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Abstract 

Purpose: Angiotensin II (ANG II) has been shown to affect iron metabolism through alteration of iron 

transporters, leading to increased cellular and tissue iron contents. Serum ferritin, a marker of body iron 

storage, is elevated in various cardiovascular diseases, including hypertension. However, the associated 

changes in iron absorption and the mechanism underlying increased iron content in a hypertensive state 

remain unclear. 

Methods: C57BL6/J mice were treated with ANG II to generate a model of hypertension. Mice were 

divided into 3 groups: (1) control, (2) ANG II-treated, and (3) ANG II-treated and ANG II receptor 

blocker (ARB)-administered (ANG II-ARB) groups. 

Results: Mice treated with ANG II showed increased serum ferritin levels compared to vehicle-treated 

control mice. In ANG II-treated mice, duodenal divalent metal transporter-1 (DMT1) and ferroportin 

(FPN) expression levels were increased and hepatic hepcidin mRNA expression and serum hepcidin 

concentration were reduced. The mRNA expression of bone morphogenetic protein 6 (BMP6) and 

CCAAT/enhancer binding protein alpha (C/EBPα), which are regulators of hepcidin, was also 

down-regulated in the livers of ANG II-treated mice. In terms of tissue iron content, macrophage iron 

content and renal iron content were increased by ANG II treatment, and these increases were associated 
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with reduced expression of transferrin receptor 1 and FPN and increased expression of ferritin. These 

changes induced by ANG II treatment were ameliorated by administration of an ARB. 

Conclusions: ANG II altered the expression of duodenal iron transporters and reduced hepcidin levels, 

contributing to the alteration of body iron distribution. 

Keywords: iron metabolism, angiotensin II, hepcidin, ferritin
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Introduction 

Iron is an essential trace metal for almost all living organisms. However, excess iron can harm 

tissues by causing oxidative stress through the production of hydroxyl radicals via the 

Fenton/Haber-Weiss reaction [1]. Therefore, intracellular iron levels are tightly regulated by iron 

transporters and iron-binding proteins, and in normal physiological states, iron is stored in complexes 

with various proteins, such as metalloproteins, heme complexes, and oxygen carrier proteins [2]. 

Iron metabolism is affected by various factors, including hyperglycemia [3] and tumor necrosis 

factor-α (TNF-α) [4], through alteration of the expression of iron transporters such as transferrin receptor 

(TfR), divalent metal transporter-1 (DMT1), and ferroportin (FPN). In fact, stress-induced changes in iron 

transporter expression increase intracellular iron content, leading to oxidative stress. Angiotensin II (ANG 

II) is a critical hormone that acts as a vasoconstrictor and blood pressure regulator, which affects the 

function of the heart, vasculature, kidneys, and brain [5]. ANG II has also been shown to be relevant to 

insulin resistance [6], which was shown to be prevented by treatment with an angiotensin-converting 

enzyme inhibitor or an ANG II receptor blocker [7,8]. In terms of the relationship between ANG II and iron, 

ANG II was shown to increase tissue iron content in the liver [9], kidneys [10], and cardiovascular organs 

[11,12], as well as change the expression of iron transporters in the kidneys [13] and glomerular endothelial 



 5 

cells [14]. Patients with hypertension [15] and insulin resistance [16] showed increased body iron content, 

as estimated by serum ferritin levels. We hypothesized that ANG II increases iron absorption by 

modulating iron transporter expression in the duodenum and contributes to elevated body iron storage. 

However, the role of ANG II in duodenal iron absorption and its related regulators remain unclear. 

In the present study, we demonstrated that duodenal DMT1 and FPN expression were increased, and 

hepatic hepcidin and bone morphogenetic protein 6 (BMP6) were decreased in ANG II-induced 

hypertensive mice, which contributed to increased iron content in macrophages and elevated serum ferritin 

levels. This is the first report of the effects of ANG II on duodenal iron transporters, hepatic hepcidin, and 

body iron storage. 

