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Background-—Left ventricular noncompaction (LVNC) has since been classified as a primary genetic cardiomyopathy, but the
genetic basis is not fully evaluated. The aim of the present study was to identify the genetic spectrum using next-generation
sequencing and to evaluate genotype–phenotype correlations in LVNC patients.

Methods and Results-—Using next-generation sequencing, we targeted and sequenced 73 genes related to cardiomyopathy in 102
unrelated LVNC patients. We identified 43 pathogenic variants in 16 genes in 39 patients (38%); 28 were novel variants. Sarcomere
gene variants accounted for 63%, and variants in genes associated with channelopathies accounted for 12%. MYH7 and TAZ
pathogenic variants were the most common, and rare variant collapsing analysis showed variants in these genes contributed to the
risk of LVNC, although patients carrying MYH7 and TAZ pathogenic variants displayed different phenotypes. Patients with
pathogenic variants had early age of onset and more severely decreased left ventricular ejection fractions. Survival analysis showed
poorer prognosis in patients with pathogenic variants, especially those with multiple variants: All died before their first birthdays.
Adverse events were noted in 17 patients, including 13 deaths, 3 heart transplants, and 1 implantable cardioverter-defibrillator
insertion. Congestive heart failure at diagnosis and pathogenic variants were independent risk factors for these adverse events.

Conclusions-—Next-generation sequencing revealed a wide spectrum of genetic variations and a high incidence of pathogenic
variants in LVNC patients. These pathogenic variants were independent risk factors for adverse events. Patients harboring
pathogenic variants showed poor prognosis and should be followed closely. ( J Am Heart Assoc. 2017;6:e006210. DOI: 10.
1161/JAHA.117.006210.)
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L eft ventricular noncompaction (LVNC) was originally
described as cross-linked infantile cardiomyopathy with

poor prognosis1 but has since been classified as a primary
genetic cardiomyopathy by the American Heart Association.2

LVNC is characterized by a pattern of prominent trabecular
meshwork and deep intertrabecular recesses communicating
with the left ventricular cavity. LVNC is postulated to be caused

by an arrest of the normal process of intrauterine endomyocar-
dial morphogenesis. LVNC may be a distinct disorder but also
may be associated with other cardiomyopathies.2–7 With the
development of sequencing technologies, multiple gene vari-
ants have been found related to LVNC, but the genetics of LVNC
have not been fully evaluated. Previous studies have shown that
sarcomere gene variants likely play an important role in patients
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with LVNC8 but do not predict clinical phenotype.9 Next-
generation sequencing (NGS) was used recently because of the
ability to investigate multiple genes at reasonable cost. The aim
of this study was to investigate the genetic landscape of LVNC
and to identify genotype–phenotype correlations in the largest
cohort of well-phenotyped Japanese LVNC patients.

Methods

Clinical Evaluation
Unrelated childhood patients were recruited from 2001 to 2016
from 61 Japanese hospitals with divisions of pediatric cardiol-
ogy. A total of 102 patients with LVNC were included in this
study. Three patients had Barth syndrome; none had neuro-
muscular disorders. In addition, patients with congenital heart
disease that induced significant hemodynamic changes or with
insufficient clinical information were excluded. Clinical evalua-
tion consisted of clinical presentation and symptoms; a personal
and family history (patient’s biological family members showed
existence of any cardiomyopathy disease, not only LVNC but
also other cardiomyopathy or family members [parents or
brother sisters]), arrhythmia, thromboembolism, ECG, 2-dimen-
sional Doppler, and color Doppler echocardiography. The
diagnosis of heart failure was based on clinical symptoms of
feeding difficulty, tachypnea, and cyanosis and findings of
decreased left ventricular ejection fraction (LVEF) in the left
ventricle on echocardiography and cardiomegaly on chest x-ray.
A diagnosis of LVNC was made according to (1) the character-
istic 2-layered appearance of themyocardium,with an increased
N/C ratio (N/C>2.0) at end-diastole and the disease process
observed in ≥1 ventricular wall segment and (2) multiple deep
intertrabecular recesses communicating with the ventricular
cavity, as demonstrated by color Doppler imaging.3

Informed consent was obtained from all patients’ parents,
according to institutional guidelines. This study protocol

conforms to the ethics guidelines of the 1975 Declaration of
Helsinki, as reflected in a priori approval by the research
ethics committee of University of Toyama, Japan.

