic layers were washed with brine, dride over MgSO₄, filtered and concentrated under reduced pressure. The residue was purified by flash silica gel column chromatography (hexane/EtOAc = 1/1) to give **15** (962 mg, 80%) as a yellow solid. **15**: ¹H NMR (400 MHz, CDCl₃): δ 3.84 (s, 2H), 6.31 (m, 1H), 6.38 (m, 1H), 7.28 (m, 1H), 7.33 (m, 1H), 7.68 (m, 1H), 7.77 (m, 1H), 7.89 (m, 1H), 9.60 (s, 1H).

5-Benzyloxy-3-methyl-2-ethyl-oxopentanoate (21)

To a solution of *t*-BuLi (1.64 M solution in *n*-pentane, 15.8 mL, 25.8 mmol) in hexane (52 mL) and Et₂O (17 mL) was added a solution of iodoalkane **20** (3.0 g, 10.3 mmol) in hexane (17 mL) and Et₂O (6.0 mL) at -100 °C. After stirring at -100 °C for 10 min, the reaction mixture was warmed to -60 °C. After stirring at -60 °C for 30 min, to the mixture was slowly added diethyl oxalate **19** (2.52 mL, 18.6 mmol). After the reaction mixture was stirred at -60 °C for 30 min, the reaction was quenched with saturated aqueous NH₄Cl at -60 °C and the mixture was extracted with EtOAc (x3). The combined organic layers were washed with brine, dried over MgSO₄, filtered and concentrated under reduced pressure. The residue was purified by flash silica gel column chromatography (hexane/EtOAc = 10/1) to give **21** (1.84 g, 67%) as a yellow oil. **21**: ¹H NMR (400 MHz, CDCl₃): δ 7.40–7.28 (m, 5H), 4.41 (d, *J* = 4.0 Hz, 2H), 4.27–4.15 (m, 2H), 3.50–3.38 (m, 3H), 2.10–2.00 (m, 1H), 1.87–1.78 (m, 1H), 1.28 (t, *J* = 7.5 Hz, 3H), 1.17 (d, *J* = 6.7 Hz, 3H).

5-Benzyloxy-3-methyl-2-ethyl(triisopropylsilyloxy)pent-2-enoate (22)

To a solution of **21** (10.2 g, 40.9 mmol) in CH₂Cl₂ (100 mL) were added NEt₃ (17.1 mL, 123 mmol) and TIPSOTF (16.5 mL, 61.4 mmol) at 0 °C. After stirring at room temperature for 12 h, the reaction was quenched with saturated aqueous NaHCO₃ at 0 °C and the mixture was extracted with CH₂Cl₂ (x3). The combined organic layers were dried over MgSO₄, filtered and concentrated under reduced pressure. The residue was purified by flash silica gel column chromatography (hexane/EtOAc = 30/1) to give **22** (quant, E/Z = 3:1) as a colorless oil. (*E*)-**22**: ¹H NMR (400 MHz, CDCl₃): δ 7.37–7.26 (m, 5H), 4.51 (s, 2H), 4.21 (q, *J* = 7.2 Hz, 2H), 3.61 (t, *J* = 6.8 Hz, 2H), 2.71 (t, *J* = 6.8 Hz, 2H), 1.87 (s, 3H), 1.32 (t, *J* = 7.2 Hz, 3H), 1.29–1.16 (m, 21H).

6-Benzyloxy-4-methyl-3-(triisopropylsilyloxy)hex-3-en-2-one (2S)

To a solution of **22** (20.2 g, 48.0 mmol) in THF (120 mL) were added HMPA (41.8 mL, 240 mmol) and MeLi (1.12 M solution in Et₂O, 107 mL, 120 mmol) at -78 °C. After stirring at -78 °C for 1.5 h, the reaction was quenched with saturated aqueous NH₄Cl at -78 °C and the mixture was extracted with EtOAc (x3). The combined organic layers were washed with brine, dried over MgSO₄, filtered and concentrated under reduced pressure. The residue was purified by flash silica gel column chromatography (hexane/EtOAc = 20/1) to give **2S** (17.3 g, 92%, *E/Z* = 3:1) as a colorless oil. (*E*)-**2S**: ¹H NMR (400 MHz, CDCl₃): δ 7.36–7.30 (m, 5H), 4.49 (s, 2H), 3.59 (t, *J* = 6.4 Hz, 2H), 2.53 (t, *J* = 6.4 Hz, 2H), 1.82 (s, 3H), 1.20–0.97 (m, 21H).

8-Benzyloxy-2-hydroxy-6-methyl-1-(1-(4-nitrophenylsulfonyl)-1*H*-pyrrol-2-yl)-5-(triisopropylsilyloxy) oct-5-en-4-one (38)

To a solution of **2S** (2.94 g, 7.52 mmol) in THF (38 mL) was added NaHMDS (1.0 M solution in THF, 15.0 mL, 15.0 mmol) at -78 °C. After stirring at -78 °C for 1 h, TMSCl (2.38 mL, 18.8 mmol) was slowly added and the reaction was warmed to room temperature over 30 min. After stirring at room temperature for additional 30 min, the mixture was concentrated under reduced pressure. The residue was diluted with pentane, then filtered to eliminate the solid particulate. The solution was concentrated under reduced pressure to give the crude **16** as a colorless oil, which was used without further purification.

To a solution of aldehyde **15** (2.43 g, 8.27 mmol) in CH₂Cl₂ (19 mL) was added BF₃·OEt₂ (1.42 mL, 11.3 mmol) at -78 °C. And then a solution of crude **16** (3.48 g, 7.52 mmol) in CH₂Cl₂ (19 mL) was readily added at -78 °C. After stirring at -78 °C for 1 h, the reaction was quenched with saturated aqueous NaHCO₃ at -78 °C and the mixture was extracted with CH₂Cl₂ (x3). The combined organic layers were dried over MgSO₄, filtered and concentrated under reduced pressure. The residue was purified by flash silica gel column chromatography (hexane/EtOAc = 2/1) to give **3S** (3.62 g, 70% for 2 steps, *E/Z* = 3:1) as a brown oil. (*E*)-**3S**: ¹H NMR (400 MHz, CDCl₃): δ 7.86 (m, 1H), 7.71 (m, 1H), 7.63 (m, 1H), 7.35–7.28 (m, 6H), 7.09 (m, 1H), 6.31 (m, 1H), 6.27 (m, 1H), 4.47 (s, 2H), 4.28–4.21 (m, 1H), 3.55 (t, *J* = 6.8 Hz, 2H), 2.93–2.79 (m, 3H), 2.63–2.46 (m, 3H), 1.79 (s, 3H), 1.12–1.00 (m, 21H).