 

Methods 

Chemicals and reagents 

The following commercially available antibodies were used for this study: anti-ferritin heavy chain (FTH) 

and anti-ferritin light chain (FTL) antibodies, anti-NRAMP2 (DMT1) antibody (Santa Cruz 

Biotechnology; Santa Cruz, CA, USA); anti-hypoxia inducible factor-2α (HIF-2α) antibody (Abcam 

Japan; Tokyo, Japan); anti-transferrin receptor 1 (TfR1) antibody (Invitrogen; Carlsbad, CA, USA); 
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anti-ferroportin (FPN) antibody (Alpha Diagnostics; San Antonio, TX, USA), and an anti-β-actin 

antibody as a loading control (Cell Signaling Technology; Beverly, MA, USA). Olmesartan was kindly 

provided by Daiichi Sankyo Co. Ltd. (Tokyo, Japan). 

Experimental animals and treatment 

All animal experimental procedures were performed in accordance with the guidelines of the Animal 

Research Committee of the University of Tokushima Graduate School, and all protocols were approved 

by the Tokushima University Institutional Review Board for animal protection. We used 6-week-old male 

C57BL6/J mice, which had free access to food (Type NMF; 10 mg Fe/100 g food; Oriental Yeast; Tokyo, 

Japan) and water during the study. The mice were subcutaneously infused with ANG II (WAKO; Tokyo, 

Japan) at a rate of 2.0 mg·kg-1·day-1 for 4 weeks by an osmotic mini-pump (Alzet model 1004; Alza 

Corp.; Mountain View, CA, USA) or were sham-infused. At 8 weeks of age, the ANG II-infused mice 

were divided into 2 groups: 1 group was orally administered olmesartan, an ANG II type 1 (AT1) 

receptor blocker (ARB) at a rate of 3 mg·kg-1·day-1 in 0.5% carboxymethylcellulose, and the other group 

was administered vehicle only. Mice were maintained on their respective treatments for 2 weeks, and then 

sacrificed by an injection of overdose pentobarbital and used for analysis. 

Macrophage extraction 
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Peritoneal macrophages were harvested from the experimental mice for use in this study. In brief, the 

mice were anesthetized and intraperitoneally injected with 5 mL of ice-cold, sterilized phosphate-buffered 

saline (PBS) buffer. The distended abdomen was lightly massaged for 3 minutes, and then the PBS was 

recovered from the abdominal cavity. The recovered PBS buffer was centrifuged to pellet peritoneal 

macrophages. 

Measurement of serum ferritin levels 

Serum ferritin levels were measured using a Mouse Ferritin enzyme-linked immunosorbent assay 

(ELISA) kit (Immunology Consultants Laboratory, Newberg, OR, USA) according to the manufacturer’s 

instructions. Serum was diluted by 20% and used for assay. 

Measurement of serum iron levels and tissue iron concentrations in the liver, spleen, and kidney, and in 

peritoneal macrophages 

Serum iron levels were measured using an iron assay kit according to the manufacturer’s instructions 

(Metallo Assay; Metallogenics Co., Ltd.; Chiba, Japan). Tissue iron concentrations were measured using 

the Metallo Assay kit as previously described [17,18]. In brief, the extracted tissues were weighed or 

protein levels were measured and then the tissues were mechanically homogenized in cell lysis buffer. 
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The crude lysates were further homogenized with an ultrasonic sonicator and then the crude lysate was 

mixed with HCl (0.01 M final concentration) and incubated at room temperature for 30 min. The lysate 

was then centrifuged at 4°C for 15 min, and the supernatant was used in the iron measurement assay. 

Tissue iron concentration was normalized to tissue wet weight or protein concentration and is expressed 

as ng·g−1 tissue or ng⋅μg−1 protein. 

Measurement of serum hepcidin-1 levels 

Serum mouse hepcidin concentrations were measured by surface-enhanced laser 

desorption/ionization-time-of-flight mass-spectrometry as previously described [17]. The assay was 

performed by Medical Care Proteomics Biotechnology Co., Ltd. (Kanazawa, Japan). 