Mutation Screening
Genomic DNA was extracted from whole blood using a
QuickGene DNA whole blood kit S (Kurabo). NGS of 73 cardiac
disorder–related genes associated with cardiomyopathies and
channelopathies (Table S1) was performed using an IonPGM
system (Life Technologies). This custompanel utilized 2 separate
polymerase chain reaction primer pools, yielding a total of 1870
amplicons and used to generate target amplicon libraries.
Genomic DNA samples were polymerase chain reaction–ampli-
fied using the custom panel and an Ion AmpliSeq Library Kit v2.0
(Life Technologies, Carlsbad, CA). Individual samples were
labeled using an Ion Xpress Barcode Adapters Kit (Life
Technologies) and then pooled at equimolar concentrations.
Emulsion polymerase chain reaction and ion sphere particle
enrichment were performed using the Ion PGM HiQ OT2 Kit (Life
Technologies), according to the manufacturer’s instructions. Ion
sphere particles were loaded onto a 316 chip and sequenced
using an Ion PGM HiQ Sequencing Kit (Life Technologies).

Data Analysis and Variant Classification
Torrent Suite and Ion Reporter software version 5.0 (Life
Technologies) were used to perform primary, secondary, and
tertiary analyses, including optimized signal processing, base
calling, sequence alignment, and variant analysis. The allelic
frequency of all detected variants was determined using the
Exome Aggregation Consortium (ExAC) East Asian database
and the Human Genetic Variation Database (HGVD), which
contains data for 1208 Japanese persons.10 Rare variants such
as those single-nucleotide polymorphisms with a minor allele
frequency (MAF) below some threshold in the combined set of
cases and controls were selected.11 All variants with a MAF
≥0.05% among the ExAC East Asian and HGVD populations
were filtered out.12,13 We utilized 7 different in silico predictive
algorithms to improve the accuracy of evaluating the
pathogenicity of the remaining variants: FATHMM, SIFT,
PROVEAN, Align GVGD, MutationTaster2, PolyPhen2, and
CADD (URLs listed in Table S2). Variants predicted to be
deleterious or pathogenic by at least 5 of the 7 in silico
algorithms were considered likely pathogenic. The pathogenic-
ity of the detected variant was based on the guidelines of the
American College of Medical Genetics and Genomics.13

Sanger Sequencing
For all candidate pathogenic variants that passed these
selection criteria, Sanger sequencing was used to validate the

Clinical Perspective

What Is New?

• This research revealed a wide spectrum of genetic variants
and high incidence of novel pathogenic variants using a
focused next-generation sequencing strategy in a cohort of
102 patients with left ventricular noncompaction.

What Are the Clinical Implications?

• The presence of a pathogenic variant was an independent risk
factor for death, heart transplantation, or implantable
cardioverter-defibrillator insertion in patients with left ven-
tricular noncompaction, and the prognosis was even worse in
patients with double pathogenic variants or TAZ variants.
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NGS results. The nucleotide sequences of amplified fragments
were analyzed by direct sequencing in both directions using
the BigDye Terminator v3.1 Cycle Sequencing Kit (Applied
Biosystems), and sequence analysis was performed using an
ABI 3130xl automated sequencer (Applied Biosystems).

Assessment of the Frequency of Rare Variants in
Control Population Data
Differences in proportions of rare variants versus controls
from the ExAC East Asian and HGVD data were assessed
using the Fisher exact test, with P<0.05 considered statisti-
cally significant. Potential pathogenicity of the variants was
evaluated based on allele frequency, as recommended by
recent guidelines for interpreting sequence variants.13

Gene-Based Collapsing Test
We used a genic collapsing test to confer risk genes of
LVNC.14,15 Each gene was indicated as carrying or not
carrying a “qualifying” variant. A qualifying variant was defined
as a variant with an MAF cutoff of <0.05% among the ExAC
East Asian population. Qualified variants were defined as
nonsynonymous, frameshift, and splice-site variants.

Statistical Analysis
Statistical analysis was performed with SPSS (version 24; IBM
Corp) software and R software. The unpaired t test or the v2

test was used to compare variables. P<0.05 was considered
statistically significant. Important prognostic factors were
used in the univariate analysis and then in Firth regression
using R software.16 The event-free rate for the combined end
point of death, heart transplantation (HT), or implantable
cardioverter-defibrillator (ICD) insertion was calculated by the
Kaplan-Meier method and compared using the log-rank test.
The Fisher exact test was performed for each gene in
collapsing analysis with a nominal significance level
<1.37910�4 according to Bonferroni correction for the
number of assessable genes.