8-Benzyloxy-6-methyl-1-(1-(4-nitrophenylsulfonyl)-1*H*-pyrrol-2-yl)-4-oxo-5-(triisopropylsilyloxy)oct-5-en-2-yl methanesulfonate (23)

To a solution of aldehyde **3S** (4.20 g, 6.13 mmol) in CH₂Cl₂ (31 mL) were added NEt₃ (2.56 mL, 18.4 mmol) and MsCl (860 μ L, 11.0 mmol) at -78 °C. After stirring at -78 °C for 1 h, the reaction was quenched with saturated aqueous NH₄Cl at -78 °C and the mixture was extracted with CH₂Cl₂ (x3). The combined organic layers were dried over MgSO₄, filtered and concentrated under reduced pressure. The residue was purified by flash silica gel column chromatography (hexane/EtOAc = 2/1) to give **23** (4.62 g, 99%, *E/Z* = 3:1) as a brown oil. (*E*)-**23**: ¹H NMR (400 MHz, CDCl₃): δ 7.85–7.82 (m, 1H), 7.78–7.66 (m, 2H), 7.48 (d, *J* = 8.0 Hz, 1H), 7.36–7.27 (m, 6H), 6.31 (m, 2H), 5.38–5.30 (m, 1H), 4.47 (s, 2H), 3.56 (t, *J* = 6.8 Hz, 2H), 3.24–3.09 (m, 3H), 2.95 (s, 3H), 2.86 (dd, *J* = 18.5, 3.6 Hz, 1H), 2.51 (t, *J* = 6.8 Hz, 2H), 1.81 (s, 3H), 1.11–0.96 (m, 21H).

8-Benzyloxy-6-methyl-1-(1-(4-nitrophenylsulfonyl)-1H-pyrrol-2-yl)-5-triisopropylsilyloxyoct-5-en-4-one (26)

To a solution of **23** (3.41 g, 4.47 mmol) in THF (4.5 mL) was added LiBHEt₃ (1.0 M solution in THF, 6.71 mL, 6.71 mmol) at -30 °C using syringe pump over 30 min, then the reaction mixture was warmed to -15 °C. After stirring at -15 °C for 2 h, the reaction was quenched with saturated aqueous NH₄Cl at -15 °C and the mixture was extracted with EtOAc (x3). The combined organic layers were washed with brine, dried over MgSO₄, filtered and concentrated under reduced pressure. The residue was purified by flash silica gel column chromatography (hexane/EtOAc = 4/1) to give mixture of **26** and **24** (2.16 g, 73%, **26**:**24** = 3:1) as a brown oil. (*E*)-**26**: ¹H NMR (400 MHz, CDCl₃): δ 7.86–7.81 (m, 1H), 7.73–7.67 (m, 1H), 7.65–7.58 (m, 1H), 7.39–7.21 (m, 6H), 7.07 (d, *J* = 8.0 Hz, 1H), 6.31–6.25 (m, 2H), 4.47 (s, 2H), 3.57 (t, *J* = 6.8 Hz, 2H), 2.63–2.56 (m, 3H), 2.55–2.48 (m, 1H), 2.43 (t, *J* = 6.8 Hz, 2H), 1.86–1.80 (m, 2H), 1.80 (s, 3H), 1.12–0.96 (m, 21H).

(3aR,7S,8aS)-7-(2-benzyloxyethyl)-7-methyl-1,2,3,6,7,8a-hexahydro-8H-3a,6-epiminoazulen-8-one (28)

To a solution of **26** (4.66 g, 6.97 mmol) in THF (17 mL) and MeOH (52 mL) was added CeCl₃·7H₂O (13.0 g, 34.9 mmol) at room temperature. After stirring at room temperature for 20 min, NaBH₄ (1.32 g, 34.9 mmol) was added by 3 portions. After stirring at room temperature for 12 h, the reaction was quenched with saturated aqueous NH₄Cl and small amount of 1M HCl solution at 0 °C and the mixture was extracted with EtOAc (x3). The combined organic layers were washed with saturated aqueous NaHCO₃, brine, dried over MgSO₄, filtered. The solution was concentrated under reduced pressure to give crude **9** as a colorless oil, which was used without further purification. To a solution of crude **9** (8.63 mg, 0.0129 mmol) in CH₂Cl₂ (260 µL) was added a solution of Tf₂NH (3.63 mg, 0.0129 mmol) in CH₂Cl₂ (50 µL) at -78 °C. After stirring at -78 °C for 30 min, the reaction was quenched with saturated aqueous NaHCO₃ at -78 °C and the mixture was extracted with CH₂Cl₂ (x3). The combined organic layers were dried over MgSO₄, filtered and concentrated under reduced pressure. The residue was purified by flash silica

gel column chromatography (hexane/EtOAc = 3/1) to give a mixture of 14 and 27 (3.50 mg, 55%, 14:27 = 2:1) as a brown oil.

To a solution of a mixture of **14** and **27** (36.5 mg, 0.0735 mmol) in DMF (740 µL) were added K₂CO₃ (61.0 mg, 0.441 mmol) and PhSH (30.0 µL, 0.294 mmol) at 0 °C. After stirring at room temperature for 1 h, the reaction was quenched with saturated aqueous NH₄Cl at 0 °C and the mixture was extracted with Et₂O (x3). The combined organic layers were washed with brine, dried over MgSO₄, filtered and concentrated under reduced pressure. The residue was purified by flash silica gel column chromatography (hexane/EtOAc = 1/1 to CHCl₃/MeOH = 30/1) to give **28** (11.1 mg, 73%) and **29**, respectively as a yellow oil. **28**: ¹H NMR (500 MHz, CDCl₃): δ 7.34–7.27 (m, 5H), 6.33 (dd, *J* = 5.7, 1.9 Hz, 1H), 6.07 (d, *J* = 5.7 Hz, 1H), 4.43 (d, *J* = 11.7 Hz, 1H), 4.39 (d, *J* = 11.7 Hz, 1H), 3.75 (d, *J* = 1.9 Hz, 1H), 3.62–3.57 (m, 1H), 3.45–3.40 (m, 1H), 2.96 (dd, *J* = 11.7, 7.6 Hz, 1H), 2.43 (m, 1H), 2.10–1.47 (m, 7H), 0.99 (s, 3H); **29**: ¹H NMR (500 MHz, CDCl₃): δ 7.36–7.30 (m, 5H), 6.37 (dd, *J* = 5.7, 2.5 Hz, 1H), 4.47 (d, *J* = 12.0 Hz, 1H), 3.74 (d, *J* = 2.5 Hz, 1H), 3.61 (t, *J* = 7.6 Hz, 2H), 2.31 (t, *J* = 9.8 Hz, 1H), 2.10–1.54 (m, 8H), 1.32 (s, 3H).

(3aR,7S,8aR)-7-(2-benzyloxyethyl)-7-methyl-1,2,3,6,7,8a-hexahydro-8H-3a,6-epiminoazulen-8-one (30)

To a solution of **28** (16.4 mg, 0.0527 mmol) in MeOH (260 μ L) was degassed by freeze-thaw procedure (x3), then K₂CO₃ (9.47 mg, 0.0685 mmol) was added at room temperature. After stirring at room temperature for 1 h, the reaction was quenched with saturated aqueous NH₄Cl at 0 °C and the mixture was extracted with Et₂O (x5). The combined organic layers were washed with brine, dried over MgSO₄, filtered and concentrated under reduced pressure. The residue was purified by flash silica gel column chromatography (hexane/EtOAc = 2/1) to give **30** (12.3 mg, 75%) as a yellow oil. **30**: ¹H NMR (400 MHz, CDCl₃): δ 7.38–7.29 (m, 5H), 6.28 (dd, *J* = 5.4, 1.7 Hz, 1H), 6.24 (d, *J* = 5.4 Hz, 1H), 4.48 (br s, 2H), 3.82 (br s, 1H), 3.63–3.53 (m, 2H), 2.29 (t, *J* = 8.8 Hz, 1H), 2.20–2.12 (m, 1H), 2.08–1.61 (m, 7H), 0.96 (s, 3H).