Quantitative measurement of mRNA expression levels 

The methods of total RNA extraction, cDNA synthesis, and quantitative real-time reverse 

transcription-polymerase chain reaction (RT-PCR) were described in detail in our previous manuscript 

[19]. The primer sets used were as follows: 5′-GAAGGTTGGCTGGAATTTGA-3′ and 

5′-ACCTCGCTCACCTTGAAGAA-3′ for mouse BMP6, 5′-AATCTTCCTGCAGCCTTTGA-3′ and 

5′-ATCTCCACGTGACTCCCAAG-3′ for mouse Hfe2, 5′-GTGGACAAGAACAGCAACGA-3′ and 
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5′-TCACTGGTCAACTCCAGCAC-3′ for mouse C/EBPα, 5′-CTGCCTGTCTCCTGCTTCTC-3′ and 5′- 

AGATGCAGATGGGGAAGTTG-3′ for mouse hepcidin-1, 5′-ATTTCTGAGAGCCCAGACGA-3′ and 

5′-CCATTTGCTTCCTCCAACAT-3′ for mouse CD11c, 5′-CTGTAACCGGATGGCAAACT-3′ and 

5′-CTGTACCCACATGGCTGATG-3′ for mouse F4/80, 5′-AAGCTGTAGTTTTTGTCACC-3′ and 

5′-GGGCAGATGCAGTTTTAA-3′ for mouse monocyte chemoattractant protein-1 (MCP-1), 

5′-CTAAGTGGCCTGTGGGTGAT-3′ and 5′-CGAAGTCCTTTGCAGACCTC-3′ for mouse 

hypoxia-inducible factor-2α (HIF2-α), 5′-GAAGGCCCAGCGTATTTGTA-3′ and 

5′-ACGGTTCTCATGGGAGTGAC-3′ for mouse duodenal cytochrome B (Dcytb), 

5′-TGATGAAGCTGCAGAACCAG-3′ and 5′-GTGCACACTCCATTGCATTC-3′ for mouse ferritin 

heavy chain (FTH), 5′-AATGGGGTAAAACCCAGGAG-3′ and 5′-AGATCCAAGAGGGCCTGATT-3′ 

for mouse ferritin light chain (FTL), and 5′-GCTCCAAGCAGATGCAGCA-3′ and 

5′-CCGGATGTGAGGCAGCAG-3′ for 36B4 (an internal control). 

Western blotting 

Protein expression levels were evaluated by western blot analysis. In brief, protein extracts from tissue 

samples were homogenized in T-PER reagent (Thermo Fisher Scientific Inc.; Rockford, IL, USA) with a 

protease inhibitor cocktail and a phosphatase inhibitor (Roche Applied Science; Indianapolis, IN, USA) 
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as previously described [19]. Semi-quantitative analysis of the immunoblot bands by densitometry was 

performed using Image J 1.38x software. 

Histological analysis 

The spleen of each mouse was extracted, fixed in paraformaldehyde, and embedded in paraffin. Samples 

were cut into 3-µm sections and stained with Perl’s Prussian blue to evaluate splenic iron accumulation. 

Electrophoretic mobility-shift assay (EMSA) 

The interaction between iron regulatory protein (IRP) and iron responsive element (IRE) was measured 

using an EMSA kit according to the manufacturer’s instructions (LightShift Chemiluminescent RNA 

EMSA Kit; Thermo Fisher Scientific Inc.; Rockford, IL USA). Semi-quantitative analysis of the 

immunoblot bands by densitometry was performed using Image J 1.38x software. 