Results

Baseline Clinical Characteristics
A total of 102 patients were enrolled in this study; 54 were
male and 48 were female, with an age range from fetus to
12 years (mean age: 1.8�0.4 years; Table 1). Pathogenic
variants were identified in 39 patients (38%) who presented
with a much earlier age of onset and lower LVEF (P<0.05)
than those without pathogenic variants. The majority (76.9%)
of patients with pathogenic variants presented with

congestive heart failure at diagnosis. We divided the LVNC
patients into 2 types: those with systolic dysfunction (n=63)
and those without systolic dysfunction (n=39). Pathogenic
variants were more commonly detected in patients with
systolic dysfunction (31/63, 49%) than in those without (9/
39, 23%; P=0.012). Family history was more common in
patients with pathogenic variants but did not reach statistical
significance. Survival analysis showed that patients with
pathogenic variants had worse prognosis than patients
without; 26% of the patients with pathogenic variants died
or underwent HT or ICD insertion (Figure 1).

Genetic analysis

NGS of samples from the 102 patients yielded
540 830�11 986 sequence reads per person. The mean

Table 1. Characteristics of Patients With and Without
Pathogenic Mutations

P+ (n=39) P� (n=63) P Value

Sex, male:female 18:21 34:27 0.54

Age at onset, y 0.45�0.2 2.7�0.6 0.003

CHF at diagnosis, n (%) 30 (76.9) 32 (50.8) 0.01

Family history, n (%) 12 (30.8) 12 (19) 0.81

LVEF, % 37�2.0 46.3�3.0 0.01

LVDD z score 1.59�0.18 1.44�0.56 0.79

CHF indicates congestive heart failure; LVEF, left ventricular ejection fraction; LVDD, left
ventricular end-diastolic dimension; P+, patients with pathogenic mutations; P�, patients
with no or nonpathogenic mutations.

Figure 1. Event-free survival to the combined end point of
death, heart transplantation, and implantable cardioverter-defi-
brillator insertion of patients with double pathogenic, pathogenic,
and nonpathogenic mutations.
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read length per sample was 163.6�1.1 base pairs, and the
mean depth of base coverage was 247.0�5.8 reads; 95.23%
had >10-fold coverage, and 92.5% had >20-fold coverage.

The distribution of pathogenic variants is shown in
Figure 2. There were 43 pathogenic variants: 39 missense,
1 deletion, 1 nonsense, and 2 splice site variants. Sarcomere
gene variants accounted for 63%, and variants in genes
associated with channelopathies accounted for 12%. Overall,
MYH7 was most commonly mutated (n=19, 44%), followed by
TAZ (n=6, 14%). There was only 1 pathogenic variant in each
of the following genes: MYBPC3, TNNC1, LMNA, ANK2,
KCNH2, KCNE3, JUP, HCN4, BMPR1A, and TBX5. Notably, this

is the first report of pathogenic variants in BMPR1A, ANK2,
and TBX5 in LVNC patients. Ten missense variants were
identified in MYBPC3, but 9 of them were filtered out because
of their frequent occurrence (MAF >0.5%) in the ExAC East
Asian or HGVD (Japanese) populations. Consequently, there is
a significant difference in the prevalence of variants in MYH7
and MYBPC3 in this study, unlike other forms of cardiomy-
opathy (Table S3).

Twenty-nine novel variants (not detected in 60 706
persons of any race/ethnicity in the ExAC and HGVD
databases) were identified in 12 genes: 19 novel variants in
sarcomere genes (66%), including 12 MYH7 variants, and 4
novel variants in TAZ. Novel pathogenic variants were also
identified in BMPR1A, HCN4, LMNA, SGCD, and TBX5
(Table S4).