(3*S*,4*S*,6*S*,6*aR*,9*aS*,10*S*)-10-(2-Benzyloxyethyl)-10-methyl-6-trimethylsilyloxy-5,6,6*a*,7,8,9-hexahydro-3*H*-3,6-methanocyclopenta[g]pyrrolizine-5-methylcarboxylate (32)

To a solution of **30** (18.9 mg, 0.0607 mmol) in DMF (300 μ L) were added K₂CO₃ (41.9 mg, 0.304 mmol) and methyl bromoacetate (20.2 μ L, 0.212 mmol) at room temperature. After stirring at 30 °C for 12 h, the reaction was cooled to room temperature and quenched with saturated aqueous NH₄Cl at 0 °C and the mixture was extracted with Et₂O (x3). The combined organic layers were washed with brine, dried over MgSO₄, filtered and concentrated under reduced pressure. The residue was purified by flash silica gel column chromatography (hexane/EtOAc = 3/1) to give a mixture of **31** and methyl bromoacetate (28.2 mg) as a yellow oil.

To a solution of a mixture of **31** and methyl bromoacetate (28.2 mg) in THF (600 µL) were added KHMDS (1.0 M solution in THF, 91.1 µL, 0.0911 mmol) and TMSCl (13.8 µL, 0.109 mmol) at -78 °C. After stirring at -78 °C for 30 min, the reaction was quenched with saturated aqueous NH₄Cl at -78 °C and the mixture was extracted with EtOAc (x3). The combined organic layers were washed with brine, dried over MgSO₄, filtered and concentrated under reduced pressure. The residue was purified by flash silica gel column chromatography (hexane/EtOAc = 5/1 to EtOAc/MeOH = 10/1) to give **32** (26.9 mg, 97% for 2 steps, single stereoisomer) as a colorless oil. **32**: ¹H NMR (400 MHz, CDCl₃): δ 7.34–7.30 (m, 5H), 5.87 (d, *J* = 5.8 Hz, 1H), 5.83 (dd, *J* = 5.8, 2.7 Hz, 1H), 4.46 (br s, 2H), 4.14 (d, *J* = 2.7 Hz, 1H), 3.71 (s, 3H), 3.54–3.48 (m, 3H), 2.23 (t, *J* = 8.5 Hz, 1H), 2.06–1.98 (m, 1H), 1.87–1.31 (m, 7H), 0.88 (s, 3H), 0.17 (s, 9H).

(3*S*,4*S*,6*S*,6a*R*,9a*S*,10*S*)-10-(2*-tert*-Butyldimethylsilyloxyethyl)-10-methyl-6-(trimethylsilyloxy)octahydro-1*H*-3,6-methanocyclopenta[g]pyrrolizine-5-methylcarboxylate (37)

To a solution of **32** (162 mg, 0.356 mmol) in MeOH (3.6 mL) were added TFA (27.4 μ L, 0.356 mmol) and Pd/C (81 mg, 50 wt%) at room temperature. The reaction mixture was stirred under hydrogen atmosphere at room temperature for 12 h, then flushed with argon, filtered, and concentrated under reduced pressure to give **4S** as a white solid. The crude **4S** was used for next reaction without further purification.

To a solution of crude 4S in CH₂Cl₂ (3.6 mL) were added imidazole (291 mg, 4.27 mmol), DMAP (21.7 mg, 0.178

mmol) and TBSCl (430 mg, 2.85 mmol) at room temperature. After stirring at room temperature for 12 h, the reaction was quenched with H₂O at 0 °C and the mixture was extracted with EtOAc (x3). The combined organic layers were washed with brine, dried over MgSO₄, filtered and concentrated under reduced pressure. The residue was purified by flash silica gel column chromatography (hexane/EtOAc = 1/1 to 1/2) to give **37** (150 mg, 88% for 2 steps) as a colorless oil. **37**: ¹H NMR (400 MHz, CDCl₃): δ 3.77 (t, *J* = 8.0 Hz, 1H), 3.72 (s, 3H), 3.66–3.59 (m, 3H), 2.10–1.50 (m, 13H), 0.91 (s, 3H), 0.87 (9H), 0.18 (s, 9H), 0.02 (s, 6H).

(3*S*,4*S*,6*S*,6a*R*,9a*S*,10*S*)-10-(2-*tert*-Butyldimethylsilyloxyethyl)-10-methyl-6-(trimethylsilyloxy)octahydro-1*H*-3,6-methanocyclopenta[g]pyrrolizin-5-yl)methanol (5S)

To a solution of **37** (150 mg, 0.312 mmol) in CH₂Cl₂ (3.1 mL) was added DIBAL (1.03 M solution in *n*-hexane, 1.52 mL, 1.56 mmol) at -15 °C. After stirring at -15 °C for 40 min, the reaction was quenched with saturated aqueous solution of potassium tartrate at -15 °C and the mixture was extracted with EtOAc (x6). The combined organic layers were washed with brine, dried over MgSO₄, filtered and concentrated under reduced pressure. The residue was purified by flash silica gel column chromatography (EtOAc/MeOH = 4/1) to give **5S** (140 mg, 99%) as a colorless oil. **5S**: ¹H NMR (400 MHz, CDCl₃): δ 5.06 (br s, 1H), 3.86 (t, *J* = 11.0 Hz, 1H), 3.79–3.70 (m, 2H), 3.64 (dd, *J* = 12.4, 7.8 Hz, 2H), 3.03 (d, *J* = 7.8 Hz, 1H), 2.07–1.34 (m, 13H), 0.90 (s, 3H), 0.84 (s, 9H), 0.10 (s, 9H), -0.01 (s, 6H).

(3*S*,4*S*,6*S*,6a*R*,9a*S*,10*S*)-10-(2*-tert*-Butyldimethylsilyloxyethyl)-10-methyl-6-(trimethylsilyloxy)octahydro-1*H*-3,6-methanocyclopenta[g]pyrrolizine-5-carbaldehyde (38)

To a solution of DMSO (177 μ L, 2.50 mmol) in CH₂Cl₂ (2.1 mL) was added oxalyl chloride (107 μ L, 1.25 mmol) at -78 °C. After stirring at -78 °C for 30 min, a solution of **5S** (140 mg, 0.312 mmol) in CH₂Cl₂ (2.1 mL) was added at -78 °C. After the mixture was stirred at -78 °C for 30 min, NEt₃ (522 μ L, 3.74 mmol) was added and the reaction mixture was warmed up to 0 °C. After stirring at 0 °C for 1 h, the reaction was quenched with saturated aqueous NaHCO₃ at 0 °C and the mixture was extracted with EtOAc (x6). The combined organic layers were washed with

brine, dried over MgSO₄, filtered and concentrated under reduced pressure. The residue was purified by flash silica gel column chromatography (hexane/EtOAc = 1/1 to 0/1) to give **38** (117 mg, 83%) as a colorless oil. **38**: ¹H NMR (400 MHz, CDCl₃): δ 9.96 (s, 1H), 3.76 (d, J = 6.3 Hz, 1H), 3.65–3.59 (m, 2H), 3.31 (s, 1H), 2.10–1.23 (m, 13H), 0.95 (s, 3H), 0.86 (s, 9H), 0.18 (s, 9H), 0.01 (s, 6H)..