Statistical analysis 

Data are expressed as the means ± standard error of the mean (SEM). For comparisons among 3 groups, 

statistical significance was confirmed by using two-way analysis of variance and the significance of each 

difference was determined by post-hoc testing using the Tukey-Kramer method. P-values less than 0.05 

were considered statistically significant. 
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Results 

Characteristics of experimental mice 

We first evaluated the effect of ANG II on body weight, hematological characteristics, blood pressure, 

and iron status. As shown in Table 1, there were no significant differences in final body weight among the 

control, ANG II, and ANG II-ARB groups. No significant differences were seen in hematological 

characteristics, although hemoglobin and hematocrit levels tended to be higher in the ANGII and 

ANGII-ARB groups.  Systolic and diastolic blood pressures were elevated by ANG II treatment, and 

ANG II-increased blood pressure was reduced to control levels by olmesartan. There was no difference in 

heart rate among the 3 groups. The mean serum iron concentration in mice treated with ANG II was 

significantly lower than that in control mice, and olmesartan reversed the ANG II-induced serum iron 

reduction. Serum ferritin levels were significantly higher in ANG II-treated mice than in control mice, 

and olmesartan reduced these increased serum ferritin levels. 

Changes in duodenal iron transporter expression induced by ANG II treatment 
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The expression of FPN and DMT1 protein increased in the duodenum of ANG II-treated mice, and these 

changes were reversed by olmesartan administration (Fig. 1). HIF-2D plays a crucial role in duodenal iron 

absorption because it transcriptonally regulates DMT1 and FPN but is itself translationally regulated by 

IRPs [20]. Mice treated with ANG II showed increased duodenal HIF-2D mRNA and protein expression 

levels, which were reduced by olmesartan administration. Dcytb, a target gene of HIF-2D� tended to be 

increased by ANG II stimulation, and the change was partly suppressed by olmesartan. 

Effect of ANG II on the BMP6-hepcidin axis 

Hepatic hepcidin plays a crucial role in interstitial iron absorption through FPN [21], and the BMP6 

signaling pathway is upstream of hepcidin expression [22,23]. We examined the effect of ANG II on 

BMP6-hepcidin signaling in the liver. As shown Fig. 2, BMP6 and hepcidin mRNA expression was lower 

in the livers of ANG II-infused mice than in control mice, and this decrease was ameliorated and further 

elevated by olmesartan administration. In contrast, Hfe2 mRNA expression was higher in the livers of 

ANGII-treated mice, which was restored to baseline levels by olmesartan. Expression of 

CCAAT/enhancer binding protein (C/EBP), a transcription factor for hepcidin [24], was reduced by ANG 

II treatment, and this was also reversed by olmesartan administration (Fig. 2d). Consistent with the 

hepatic expression findings, the serum hepcidin concentration was significantly lower in ANG II-treated 
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mice than in control mice. Consistent with the mRNA levels, the ANG II-induced serum hepcidin 

reduction was also reversed and further increased by olmesartan administration (control mice, 91.0 ± 7.1 

ng/mL; ANG II mice, 60.7 ± 5.2 ng/mL; ANG II+ARB mice, 153 ± 11.3 ng/mL). 

Iron contents in the liver, spleen, and kidney 

Next, we examined the effect of ANG II on tissue iron content. Unexpectedly, no differences in iron 

content among the 3 groups were seen in the liver or spleen (Fig. 2f). Conversely, renal iron content was 

higher in ANG II-treated mice, and this was suppressed by olmesartan treatment (Table 2). 

ANG II increased iron content and altered iron transporter expression in peritoneal macrophages 

Serum ferritin levels were elevated in ANG II-treated mice, and serum ferritin may be derived from 

macrophages [25]. Therefore, we measured the expression of TfR1, FPN, FTH, and FTL in peritoneal 

macrophages extracted from the experimental mice. Iron content was elevated in the macrophages from 

ANG II-treated mice, and this was lowered by olmesartan administration (Table. 2). ANG II decreased 

TfR and FPN protein expression, and increased FTH and FTL protein expression (Fig. 3a–d). These 

changes in iron transporter and ferritin expression were almost completely reversed by olmesartan 

administration. The mRNA expression levels of M1 macrophage markers, including CD11c, F4/80, and 
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MCP-1, were also increased by ANG II stimulation, and these levels were reduced by olmesartan 

treatment (Fig. 3e). 

ANG II effects on IRP-IRE RNA-binding activity in peritoneal macrophages and the duodenum 

The effect of ANGII on the interaction between IRP and IRE RNA binding was analyzed by EMSA (Fig. 