In addition, 14 rare variants with MAF<0.05% in the 2
reference databases were identified in 7 genes (ANK2, JUP,
KCNE3, KCNH2, MYH7, MYL2 and TAZ; Table 2). None of
them had been reported previously in East Asian controls in
ExAC or HGVD. The odds ratios for the association between
the variant and the risk of disease were all significantly
>1.0, and the Fisher exact P values were all <0.05
(Table 2). The genic collapsing test revealed that MYH7
(P=1.29E-17, ranked first) and TAZ (P=3.48E-9, ranked
second) reached significance (adjusted a or P<1.37910�4),
strongly suggesting that variants in these genes contribute
to an increased risk of LVNC. All other genes, including
MYBPC3, ANK2, TPM1 and ACTC1, did not reach the
adjusted a (Table S5).

Figure 2. Pathogenic gene distribution of left ventricular non-
compaction. The number of pathogenic mutations identified in
each gene in which at least 1 mutation was identified.

Table 2. The Frequency of Rare Variants in the Control Population Databases

Gene Variant dbSNP
ExAC (All
Individuals), % HGVD, %

Genotype,
Case (n=102)

ExAC
(East Asian,
n=4327) Risk, OR

Frequency,
95% CI P Value Classification

ANK2 R321W rs753032598 0.0025 ��� 1 0 127.9 1.08 to + ∞ 0.0230 Likely pathogenic

JUP E146K rs146581757 0.002 ��� 1 0 127.9 1.08 to + ∞ 0.0230 Likely pathogenic

KCNE3 R99H rs121908441 0.0086 ��� 1 0 127.9 1.08 to + ∞ 0.0230 Pathogenic

KCNH2 A561T rs199472921 ��� ��� 1 0 127.9 1.08 to + ∞ 0.0230 Pathogenic

MYH7 R23W rs730880828 0.0025 ��� 1 0 127.9 1.08 to + ∞ 0.0230 Likely pathogenic

L620P rs199862338 ��� ��� 1 0 127.9 1.08 to + ∞ 0.0230 Likely pathogenic

P838L rs397516153 ��� ��� 1 0 127.9 1.08 to + ∞ 0.0230 Likely pathogenic

R904C rs727503253 0.00082 ��� 1 0 127.9 1.08 to + ∞ 0.0230 Likely pathogenic

E1801K rs397516248 ��� ��� 2 0 215.3 8.0 to + ∞ 0.0005 Likely pathogenic

E1914K rs397516254 ��� ��� 1 0 127.9 1.08 to + ∞ 0.0230 Likely pathogenic

MYL2 P144fs rs199567559 0.00082 ��� 1 0 127.9 1.08 to + ∞ 0.0230 Likely pathogenic

TAZ G197R rs132630277 ��� ��� 1 0 127.9 1.08 to + ∞ 0.0230 Likely pathogenic

c.109+1G>C ��� ��� ��� 1 0 127.9 1.08 to + ∞ 0.0230 Pathogenic

CI indicates confidence interval; ExAC, Exome Aggregation Consortium database; HGVD, Human Genetic Variation Database; OR, odds ratio.
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The Characteristics of Patients With Single or
Double Pathogenic Variants
Double heterozygous variants were identified in 4 patients, all
of whom presented with congestive heart failure during the
fetal or neonatal periods and died before their first birthdays.
Of note, none had family history of cardiomyopathy (Table 3).
Survival analysis revealed that patients with double variants
showed the worst prognosis compared with patients with a
single variant and without variants (Figure 1). There were no
differences in age of onset, heart failure at diagnosis, LVEF,
and family history between the 2 groups (Table 3).

The characteristics of patients with adverse events

Adverse events were noted in 16 patients: 12 died, 3
underwent HT, and 1 underwent ICD insertion. Among those
16, double heterozygous variants were identified in 4 patients,
and single variants were noted in 6, including variants in TAZ
in 2. No pathogenic variants were identified in the remaining 6
patients (Table 4). The majority of patients with adverse
events were boys (76%). All of these patients were diagnosed
before their first birthday, except 1 who was diagnosed at age
4 years and underwent ICD insertion after 9 months of
follow-up. Five patients were diagnosed during the fetal
period, because of severe heart failure and hydrops fetalis,
and died soon after birth. The multivariable proportional
hazards model showed that congestive heart failure at
diagnosis and pathogenic variant were independent risk
factors for death, HT, or ICD insertion in all LVNC patients
(Table 5).