(3*S*,4*S*,6*S*,6a*R*,9a*S*,10*S*)-10-(2-*tert*-Butyldimethylsilyloxyethyl)-10-methyl-5-(2-methylprop-1-en-1-yl)-6-(trimethylsilyloxy)octahydro-*1H*-3,6-methanocyclopenta[g]pyrrolizine (39)

To a solution of PT-sulfone **40** (197 mg, 0.780 mmol) in THF (2.6 mL) was added KHMDS (1.0 M solution in THF, 780 μ L, 0.780 mmol) at -78 °C. After stirring at -78 °C for 30 min, a solution of **38** (117 mg, 0.260 mmol) in THF (2.6 mL) was added at -78 °C. After the mixture was stirred at -78 °C for 1 h, the reaction mixture was slowly warmed to room temperature. After stirring at room temperature for 12 h, the reaction was quenched with saturated aqueous NH₄Cl at 0 °C and the mixture was extracted with EtOAc (x3). The combined organic layers were dried over MgSO₄, filtered and concentrated under reduced pressure. The residue was purified by flash silica gel column chromatography (hexane/EtOAc = 1/1 to 0/1) to give **39** (88.2 mg, 71%) as a colorless oil. **39**: ¹H NMR (400 MHz, CDCl₃): δ 5.41 (d, *J* = 7.1 Hz, 1H), 4.40 (d, *J* = 5.1 Hz, 1H), 4,10 (d, *J* = 7.1 Hz, 1H), 3.77–3.66 (m, 2H), 2.34–1.50 (m, 11H), 1.75 (s, 3H), 1.69 (s, 3H), 1.44–1.35 (m, 2H), 1.03 (s, 3H), 0.87 (s, 9H), 0.05 (s, 6H).

2-((3*S*,4*S*,6*S*,6a*R*,9a*S*,10*S*)-10-Methyl-5-(2-methylprop-1-en-1-yl)-6-(trimethylsilyloxy)octahydro-1*H*-3,6-methanocyclopenta[g]pyrrolizin-10-yl)ethan-1-ol (44)

To a solution of **39** (110 mg, 0.230 mmol) in MeOH (4.6 mL) was added TFA (26.4 μ L, 0.345 mmol) at 0 °C. Then the reaction mixture was warmed to room temperature. After stirring at room temperature for 12 h, the mixture was concentrated under reduced pressure. The residue was purified by flash silica gel column chromatography (hexane/EtOAc = 1/1 to EtOAc/MeOH = 4/1) to give 44 (75.3 mg, 90%) as a white solid. 44: ¹H NMR (400 MHz, CD₃OD): δ 5.45 (d, *J* = 7.6 Hz, 1H), 4.63 (br s, 1H), 4.36 (d, *J* = 7.6 Hz, 1H), 3.72–3.62 (m, 2H), 2.69 (t, *J* = 8.5

Hz, 1H), 2.44–1.42 (m, 12H), 1.83 (s, 3H), 1.76 (s, 3H), 1.10 (s, 3H), 0.19 (s, 9H).

2-((3*S*,4*S*,6*S*,6a*R*,9a*S*,10*S*)-10-Methyl-5-(2-methylprop-1-en-1-yl)-6-(trimethylsilyloxy)octahydro-1*H*-3,6methanocyclopenta[g]pyrrolizin-10-yl)ethyl methanesulfonate (6S)

To a solution of **44** (75.3 mg, 0.207 mmol) in CH₂Cl₂ (2.1 mL) were added NEt₃ (86.6 μ L, 0.621 mmol) and MsCl (29.0 μ L, 0.373 mmol) at -78 °C. After stirring at -78 °C for 40 min, the reaction was quenched with saturated aqueous NaHCO₃ at -78 °C and the mixture was extracted with EtOAc (x6). The combined organic layers were dried over MgSO₄, filtered and concentrated under reduced pressure. The residue was purified by flash silica gel column chromatography (EtOAc/MeOH = 10/1 to 4/1) to give **6S** (71.8 mg, 78%) as a colorless oil. **6S**: ¹H NMR (400 MHz, CD₃OD): δ 5.41 (d, *J* = 7.3 Hz, 1H), 4.41–4.34 (m, 2H), 4.22 (br s, 2H), 3.09 (s, 3H), 2.58–2.50 (m, 2H), 2.35–2.29 (m, 1H), 2.17–1.59 (m, 10H), 1.83 (s, 3H), 1.70 (s, 3H), 1.11 (s, 3H), 0.22 (s, 9H).

(3*S*,4*S*,6*S*,6a*R*,9a*S*,10*S*)-10-(2-Iodoethyl)-10-methyl-5-(2-methylprop-1-en-1-yl)-6-(trimethylsilyloxy)octahydro-1*H*-3,6-methanocyclopenta[g]pyrrolizine (45)

To a solution of **6S** (71.8 mg, 0.163 mmol) in acetone (1.6 mL) was added NaI (29.3 mg, 0.196 mmol) at room temperature. Then the reaction mixture was heated up to 80 °C. After stirring at 80 °C for 1 h, the reaction mixture was cooled to room temperature and quenched with H₂O, extracted with EtOAc (x6). The combined organic layers were dried over MgSO₄, filtered and concentrated under reduced pressure. The residue was purified by flash silica gel column chromatography (EtOAc/MeOH = 9/1) to give **45** (72.4 mg, 94%) as a colorless oil. **45**: ¹H NMR (400 MHz, CDCl₃): δ 5.25 (d, *J* = 6.6 Hz, 1H), 3.87 (d, *J* = 7.1 Hz, 1H), 3.83 (d, *J* = 6.6 Hz, 1H), 3.07–3.02 (m, 2H), 2.64–2.54 (m, 1H), 2.18–1.40 (m, 12H), 1.73 (s, 3H), 1.64 (s, 3H), 0.91 (s, 3H), 0.12 (s, 9H).

(3a*S*,4*S*,4a*S*,5*R*,8*S*,8a*S*,8b*R*,9*S*)-5-Isopropyl-8-methyl-8a-(trimethylsilyloxy)decahydro-4,8,3a-(epipropane[1,1,3]triyl)cyclopenta[b]indole (46)

To a solution of **45** (31.2 mg, 0.0659 mmol) in PhMe (1.3 mL) were added Bu₃SnH (43.2 μ L, 0.165 mmol) and AIBN (3.25 mg, 0.0198 mmol) at room temperature. The reaction mixture was degassed by freeze-thaw procedure (x3), heated up to 110 °C. After stirring at 110 °C for 1 h, the reaction mixture was cooled to room temperature and concentrated under reduced pressure. The residue was purified by flash silica gel column chromatography (hexane/EtOAc = 1/1 to EtOAc/MeOH = 4/1 to 2/1) to give **46** (21.0 mg, 92%, dr = 2:1) as a colorless oil. **46** (major): ¹H NMR (400 MHz, CD₃OD): δ 3.95 (t, *J* = 5.3 Hz, 1H), 3.40 (br s, 1H), 2.32 (t, *J* = 8.8 Hz, 1H), 2.25–1.17 (m, 16H), 1.03 (s, 3H), 1.01 (d, *J* = 4.5 Hz, 3H), 0.97 (d, *J* = 6.5 Hz, 3H), 0.20 (s, 9H).