3f). ANG II treatment augmented IRP-IRE binding activity and this change was inhibited by olmesartan 

in peritoneal macrophages.  In contrast, IRP-IRE binding activity was reduced by ANG II 

administration, which was partly reversed by olmesartan treatment in the duodenum. Duodenal mRNA 

levels of FTH and FTL, regulated post-transcriptionally by IRP, were elevated, which was consistent with 

the reduced IRP activity observed in the duodenum of ANG II-treated mice (Fig. 1b). 

Discussion 

In the present study, mice treated with excess ANG II presented with increased expression of 

DMT1 and FPN in the duodenum, reduced expression of BMP6, C/EBPD� and hepcidin in the liver, and 

reduced serum hepcidin. Although iron content in the liver and spleen was not changed by ANG II 

treatment, ANG II did augment iron content in the kidney and macrophages, which was associated with 

reduced expression of TfR1 and FPN and increased expression of FTH and FTL, contributing to 
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increased serum ferritin levels. Therefore, we propose that ANG II regulates duodenal iron transporter, 

hepcidin levels through a BMP6/C/EBPD-dependent mechanism, and the alternation of the iron 

distribution in the body. 

ANG II is a crucial hormone that regulates blood pressure through its various actions, including 

vasoconstriction, tubular sodium reabsorption, and aldosterone secretion, which are mediated by the AT1 

receptor [26]. Plasma ANG II concentration is increased in hypertensive patients [27], and inhibition of 

ANG II by an angiotensin-converting enzyme inhibitor or ARB are effective treatments for patients with 

hypertension [26]. In experimental studies, ANG II treatment is useful for exploring the mechanism of 

hypertension-related pathophysiology both in vivo [11,12] and in vitro [14]. In male patients with 

essential hypertension, serum ferritin is elevated compared to normal healthy subjects [15]. Serum ferritin 

is a widely used indicator of body iron storage [28]. Consistent with this, we found that mice treated with 

ANG II showed increased serum ferritin levels, as well as increased iron content in macrophages 

compared to control mice, and these changes were ameliorated by treatment with olmesartan, an ARB. 

Therefore, body iron content might be augmented in a hypertensive state with elevated ANG II levels. 

With respect to the relationship between ANG II and iron, several studies have demonstrated the 

effects of ANG II on iron metabolism. Ishizaka and colleagues showed that ANG II stimulation promoted 
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tissue iron deposition in the heart, aorta, kidneys, and liver [11,12,10,9], and augmented the expression of 

TfR1, DMT1, FPN, and hepcidin in the rat kidney, which was ameliorated by administration of the ARB 

losartan [13]. We also demonstrated that ANG II altered the expression of iron transporters, and increased 

intracellular free iron levels with 30% saturated transferrin in endothelial cells [14]. In the present study, 

ANG II treatment induced the expression of DMT1 and FPN in the duodenum of mice, and this was 

reversed by olmesartan administration. DMT1, an iron importer, is an important transporter for duodenal 

iron absorption [29]; FPN, an iron exporter, plays a critical role in intestinal iron absorption [30]. 

Therefore, ANG II is thought to affect duodenal iron absorption by altering duodenal iron transporter 

expression. 

Hepcidin, a secreted protein derived from hepatocytes, was first identified as an antimicrobial 

peptide, and plays an important role in the regulation of iron metabolism [31]. Hepcidin regulates iron 

absorption through both internalization and degradation of FPN in the duodenum [21] and 

ubiquitin-dependent proteasome degradation of DMT-1 [32]. In the present study, ANG II treatment 

diminished hepatic hepcidin mRNA expression, as well as serum hepcidin levels, contributing to 

increased iron absorption via FPN and DMT-1 up-regulation in the duodenum. Based on these findings, 

hepatic hepcidin expression is inversely correlated with the expression of iron transporters and iron 
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absorption [33]. In addition, we showed that ANG II augmented duodenal expression of HIF-2α, which 

was previously shown to play a critical role in duodenal iron absorption in an investigation of 

duodenum-specific HIF-2α-deficient mice [20]. Therefore, the findings suggest that the ANG II-induced 

increases in FPN and DMT-1 expression are dependent on both hepcidin and HIF-2α, and contribute to 

the promotion of iron absorption in the duodenum. 