Genotype–phenotype correlations

Variants found in participants with systolic dysfunction and
details of for each participant are shown in Tables S6 and S7.
Single sarcomere variants were identified in 24 patients,
single nonsarcomere variants were found in 11, and double
variants were noted in 4 patients (MYH7 and JUP, MYH7 and
BMPR1A, TPM1 and SGCD, TAZ and KCNE3; Table 4). There
were no differences in age at onset, heart failure onset, LVEF,

Table 3. Characteristics of Patients With Single and Double
Mutations

Single Variant
(n=35)

Double
Variant (n=4) P Value

Sex, male:female 15:20 3:1 0.32

Age of onset, y 0.5�0.2 0.001�0.001 0.43

CHF at diagnosis, n (%) 26 (74.3) 4 (100) 0.56

Family history, n (%) 12 (34.2) 0 0.29

LVEF, % 36.9�2.2 37.5�3.8 0.93

LVDD z score 1.51�0.19 2.31�0.34 0.19

Double heterozygous variants: MYH7 and JUP, MYH7 and BMPR1A, TPM1 and SGCD, and
TAZ and KCNE3. CHF indicates congestive heart failure; LVDD, left ventricular end-
diastolic dimension; LVEF, left ventricular ejection fraction.

Table 4. Characteristics of Patients With Adverse Events

ID Gene and Variant Age at Onset Sex
Family
History

CHF at
Diagnosis Outcome

Cause
of Death

234 SGCD N99H; TPM1 D14G 15 d M No Yes Death CHF

274 TAZ H176Y; KCNE3 R99H Fetus M No Yes Death CHF

280 MYH7 K542N; JUP E146K Fetus (30 WG) M No Yes Death CHF

342 MYH7 P838L; BMPR1A R284L 1 d F No Yes Death CHF

159 TAZ splice donor c.109+1G>C 2 mo M Yes Yes Death CHF

247 MYH7 R712H Fetus (32 WG) F No Yes HT

312 ACTC1 T231R 4 y M No Yes ICD insertion

313 TAZ M185V 1 mo M Yes Yes HT

233 KCNH2 A561T Fetus (25 WG) M No Yes Death CHF

321 TNNC1 E94A 4 mo F No No HT

193 ��� 1 d M No Yes Death CHF

275 ��� 1 d M No Yes Death CHF

294 ��� 1 y M No Yes Death CHF

356 ��� 15 d M Yes Yes Death VF

367 ��� Fetus F Yes Yes Death CHF

416 ��� 1 mo M No Yes Death CHF

CHF indicates congestive heart failure; F, female; HT, heart transplantation; ICD, implantable cardioverter-defibrillator; M, male; VF, ventricular fibrillation; WG, weeks of gestation.
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and family history between the sarcomere and nonsarcomere
groups (Table 6). Survival analysis showed that the prognosis
of patients with nonsarcomere variants was worse than that
of patients with sarcomere variants (Figure 3).

Because MYH7 and TAZ were predicted to significantly
contribute to the risk of LVNC, we compared the character-
istics of patients with variants in these genes (Table 7). The
patients carrying TAZ variants displayed a distinct phenotype;
all were male infants who presented with congestive heart
failure and had worse prognoses. Three had Barth syndrome,
1 with double variants. Overall, 80% of the TAZ group had
family history of cardiomyopathy; this was much higher than
the MYH7 group. The TAZ group presented with higher LVDD z
scores and lower LVEF than the MYH7 group. There were no
differences in age at onset between the groups. In our study,
we found that the clinical manifestation varied significantly in
the patients with MYH7 variants, from no symptoms to severe
heart failure. Two patients with double variants of MYH7 and
another gene and 1 patient with TAZ and another variant were
excluded from the analysis (Table 7). Survival analysis showed
that the prognosis was significantly worse for patients with
TAZ variants compared with patients with sarcomere gene
variants (P=0.03; Figure 3).

Among the patients with nonsarcomere gene variants, 5
carried variants in channelopathy-related genes: ANK2,

KCNE3, KCNH2, HCN4, and JUP. The ECG of the patient with
the KCNE3 variant showed left bundle-branch block. ECGs of
the patients with ANK2, HCN4 and LMNA variants showed
normal or nonspecific changes. The patient with the KCNH2
variant died at 2 weeks after birth due to severe congestive
heart failure; however, no specific changes were identified on
ECG.

One patient who carried both MYH7 and BMPR1A variants
was diagnosed during the fetal period and died after 1 year of
follow-up. We extracted DNA from her postmortem heart and
found the same variants in MYH7 and BMPR1A that were
detected previously in blood samples (Figure 4).