(3a*S*,4*S*,4a*S*,5*R*,8*S*,8a*S*,8b*R*,9*S*)-5-Isopropyl-8-methyloctahydro-4,8,3a-(epipropane[1,1,3]triyl)cyclopenta[b]indol-8a(4aH)-ol (47)

To a solution of **46** (21.0 mg, 0.0604 mmol) in THF (900 μ L) was added 46% HF in H₂O (300 μ L) at 0 °C. After stirring at 0 °C for 30 min, TMSOMe (300 μ L) was added. The reaction mixture was stirred at room temperature for additional 10 min, then concentrated under reduced pressure. The residue was purified by basic aluminium oxide (CHCl₃) to give **47** (13.1 mg, 79%) as a white solid. **47** (major): ¹H NMR (400 MHz, CD₃OD): δ 3.47 (br d, *J* = 6.5 Hz, 1H), 3.01 (d, *J* = 1.6 Hz, 1H), 2.00–1.23 (m, 17H), 0.98 (d, *J* = 6.8 Hz, 3H), 0.93 (d, *J* = 6.8 Hz, 3H), 0.89 (s, 3H).

Calyciphylline F (1)

To a solution of **47** (0.068 mg, 0.247 µmol) in THF (49 µL) was added NaH (57.1% in oil, 0.933 mg, 22.2 µmol) at room temperature. After stirring at room temperature for 1 h, CS₂ (1.12 µL, 18.5 µmol) was added. The reaction mixture was stirred at room temperature for 1 h, then MeI (1.15 µL, 18.5 µmol) was added. After stirring at room temperature for 12 h, the reaction mixture was quenched with saturated aqueous NH₄Cl at 0 °C and the mixture was extracted with CHCl₃ (x6). The combined organic layers were dried over MgSO₄, filtered and concentrated under reduced pressure. The residue was purified by silica gel column chromatography (hexane to MeOH) to give **51** as a colorless oil. **51**: LCMS (ESI): m/z [M+Na]⁺ calcd for C₂₀H₃₁NNaOS₂ 388.17, found 388.35. To a solution of **51** (0.045 mg, 0.123 µmol) in PhMe (62 µL) was added a solution of Tf₂NH (0.0346 mg, 0.123 µL) in PhMe (31 µL) at room temperature. After stirring at room temperature for 10 min, (TMS)₃SiH (0.949 µL, 2.95 µmol), a solution of V-40 (0.0751 mg, 0.308 µmol) in PhMe (31 µL) and methyl acrylate (1.33 µL, 14.8 µmol) were added at room temperature. The reaction mixture was degassed by freeze-thaw procedure (x3), heated up to 110 °C. After stirring at 110 °C for 12 h, the mixture was cooled to room temperature, concentrated under reduced pressure. **1**: LRMS (ESI): m/z [M+Na]⁺ calcd for C₂₂H₃₅NNaO₂ 368.2565, found 368.4663.

Typical

Procedure for the synthesis of xanthates and microwave-assisted radical reaction.

To a solution of tertiary alcohol **7S** (82.1 mg, 0.477 mmol) in THF (2.4 mL) was added KHMDS (1.0 M solution in THF, 1.43 mL, 1.43 mmol) at 0 °C. After stirring at room temperature for 1 h, CS₂ (86.3 μ L, 1.43 mmol) was added to the reaction mixture. The mixture was stirred at room temperature for 20 min. Then MeI (89.1 μ L, 1.43 mmol) was added. After stirring at room temperature for 1 h, the reaction was quenched with saturated aqueous NH₄Cl at 0 °C and the mixture was extracted with EtOAc (x3). The combined organic layers were washed with brine, dried over MgSO₄, filtered and concentrated under reduced pressure. The residue was purified by flash silica gel column chromatography (hexane/EtOAc = 20/1) containing *N*,*N*-dimethylaniline to give xanthate **55b** (67.2 mg, 54%) as a yellow oil. **55b**: ¹H NMR (400 MHz, CDCl₃): δ 3.93 (br s, 4H), 2.46 (s, 3H), 1.82–1.70 (m, 6H), 1.60–1.57 (m, 2H), 1.21 (s, 3H).

To a solution of **55b** (10.3 mg, 0.0393 mmol) in xylene (2.0 mL) were added Bu₃SnH (21.7 μ L, 0.0786 mmol), AIBN (2.58 mg, 0.0157 mmol) and phenyl vinyl sulfone **56e** (33.1 mg, 0.197 mmol) at room temperature. The reaction mixture was degassed by freeze-thaw procedure (x3), heated under microwave irradiation at 180 °C for 5 min. After being cooled to room temperature, the resultant mixture was concentrated under reduced pressure. The residue was purified by silica gel column chromatography (hexane/EtOAc = 1/0 to 10/1) to give **58b** (8.6 mg, 68%) as a white solid. **58b**: m.p. 102–104 °C; ¹H NMR (500 MHz, CDCl₃): δ 7.90 (d, *J* = 7.5 Hz, 2 H), 7.67 (t, *J* = 7.5 Hz, 1H), 7.58 (t, *J* = 7.5 Hz, 2 H), 3.90 (t, *J* = 4.0 Hz, 4H), 3.05 (dd, *J* = 13.0, 8.5 Hz, 2H), 1.66 (dd, *J* = 13.0, 9.0 Hz, 2H), 1.60–1.50 (m, 4H), 1.39–1.34 (m, 4H), 0.88 (s, 3H); ¹³C NMR (125 MHz, CDCl₃): δ 139.0, 133.7, 129.3, 128.0, 108.6, 64.18, 64.15, 52.1, 34.5, 31.6, 30.6; IR (KBr): 2932, 1447, 1306, 1149, 1088, 746, 689 cm⁻¹; HRMS (ESI): m/z [M+H]⁺ calcd for C₁₇H₂₅O₄S 325.1474, found 325.1462.

3-Adamantanyl-methylpropanoate (57a)

colorless oil; ¹H NMR (500 MHz, CDCl₃): δ 3.66 (s, 3H), 2.26 (t, *J* = 8.5 Hz, 2H), 1.98 (br s, 3H), 1.70 (d, *J* = 12.0 Hz, 3H), 1.61 (d, *J* = 12.0 Hz, 3H), 1.45 (br d, *J* = 2.0 Hz, 6H), 1.42 (t, *J* = 8.5 Hz, 2H); ¹³C NMR (125 MHz, CDCl₃): δ 175.2, 51.5, 42.0, 38.9, 37.0, 31.9, 28.6, 27.9; IR (KBr): 2901, 2844, 1740, 1450, 1304, 1195, 1149, 1103, 774 cm⁻¹; HRMS (ESI): m/z [M+H]⁺ calcd for C₁₄H₂₃O₂ 223.1698, found 223.1691.