The regulation of hepcidin expression is dependent on not only iron [34] but also various other 

factors. BMP6 is an important factor in iron metabolism that regulates hepcidin expression [22,23]. 

C/EBPα promotes hepcidin expression through a transcriptional-dependent mechanism [24]. In this study, 

mice treated with ANG II showed decreased levels of BMP6 and C/EBPα ��resulting in reduced 

hepatic hepcidin expression. Serum levels of hepcidin were lower in ANG II-treated mice than in control 

or ANG II-treated mice administered olmesartan. ANG II-induced suppression of 

BMP6/C/EBPα-hepcidin was reversed by olmesartan. Therefore, ANG II might be a negative regulator of 

hepatic hepcidin through the BMP6/C/EBPα signaling pathway mediated via the AT1 receptor� resulting 

in increased iron absorption��� hepcidin mRNA and serum hepcidin levels were much 

higher in ANG II-ARB mice than in control mice.  Further studies are necessary in order to clarify the 

effect of the AT1 receptor and ARB on hepcidin.� we found that in ANG II-treated 



 18 

mice, Hfe2 mRNA expression was increased and BMP6 mRNA was reduced in the liver.  Hfe2 encodes 

the hemojuvelin gene and its mutation is responsible for juvenile hemochromatosis [35].  It has also 

been shown that the Hfe2 gene regulates hepcidin expression as the function of a BMP co-receptor [36]. 

Liver-specific Hfe2-deficient mice showed reduced hepcidin expression and augmented BMP6 expression 

in the liver [37,38]. In the present study, the increased Hfe2 mRNA expression might reflect a 

compensatory change for the decreased BMP6 mRNA expression in the liver of ANG II-treated mice. �

ANG II promoted iron deposition in tissues [10-12,9]. Although we confirmed that serum ferritin 

levels were increased in mice treated with ANG II, unexpectedly, no changes in tissue iron content were 

observed in the liver or spleen, while renal and macrophage iron content was elevated by ANG II 

stimulation. Although the reason for the lack of ANGII-induced hepatic and splenic iron deposition in our 

model is not clear, ANGII might be involved in the alteration of iron distribution in the whole body. 

Recently, Cohen and colleagues reported that serum ferritin is mainly secreted from macrophages [25]. 

Consistently, ANG II-induced iron accumulation in macrophages contributes to increased serum ferritin 

levels. In contrast, the expression of FPN and TfR1 proteins was diminished by ANG II treatment, which 

was restored by olmesartan administration. In contrast with the increased FPN levels in the duodenum, it 

is difficult to understand the discrepancy between the decreased FPN expression in macrophages and the 
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reduction of hepcidin in the liver and serum in mice treated with ANG II. Several studies have 

demonstrated that the phenotype of macrophages plays a crucial role in iron management. Macrophages 

activated by inflammatory cytokines exhibit M1 characteristics, retain intracellular iron, and exhibit low 

expression of TfR and FPN and high expression of FTH [39,40]. ANG II promotes macrophage 

polarization toward the M1 phenotype, which is mediated by the AT1 receptor [41,42]. In the present 

study, ANG II increased M1 macrophage markers, including CD11c, F4/80 and MCP-1, which were 

suppressed by olmesartan treatment. Therefore, ANG II might directly modulate TfR1 and FPN expression 

through polarization toward M1 macrophages, leading to increased iron content mediated by the AT1 

receptor, independent of hepcidin regulation. Subsequently, the increased iron content would promote 

ferritin synthesis and secretion, contributing to elevated serum ferritin concentration in ANG II-treated 

mice. Further examinations are needed to clarify the coordinated regulation of tissue FPN and hepatic 

hepcidin levels. 