The variant in TPM1 appeared de novo (Figure 5A), as
neither parent nor a brother carried this variant.

A variant in MYH7, c.1085T>G (p. Met362Arg), was
identified in a family with LVNC and Ebstein anomaly
(Figure 5B); we previously reported this variant14 using a
candidate gene approach. However, no additional pathogenic
variants, inherited from the unaffected mother, were identified
in the offspring with Ebstein anomaly that could account for

Table 5. Multivariate Analysis of Risk Factors for LVNC

Variable

Univariable Survival Analysis Multivariable Survival Analysis

HR (95% CI) P Value HR (95% CI) P Value

Age at onset, y 3.14 (1.17–8.42) 0.03 0.47 (0.12–2.61) 0.34

Family history 1.42 (0.46–4.43) 0.16 2.08 (0.65–5.97) 0.20

CHF at diagnosis 19.30 (2.98–20.31) 0.0003 46.24 (5.39–6097.7) 0.00002

Genotype positive 3.61 (1.27–10.20) 0.01 3.22 (1.12–11.22) 0.03

CHF indicates congestive heart failure; CI, confidence interval; HR, hazard ratio; LVNC, left ventricular noncompaction.

Table 6. Characteristics of Patients With Sarcomere and
Nonsarcomere Mutations

Sarcomere
Variant (n=24)

Nonsarcomere
Variant (n=11) P Value

Sex male:female 8:16 3:8 0.99

Age of onset, y 0.7�0.3 0.15�0.07 0.26

CHF at diagnosis, n (%) 15 (62.5) 10 (91) 0.12

Family history, n (%) 6 (34.8) 6 (54.5) 0.13

LVEF, % 39.4�2.3 31.8�4.7 0.11

LVDD z score 1.24�0.2 2.1�0.4 0.04

CHF indicates congestive heart failure; LVDD, left ventricular end-diastolic dimension;
LVEF, left ventricular ejection fraction.

Figure 3. Event-free survival to the combined end point of
death, heart transplantation, and implantable cardioverter-defi-
brillator insertion of patients with sarcomere, nonsarcomere
(excluding TAZ mutations), or TAZ mutations.
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the phenotypic difference between the father and the
children.

Discussion
In summary, use of a focused NGS strategy in a large cohort
of 102 LVNC patients revealed a wide and specific spectrum
of genetic variations and a high incidence of novel pathogenic
variants in LVNC patients. In addition, we found poorer
prognosis in the patients with pathogenic variants, and the
detection of a pathogenic variant was an independent risk
factor for death, HT, and ICD insertion.

There appears to be a distinct spectrum of gene variants in
Japanese patients with LVNC. Variants in MYH7 appear to be a
significant cause of LVNC, accounting for almost half of the
pathogenic variants identified, whereas the prevalence of
MYBPC3 variants were unexpectedly low. Furthermore, col-
lapsing analysis confirmed thatMYH7 variants increase the risk
of developing LVNC, whereas MYBPC3 variants did not. This
genetic spectrum is quite different from previous studies in
patients with hypertrophic cardiomyopathy or dilated car-
diomyopathy (Table S3). In patients with hypertrophic car-
diomyopathy, mutations in MYBPC3 and MYH7 are most
commonly detected.17–21 In contrast, in patients with dilated

cardiomyopathy, variants in titin are most commonly detected,
whereas variants in MYH7 and MYBPC3 account for <1%.22

Although the majority of the LVNC patients presented with the
same phenotypic characteristics as patients with dilated
cardiomyopathy, heart failure, dilated left ventricle, and
decreased LVEF, they have a very different genetic etiology.

In the patients with MYH7 variants, we found that there
was a broad spectrum in clinical manifestation, ranging from
no symptoms to severe heart failure, as reported previ-
ously.9,23 The mechanisms by which MYH7 variants induce
cardiomyopathy are still unclear. Han et al identified abnor-
mal long noncoding RNA transcripts from the MYH7 locus that
may cause cardiomyopathy.24 Fang et al found that methy-
lation levels in the promoters of MYH7 may play an important
role in regulating embryonic cardiomyocyte gene expression,
morphology, and function.25