3-Adamantanyl-phenylpropanoate (57b)

a white solid; m.p. 43–46 °C; ¹H NMR (500 MHz, CDCl₃): δ 7.37 (t, J = 7.5 Hz, 2H), 7.22 (t, J = 7.5 Hz, 1H), 7.07 (d, J = 7.5 Hz, 2H), 2.52 (t, J = 8.0 Hz, 2H), 1.98 (br s, 3H), 1.72 (d, J = 12.0 Hz, 3H), 1.64 (d, J = 12.0 Hz, 3H), 1.57–1.52 (m, 8H); ¹³C NMR (125 MHz, CDCl₃): δ 173.2, 150.8, 129.4, 125.7, 121.5, 42.0, 38.9, 37.0, 32.0, 28.6, 28.4; IR (KBr): 2902, 2846, 1761, 1493, 1454, 1197, 1163, 1128 cm⁻¹; HRMS (ESI): m/z [M+H]⁺ calcd for C₁₉H₂₅O₂ 285.1855, found

285.1867.

3-Adamantanyl-*N*,*N*-dimethylpropanamide (57c)

NMe₂ yellow oil; ¹H NMR (500 MHz, CDCl₃): δ 3.00 (s, 3H), 2.93 (s, 3H), 2.26 (t, J = 8.5 Hz, 2H), 1.95 (br s, 3H), 1.70 (d, J = 12.0 Hz, 3H), 1.62 (d, J = 12.0 Hz, 3H), 1.48 (br d, J = 2.5 Hz, 6H), 1.41 (t, J = 8.5 Hz, 2H); ¹³C NMR (125 MHz, CDCl₃): δ 174.0, 42.1, 39.3, 37.4, 37.1, 35.4, 32.0, 28.6, 27.0; IR (KBr): 2902, 2845, 2359, 1647, 1507, 1396 cm⁻¹; HRMS (ESI): m/z [M+H]⁺ calcd for C₁₅H₂₆NO 252.1964, found 252.1973.

3-Adamantanyl-propanenitrile (57d)

white solid; 265–267 °C (dec.); ¹H NMR (500 MHz, CDCl₃): δ 2.27 (t, *J* = 7.5 Hz, 2H), 1.98 (br s, 3H), 1.72 (d, *J* = 12.0 Hz, 3H), 1.61 (d, *J* = 12.0 Hz, 3H), 1.48 (br d, *J* = 2.5 Hz, 6H), 1.50–1.47 (m, 2H); ¹³C NMR (125 MHz, CDCl₃): δ 121.0, 41.6, 39.4, 36.8, 32.1, 28.3, 11.0; IR (KBr): 2902, 2350, 2308, 1099, 671, 651 cm⁻¹; HRMS (ESI): m/z [M+H]⁺ calcd for C₁₃H₂₀N 190.1596, found 190.1591.

1-(2-Phenylsulfonyl)ethyl-adamantane (57e)

colorless oil; ¹H NMR (500 MHz, CDCl₃): δ 7.90 (d, J = 7.0 Hz, 2H), 7.66 (t, J = 7.5 H, 1H), 7.57 (d, J = 7.5 Hz, 2H), 3.06 (m, 2H), 1.93 (br s, 3H), 1.68 (d, J = 12.0 Hz, 3H), 1.56 (d, J = 12.0 Hz, 3H), 1.47 (dd, J = 8.8, 8.5 Hz, 2H), 1.40 (br d, J = 2.5 Hz, 6H); ¹³C NMR (125 MHz, CDCl₃): δ 139.2, 133.6, 129.2, 128.0, 51.3, 41.9, 36.8, 35.8, 31.8, 28.4; IR (KBr): 2901, 2846, 2349, 2308, 1508, 1447, 1304, 1151, 1088, 688 cm⁻¹; HRMS (ESI): m/z [M+H]⁺ calcd for C₁₈H₂₅O₂S 305.1575, found

305.1581.

2-Adamantanyl-(diethyl)ethylphosphonate (57f)

colorless oil; ¹H NMR (500 MHz, CDCl₃): δ 4.09 (q, J = 8.0 Hz, 4H), 1.96 (br s, 3H), 1.70 (d, J = 9.5 Hz, 3H), 1.65–1.61 (m, 5H), 1.44 (br s, 6H), 1.37–1.31 (m, 8H); ¹³C NMR (125 MHz, CDCl₃): δ 61.5, 61.4, 41.7, 37.0, 36.0, 32.1, 28.5, 19.6, 16.5; IR (KBr): 2906, 2358, 2308, 1064, 681 cm⁻¹; HRMS (ESI): m/z [M+H]⁺ calcd for C₁₆H₃₀O₃P 301.1933, found 301.1935.

3-Adamantanyl-2-methyl-propanenitrile (57g)

colorless oil; ¹H NMR (500 MHz, CDCl₃): δ 2.63 (m, 1H), 1.98 (br s, 3H), 1.71 (d, J = 12.5 Hz, 3H), 1.63 (d, J = 12.5 Hz, 3H), 1.61–1.53 (m, 8H), 1.32 (d, J = 7.0 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃): δ 124.6, 48.9, 42.2, 36.8, 32.6, 28.4, 20.6, 19.2; IR (KBr): 2905, 2354, 1731, 1101, 586 cm⁻¹; HRMS (ESI): m/z [M+H]⁺ calcd for C₁₄H₂₂N 204.1752, found 204.1743.

2-Adamantanyl-(diethyl)ethylmalonate (57j)

colorless oil; ¹H NMR (500 MHz, CDCl₃): δ 4.18 (m, 4H), 3.56 (d, J = 5.0 Hz, 1H), 2.07 (dd, J = 7.5, 5.0 Hz, 1H), 1.96 (br s, 3H), 1.68 (d, J = 12.0 Hz, 3H), 1.60 (d, J = 12.0 Hz, 3H), 1.53 (d, J = 12.5 Hz, 3H), 1.48 (d, J = 12.5 Hz, 3H), 1.27–1.24 (m, 6H), 0.97 (d, J = 7.5 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃): δ 170.4, 169.8, 61.3, 60.9, 51.8, 43.1, 39.3,

^{57j} 37.0, 35.2, 28.6, 14.1, 10.4; IR (KBr): 2904, 2848, 1731, 1300, 1220, 1150, 1033 cm⁻¹; HRMS (ESI): m/z [M+H]⁺ calcd for C₁₉H₃₁O₄ 323.2222, found 323.2207.

2-Adamantanyl-(diethyl)phenylmethylmalonate (57k)

white solid; m.p. 60–63 °C; ¹H NMR (500 MHz, CDCl₃): δ 7.23–7.11 (m, 5H), 4.28–4.18 (m, 2H), 4.00 (d, J = 11.0 Hz, 1H), 3.73–3.65 (m, 2H), 3.33 (d, J = 11.0 Hz, 1H), 1.91 (br s, 3H), 1.61 (d, J = 13.0 Hz, 3H), 1.52–1.48 (overlapped, 9H), 1.30 (t, J = 7.5 Hz, 3H), 0.77 (t, J = 7.0 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃): δ 169.6, 168.4, 138.8, 127.2,126.4, 61.7, 61.1, 56.1, 53.5, 39.9, 36.7,

^{57K} 36.1, 28.5, 14.0, 13.4; IR (KBr): 2903, 2849, 1761, 1731, 1302, 1150, 1033, 705 cm⁻¹; HRMS (ESI): m/z [M+H]⁺ calcd for C₂₄H₃₃O₄ 385.2379, found 385.2376.