IRP is well known to be important for mammalian iron homeostasis through post-transcriptional 

regulation of TfR, DMT1, FPN, and ferritins [43]. In the present study, ANG II promoted IRP activity in 

peritoneal macrophages despite the increased iron content of the macrophages. In contrast, duodenal IRP 

activity was decreased in ANG II-treated mice. The results showing increased IRP activity in peritoneal 
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macrophages are not consistent with the reduced TfR1 and FPN expression and increased ferritin 

expression observed in mice treated with ANG II. Moreover, the decreased duodenal IRP activity is also 

inconsistent with the increased DMT1 and FPN expression. These results suggest that ANG II might have 

the potential to regulate the expression of iron transporters or ferritins independently of IRP activity. 

Further study is needed for clarifying the effects of ANG II on the interaction between iron homeostasis 

and IRP activity. 

Ferritin has been shown to play a key regulatory role in mucosal iron absorption and transport in the 

intestine.  Intestinal IRP-deficient mice have impaired iron absorption and mucosal iron retention via 

ferritin upregulation [44].  Conversely, intestinal ferritin H-knockout mice have been shown to exhibit 

increased iron absorption [45]. In the present study, IRP activity was reduced and ferritin expression was 

elevated in the duodenum by ANG II treatment.  These findings suggest that the impairment of mucosal 

iron transport and iron retention in duodenum were induced in mice with ANG II treatment, consequently 

leading to low serum iron, low hepcidin levels, and no increase in iron deposition in the liver or spleen. 

However, renal or peritoneal macrophage iron was elevated in mice treated with ANG II, and the positive 

regulators of hepcidin (i.e., BMP6, C/EBPα, and HFE2) were also upregulated by ANG II, suggesting the 
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involvement of ANG II on hepcidin regulation independently of iron levels. Thus, further study is 

necessary for investigating the exact mechanism of ANG II on iron metabolism. 

In conclusion, ANG II influences duodenal iron transporter, hepatic hepcidin, and the promotion of 

iron retention in macrophages, which leads to the alteration of body iron storage. These ANG II-induced 

changes were ameliorated by ARB administration. To our knowledge, this is the first report showing the 

effect of ANG II on systemic iron metabolism. 
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Figure legends 

Fig. 1. (a) Effects of ANG II on the expression of duodenal iron absorption-related proteins. Upper panel: 

Representative immunoblots for DMT1, FPN, HIF-2α, and β-actin (internal control). Lower panel: 

Semi-quantitative densitometry of DMT1, FPN, and HIF-2α protein levels normalized to β-actin. Values 

are expressed as means ± SEM. *P < 0.05, **P < 0.01. n = 4 in each group. (b) ANGII action on HIF-2α, 

Dcytb, FTH, and FTL mRNA expression in the duodenum.  Values are expressed as means ± SEM. *P < 

0.05, **P < 0.01. n = 4-5 in each group (HIF-2α). n = 11-12 in each group (Dcytb, FTH and FTL). CTR: 

Vehicle-infused mice, ANGII: ANGII-infused mice, ANGII+Olm: ANGII-infused mice with olmesartan 

administration 

Fig. 2. Effects of ANG II on expression of hepcidin, BMP6, and C/EBPα in the liver and on serum 

hepcidin-25 concentration. Quantitative real-time reverse transcriptase-polymerase chain reaction 

(RT-PCR) analysis of hepcidin (a), BMP-6 (c), C/EBPα (d), Hfe2 (e) mRNA expression in the liver. 
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Values are expressed as means ± SEM. *P < 0.05, **P < 0.01. n = 5–7 in each group. (b) Serum 

hepcidin-1 concentration as measured by SELDI-TOF mass-spectrometry. Values are expressed as means 

± SEM. *P < 0.05, **P < 0.01. n = 8–12 in each group. (f) Representative histological findings of Berlin 

blue staining in the spleen. CTR: Vehicle-infused mice, ANGII: ANGII-infused mice, ANGII+Olm: 

ANGII-infused mice with olmesartan administration 

 

Fig. 3. Alterations in iron metabolism-related proteins induced by ANG II in mouse peritoneal 

macrophages. Upper panel: Representative immunoblots of transferrin receptor (TfR) (a), ferroportin 

(FPN) (b), ferritin heavy chain (FTH) (c), ferritin light chain (FTL) (d) and β-actin (internal control). 