Although previous studies have reported several MYBPC3
variants in LVNC patients,9 we identified only 1 pathogenic
variant in MYBPC3, in a 3-year-old girl. She remained
asymptomatic during the 5 years of follow-up. Hypertrophic
cardiomyopathy patients with MYBPC3 mutations also pre-
sent with reduced or late penetrance, often during the fifth
decade of life.26 Therefore, ongoing follow-up is warranted,
even in an asymptomatic patient with LVNC. Among the other
sarcomere genes, ACTC1, TNNT2,27 and TPM1 mutations are
less common in LVNC than other cardiomyopathies. ACTC1
was first reported to be associated with LVNC in 2008,8 and
we reported 2 TPM1 mutations, as well as 2 ACTC1
mutations, in LVNC patients in 2011.28

TAZ variants may also increase the risk for LVNC, and
survival analysis showedworse prognosis in patients with these
variants. TAZ was identified in 1996 as the causative gene for
Barth syndrome,29 and LVNC is frequently described in patients
with Barth syndrome.30–32 However, half of the patients with
TAZ variants identified in this study did not show any other
manifestations of Barth syndrome. Consequently, male infants
with severe heart failure should be considered for genetic
analysis, including TAZ, even if they do not show any signs of
Barth syndrome. In an animal model, tafazzin deficiency leads
to ventricular noncompaction and early lethality.33 Wang et al
used induced pluripotent stem cell–derived cardiomyocytes
and elucidated that TAZ deficiency in Barth syndrome impairs
sarcomere assembly and contractile stress generation. TAZ
deficiency may increase reactive oxygen species production,
which may cause features of Barth syndrome.34

Among channelopathy-related genes, this is the first report
of an ANK2 variant in LVNC. ANK2 variants have previously
been associated with cardiac arrhythmia syndrome or long QT
syndrome and were recently found in hypertrophic cardiomy-
opathy patients.35 Although none of our patients who carried
variants in arrhythmia-associated genes presented with
severe arrhythmias, given the high risk of arrhythmia

Table 7. Characteristics of Patients With MYH7 or TAZ
Mutations

MYH7 (N=17) TAZ (N=5) P Value

Sex, male:female 5:12 5:0 0.01

Age at onset, y 0.5�0.4 0.3�0.1 0.71

CHF at diagnosis, n (%) 10 (58.8) 5 (100) 0.13

Family history, n (%) 4 (23.5) 4 (80) 0.039

LVEF, % 39.8�3.2 20.4�5.6 0.008

LVDD z score 1.07�0.27 3.13�0.36 0.001

Three patients with double mutation of MYH7 and another gene and 1 patient with TAZ
and another mutation were excluded. CHF indicates congestive heart failure; LVDD, left
ventricular end-diastolic dimension; LVEF, left ventricular ejection fraction.

Figure 4. Detection of the BMPR1A c.851G>T (p. R284L)
variant in DNA isolated from blood and heart samples of a
patient with left ventricular noncompaction.
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associated with these genes, close monitoring and consider-
ation of ICD implantation to prevent sudden cardiac death is
recommended.36

The variant in BMPR1A is also the first reported in a patient
with LVNC. BMPs (Bone morphogenetic proteins) are mem-
bers of the transforming growth factor family that play critical

A

B

Figure 5. A, De novo variant of TPM1 c.41A>G (p. D14G) in an LVNC family. B, Familial LVNC and Ebstein
anomaly associated with the MYH7 c.1085T>G p.Met362Arg. LVNC, left ventricular noncompaction.VSD,
ventricular septal defect.
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roles in cardiac development. BMP signaling is required in the
myocardium of the atrioventricular canal for proper atrioven-
tricular junction development, and an anomaly in BMPR1A-
mediated signaling may contribute to the development of
cardiac hypertrophy and embryonic heart failure.37–39 In our
study, the patient who carried both MYH7 and BMPR1A
variants presented with bradycardia as a fetus and died of
heart failure at 1 year of age. Although most patients with a
single variant of MYH7 did not develop severe manifestations,
the BMPR1A variant may act as genetic modifier and
contribute to fetal heart failure. Functional studies of the
BMPR1A variant are now under way in animal models.

The variant in TBX5 also represents the first in this gene in
a patient with LVNC, as shown in the present study. Both
TBX5 and TBX20 of the T-box family are important for
maintenance of mature cardiomyocyte function.40,41 Kodo
et al showed that proper activation of TGF-b (transforming
growth factor b) signaling in the embryonic heart is required
to ensure compact layer remodeling. They used patient-
specific induced pluripotent stem cell–derived cardiomy-
ocytes generated from an LVNC patient who carried a
TBX20 mutation and found abnormal TGF-b signaling.41

Functional studies of the TBX5 mutation are also under way
in animal models.