3-Adamantanyl-cyclopentan-1-one (57l)

white solid; m.p. 55–58 °C; ¹H NMR (500 MHz, CDCl₃): δ 2.31 (dd, J = 18.5, 8.5 Hz, 1H), 2.19–2.09 (m, 2H), 2.01–1.95 (m, 4H), 1.84–1.82 (m, 1H), 1.73 (d, J = 12.0 Hz, 3H), 1.66 (d, J = 12.0 Hz, 3H), 1.63–1.53 (m, 5H), 1.48 (d, J = 12.0 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃): δ 220.2, 48.8, 40.0, 39.2, 38.9, 37.2, 33.4, 28.4, 22.5; IR (KBr): 2903, 2847, 1744 cm⁻¹; HRMS (ESI): m/z [M+H]⁺ calcd for C₁₅H₂₃O 219.1749, found 219.1748.

8-Methyl-8-(2-(phenylsulfonylethyl)-1,4-dioxaspiro[4.5]decane (58b)

57I

white solid; mp. 102–104 °C; ¹H NMR (500 MHz, CDCl₃): δ 7.90 (d, J = 7.5 Hz, 2 H), 7.67 (t, J = 7.5 Hz, 1H), 7.58 (t, J = 7.5 Hz, 2 H), 3.90 (t, J = 4.0 Hz, 4H), 3.05 (dd, J = 13.0, 8.5 Hz, 2H), 1.66 (dd, J = 13.0, 9.0 Hz, 2H), 1.60–1.50 (m, 4H), 1.39–1.34 (m, 4H), 0.88

(s, 3H); ¹³C NMR (125 MHz, CDCl₃): δ 139.0, 133.7, 129.3, 128.0, 108.6, 64.18, 64.15, 52.1, 34.5, 31.6, 30.6; IR (KBr): 2932, 1447, 1306, 1149, 1088, 746, 689 cm⁻¹; HRMS (ESI): m/z [M+H]⁺ calcd for C₁₇H₂₅O₄S 325.1474,

found 325.1462.

2-Methyl-3-(8-methyl-1,4-dioxaspiro[4.5]decan-8-yl)propanenitrile (58l)

yellow oil; ¹H NMR (500 MHz, CDCl₃): δ 3.93 (s, 4H), 2.62 (td, J = 8.5, 6.5 Hz, 1H), 1.82 (dd, J = 14.5, 9.8 Hz, 1H), 1.67–1.44 (m, 9H), 1.45 (d, J = 8.5 Hz, 3H), 1.04 (s, 3H); ¹³C NMR (125 MHz, CDCl₃): δ 124.1, 108.6, 64.21, 64.16, 35.0, 34.7, 32.4,

30.7, 30.6, 20.7, 20.4; IR (KBr): 3777, 1463, 1371, 1272, 1186, 1103, 1037, 952 cm⁻¹; HRMS (ESI): m/z [M+H]⁺ calcd for $C_{13}H_{22}NO_2$ 224.1651, found 224.1659.

2-Methyl-2-(2-(phenylsulfonyl)ethyl)-2,3-dihydro-1H-indene (58c)

 $\begin{array}{c} \textbf{So_2Ph} \\ \textbf{Me} \\ \textbf{So_2Ph} \\ \textbf{So_2$

53.8, 45.8, 42.2, 34.0, 26.1; IR (KBr): 2925, 1304, 772 cm⁻¹; HRMS (ESI): m/z [M+H]⁺ calcd for C₁₈H₂₁O₂S 301.1262, found 301.1256.

Phenyl 4,4-dimethyl-5-phenylpentanoate (58d)

Colorless oil; ¹H NMR (500 MHz, CDCl₃) δ 7.40–7.36 (m, 3H), 7.30–7.16 (m, 3H), 7.15 (d, J = 7.0 Hz, 2H), 7.07 (d, J = 7.5 Hz, 2H), 2.62–2.57 (m, 4H), 1.73 (t, J = 8.0 Hz, 2H), 0.93 (s, 6H); ¹³C NMR (125 MHz, CDCl₃): δ 172.7, 150.7, 138.6, 130.6, 129.4, 127.8, 126.0, 125.7, 121.5, 48.3, 36.6, 34.0, 29.9, 26.3; IR (KBr): 2961, 1760, 1493, 1196, 1163, 1133, 701 cm⁻¹; HRMS (ESI): m/z [M+H]⁺ calcd for C₁₉H₂₃O₂ 283.1698, found 283.1708.

(3a*S*,6*S*,7*S*,12a*R*,12b*S*)-13,13-dimethyl-1,2,3,7a,8,11,12,12b-octahydro-6*H*,10*H*-6,12a-methanocyclopenta[h] oxepino[4,3-b]pyrrolizin-10-one (61)

To a solution of **59** (3.2 mg, 0.00843 mmol) in xylene (420 μ L) were added Bu₃SnH (4.65 μ L, 0.0169 mmol), V-40 (0.820 mg, 0.00337 mmol) at room temperature. The reaction mixture was degassed by freeze-thaw procedure (x3),

heated under microwave irradiation at 180 °C for 10 min. After being cooled to room temperature, the resultant mixture was concentrated under reduced pressure. The residue was purified by silica gel column chromatography (hexane/EtOAc = 1/0 to 0/1) to give **61** (quant) as a colorless. **61**: ¹H NMR (400 MHz, CDCl₃): δ 6.00 (d, *J* = 5.8 Hz, 1H), 5.97 (dd, *J* = 5.8, 2.8 Hz, 1H), 4.39–4.29 (m, 2H), 3.69 (d, *J* = 2.8 Hz, 1H), 3.37 (d, *J* = 7.8 Hz, 1H), 2.84 (t, *J* = 8.5 Hz, 1H), 2.53–2.47 (m, 2H), 2.10–1.22 (m, 8H), 1.08 (s, 3H), 1.02 (s, 3H).