Lower panel: Semi-quantitative densitometry analysis of TfR (a), FPN (b), FTH (c), and FTL (d) 

normalized to β-actin. Values are expressed as means ± SEM. *P < 0.05, **P < 0.01. n = 4 in each group. 

(e) Effects of ANGII on mRNA expression of M1 macrophage markers.  Values are expressed as means 

± SEM. *P < 0.05, **P < 0.01. n = 6-7 in each group. The action of ANGII on iron regulatory protein 

(IRP)-iron responsive element (IRE) -binding activity in peritoneal macrophages and the duodenum.  (f) 

Upper panel: Representative IRP-IRE-binding bands. Lower panel: Semi-quantitative densitometry 

analysis of IRP activity in peritoneal macrophages. Values are expressed as  means ± SEM. *P < 0.05, 
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**P < 0.01. n = 4-8 in each group. (g) Upper panel: Representative IRP-IRE-binding bands. Lower panel: 

Semi-quantitative densitometry analysis of IRP activity in the duodenum. Values are expressed as means 

± SEM. *P < 0.05, **P < 0.01. n = 6 in each group. CTR: Vehicle-infused mice, ANGII: ANGII-infused 

mice, ANGII+Olm: ANGII-infused mice with olmesartan administration. 
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Fig. 2 continued. 
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Table. 1 The characteristics of mice 

        CTR    ANG II   ANG II + Olm 

Body weight, g     26.1 ± 0.5  24.4 ± 0.8   25.0 ± 0.7 

Systolic blood pressure, mmHg  104.8 ± 2.1        132.4 ± 4.2**  100.9 ± 2.6†† 

Diastolic blood pressure, mmHg   69.1 ± 3.3  85.8 ± 4.2**   71.4 ± 2.5†† 

Heart rate, beats/min    .637 ± 17  .629 ± 25           .653 ± 16 

Hemoglobin, g/dl     12.7 ± 0.6  13.7 ± 0.8   13.7 ± 0.4 

Hematocrit, %     38.7 ± 2.2  43.4 ± 0.8   42.4 ± 1.8 

Serum iron concentration, μg/dl   98.2 ± 7.3  69.6 ± 6.9**  112.3 ± 9.8†† 

Serum ferritin concentration, ng/ml  551.3 ± 52.4        827.0 ± 113.0**  613.4 ± 51.9† 

Values are expressed as means ± SEM. **P ＜ 0.01 vs. CTR. † P ＜ 0.05; †† P ＜ 0.01 vs. ANGII n = 8 – 12 in each group. 

CTR: Vehicle-infused mice, ANGII: ANGII-infused mice, ANGII+Olm: ANGII-infused mice with olmesartan administration 

 
 

2nd revised Table 1 and 2



 
 

Table. 2 Tissue iron contents 

          CTR    ANG II   ANG II + Olm 

Liver, µg/g･wet tissue weight           16.8 ± 1.9  16.7 ± 1.2   16.3 ± 2.0 

Spleen, µg/g･wet tissue weight    7.6 ± 1.3          7.5 ± 1.1    6.5 ± 1.6 

Peritoneal macrophage, µg/g･protein         222.7 ± 59.9        515.4 ± 106.2*         186.8 ± 21.3†  

Kidney, µg/g･wet tissue weight    2.0 ± 0.2     2.7 ± 0.3*    2.1 ± 0.1† 

Values are expressed as means ± SEM. *P ＜ 0.05 vs. CTR, † P ＜ 0.05 vs. ANGII n = 8 – 12 in each group. 

CTR: Vehicle-infused mice, ANGII: ANGII-infused mice, ANGII+Olm: ANGII-infused mice with olmesartan administration 

 
 