- (a) Kobayashi, J.; Kubota, T. *Nat. Prod. Rep.* 2009, 26, 936. (b) Wu, H.; Zhang, X.; Ding, L.; Chen, S.; Yang, J.; Xu, X. *Planta Med.* 2013, 79, 1589.
- Examples of total syntheses of *Daphniphyllum* alkaloids, see (a) Ruggeri, R. B.; Hansen, M. M.; Heathcock, C. H. *J. Am. Chem. Soc.* **1988**, *110*, 8734. (b) Heathcock, C. H.; Davidsen, S. K.; Mills, S.; Sanner, M. A. *J. Am. Chem. Soc.* **1986**, *108*, 5650. (c) Ruggeri, R. B.; Heathcock, C. H. *J. Org. Chem.* **1990**, *55*, 3714. (d) Stafford, J. A.; Heathcock, C. H. *J. Org. Chem.* **1990**, *55*, 3714. (d) Stafford, J. A.; Heathcock, C. H. *J. Org. Chem.* **1990**, *55*, 3714. (d) Stafford, J. A.; Heathcock, C. H. *J. Org. Chem.* **1990**, *55*, 5433. (e) Heathcock, C. H.; Kath, J. C.; Ruggeri, R. B. *J. Org. Chem.* **1995**, *60*, 1120. (f) Heathcock, C. H.; Stafford, J. A.; Clark, D. L. *J. Org. Chem.* **1992**, *57*, 2575. (g) Ruggeri, R. B.; McClure, K. F.; Heathcock, C. H. *J. Am. Chem. Soc.* **1989**, *111*, 1530. (h) Piettre, S.; Heathcock, C. H. *Science* **1990**, *248*, 1532. (i) Weiss, M. E.; Carreira, E. M. *Angew. Chem. Int. Ed.* **2011**, *50*, 11501. (j) Lu, Z.; Li, Y.; Deng, J.; Li, A. *Nat. Chem.* **2013**, *5*, 679. (k) Shvartsbart, A.; Smith, A. B., III *J. Am. Chem. Soc.* **2014**, *136*, 870. (l) Yamada, R.; Adachi, Y.; Yokoshima, S.; Fukuyama, T. *Angew. Chem. Int. Ed.* **2016**, *55*, 6067. (m) Chattopadhyay, A. K.; Ly, V. L.; Jakkepally, S.; Berger, G.; Hanessian, S. *Angew. Chem. Int. Ed.* **2016**, *55*, 2577. (n) Li, J.; Zhang, W.; Zhang, F.; Chen, Y.; Li, A. *J. Am. Chem. Soc.* **2017**, *139*, 14893. (o) Chen, Y.; Zhang, W.; Ren, L.; Li, J.; Li, A. *Angew. Chem. Int. Ed.* **2018**, *57*, 952. (p) Zhang, W.; Ding, M.; Li, J.; Guo, Z.; Lu, M.; Chen, Y.; Liu, L.; Shen, Y. H.; Li, A. *J. Am. Chem. Soc.* **2018**, *140*, 4227.
- (a) Saito, S.; Kubota, T.; Kobayashi, J. *Tetrahedron Lett.* 2007, 48, 3809. (b) Saito, S.; Kubota, T.; Fukushi, E.; Kawabata, J.; Zhang, H.; Kobayashi, J. *Org. Lett.* 2007, 9, 1207.
- 4. Kamijo, N.; Nakano, T.; Terao, S.; Osaki, K. Tetrahedron Lett. 1966, 2889.
- (a) Fuchigami, R.; Namba, K.; Tanino, K. *Tetrahedron Lett.* 2012, *53*, 5725. (b) Shibata, M.; Ryuichi, F.; Kotaka, R.; Namba, K.; Tanino, K. *Tetrahedron* 2015, *71*, 4495. (c) Okamoto, T.; Shibata, M.; Karanjit, S.; Nakayama, A.; Yoshida, M.; Namba, K. *Chem. Eur. J.* 2018, *24*, 9508.
- 6. Marti, C.; Carreira, E. M. J. Am. Chem. Soc. 2005, 127, 11505.
- Selected recent examples of tertiary carbon radical reactions from bridgehead tertiary halide, see (a) Ryu, I.; Uehara, S.; Hirao, S.; Fukuyama, T. Org. Lett. 2008, 10, 1005. (b) Studer, A.; Amrein, S.; Schleth, F.; Schulte, T.; Walton, J. C. J. Am. Chem. Soc. 2003, 125, 5276. (c) Jang, D. O.; Cho, D. H.; Chung, C. M. Synlett, 2001, 1923.
 (d) Olofsson, K.; Kim, S. Y.; Larhed, M.; Curran, D. P.; Hallberg, A. J. Org. Chem. 1999, 64, 4539. (e) Kraus, G. A.; Siclovan, T. M.; Watoson, B. Synlett, 1995, 201. (f) Ohno, M.; Ishizaki, K.; Eguchi, S. J. Org. Chem. 1998, 53, 1285.
- Selected recent examples of tertiary carbon radical reactions from tertiary halides other than bridgehead halides, see (a) Wu, X.; Hao, W.; Ye, K. Y.; Jiang, B.; Pombar, G.; Song, Z.; Lin, S. *J. Am. Chem. Soc.* 2018, *140*, 14836. (b) García-Domínguez, A.; Li, Z.; Nevado, C. *J. Am. Chem. Soc.* 2017, *139*, 6835. (c) Guiard, J.; Rahali, Y.; Praly, J. P. *Eur. J. Org. Chem.* 2014, 4461. (d) Ueda, M.; Miyabe, H.; Nishimura, A.; Miyata, O.; Takemoto, Y.; Naito, T. *Org. Lett.* 2003, *5*, 3835.
- 9. (a) Lackner, G. L.; Quasdorf, K. W.; Pratsch, G.; Overman, L. E. J. Am. Chem. Soc. 2013, 135, 15342. (b) Lackner, G. L.; Quasdorf, K. W.; Pratsch, G.; Overman, L. E. J. Org. Chem. 2015, 80, 6012. (c) Togo, H.; Matsubayashi, S.; Yamazaki, O.; Yokoyama, M. J. Org. Chem. 2000, 65, 2816.

- 10. Nawrat, C. C.; Jamison, C. R.; Slutskyy, Y.; MacMillan, D. W. C.; Overman, L. E. J. Am. Chem. Soc. 2015, 137, 11270.
- (a) Mandhapati, A. R.; Kato, T.; Matsushita, T.; Ksebati, B.; Vasella, A.; Böttger, E. C.; Crich, D. J. Org. Chem.
 2015, 80, 1754. (b) Sunazuka, T.; Yoshida, K.; Kojima, N.; Shirahata, T.; Hirose, T.; Handa, M.; Yamamoto, D.; Harigaya, Y.; Kuwajima, I.; Omura, S. *Tetrahedron Lett.* 2005, 46, 1459. (c) Blazejewski, J. C.; Diter, P.; Warchol, T.; Wakselman, C. *Tetrahedron Lett.* 2001, 42, 859. (d) Chen, M. Y.; Fang, J. M.; Yeun, M.; Yeh, R. L. J. Chem. Soc., Chem. Commun. 1991, 22, 1603.
- 12. Park, H. S.; Lee, H. Y.; Kim, Y. H. Org. Lett. 2005, 7, 3187.
- 13. Sato, R.; Okamoto, R.; Ishizuka, T.; Nakayama, A.; Karanjit, S.; Namba, K. Chem. Lett. 2019, in press.

謝辞

本研究に際し、御指導、御鞭撻を賜りました徳島大学大学院医歯薬学研究部教授 難波康祐 先生に謹ん で感謝申し上げます。

本研究を行うにあたり、有益な御助言と激励を賜りました徳島大学大学院医歯薬学研究部助教 中山淳 先生、Kranjit Sangita 先生に深く感謝いたします。

また、天然物 Calyciphylline F の¹H NMR チャートを提供して下さった北海道大学薬学研究院 小林淳一 名誉教授、昭和薬科大学薬学部 久保田高明 教授に感謝申し上げます。

本研究を遂行するに当たり、様々な知見を提供して下さいました前任者の 淵上龍一 博士、古高涼太 氏、また共に御尽力して頂きました共同研究者の 岡本龍治 氏、石塚匠 氏に深く感謝します。

共に楽しく研究生活を過ごした有機合成薬学分野の仲間の皆様に深く感謝します。

最後に、これまで著者を温かく応援してくれた家族、友人に心から感謝します。

2019年3月

佐藤亮太