The focused NGS strategy allows for rapid molecular
diagnosis at a reasonable cost. In this study, we imple-
mented strict pathogenic variant identification criteria that
could prevent misinterpretation of the variants.42 We found
that patients with pathogenic variants showed high mor-
bidity and mortality. Furthermore, patients with double
heterozygous variants presented with severe phenotypes
during the fetal or neonatal periods and had very poor
prognosis, as reported previously.43 The role of double
variants in determining the severity of disease remains
unknown and cannot be evaluated using in silico predictive
algorithms at the present time. Our study suggests that
comprehensive screening of multiple disease-causing genes
is necessary to identify high-risk patients with LVNC, for
whom earlier treatment strategies toward HT or ICD
implantation should be considered.

Limitations
In this study, some parental samples were not available,
limiting segregation analysis and the ability to determine
whether variants were inherited or arose de novo; none of
these patients reported family history, and the parents were
healthy and without evidence of cardiomyopathy by ECG
and echocardiography. In addition, we chose NGS panels of
genes known to be associated with cardiac phenotypes or
development; therefore, variants in novel genes would have
been missed. Our sequencing approach lacked of ability to

assess copy number and structural variants. Whole-exome
or -genome sequencing in this cohort might have uncovered
additional variants, including copy number variations and
structural variants, but at considerably higher cost. Genetic
analysis using NGS is considered to have some limitations.
Recent studies showed extended genetic noise (false
positive), particularly within cardiac disease–associated
genes, even if these variants were rare. Guidelines recom-
mend that several in silico analyses be used to evaluate
variants without familial and/or experimental evidence of
pathogenicity because most algorithms used for missense
variant prediction are only 65–80% accurate for known
disease variants.12,44 Further research will be focus on the
mechanism presented in animal models and analysis of
induced pluripotent stem cells developed from patients with
known gene variants to identify the mechanisms that
underlie the abnormal development of the failed compacted
layer during the embryonic period.

Conclusion
A focused NGS approach revealed a wide and distinct
spectrum of gene variants in a large cohort of patients with
LVNC. Patients with pathogenic variants showed early age at
onset and decreased LVEF. The identification of a pathogenic
variant was an independent risk factor for death, HT, or ICD
insertion. Survival analysis showed poorer prognosis in the
patients with pathogenic variants, especially patients with
multiple or TAZ variants. Our study suggests that compre-
hensive screening of multiple disease-causing genes is
necessary to identify high-risk patients with LVNC, for whom
earlier treatment strategies toward HT or ICD implantation
should be considered.
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Table S1. List of 73 analyzed genes of NGS.  

 

Gene Chromosome 

NCBI 

Reference 

Sequence:  

Sequence: (Start.End)  

ABCC9 12p12.1 NG_012819.1 NC_000012.11 (21950323..22094797, complement) http://www.ncbi.nlm.nih.gov/gene/10060 

ACTC1 15q14 NG_007553.1 NC_000015.9 (35080297..35087927, complement) http://www.ncbi.nlm.nih.gov/gene/70 

ACTN2 1q42-q43 NG_009081.1 NC_000001.10 (236849754..236927931) http://www.ncbi.nlm.nih.gov/gene/88  

AKAP9 7q21-q22 NG_011623.1 NC_000007.13 (91570181..91739987 http://www.ncbi.nlm.nih.gov/gene/10142  

ANK2 4q25-q27 NG_009006.2 NC_000004.11 (113739239..114304896) http://www.ncbi.nlm.nih.gov/gene/287  

BAG3 10q25.2-q26.2 NG_016125.1 NC_000010.10 (121410859..121437331) http://www.ncbi.nlm.nih.gov/gene/9531  

BMPR1A 10q22.3 NG_009362.1  NC_000010.10 (88516396..88684945) http://www.ncbi.nlm.nih.gov/gene/657  

CACNA1C 12p13.3 NG_008801.2 NC_000012.11 (2079952..2807115) http://www.ncbi.nlm.nih.gov/gene/775 

CACNB2 10p12 NG_016195.1 NC_000010.10 (18429373..18830688) http://www.ncbi.nlm.nih.gov/gene/783  

D
ow

nloaded from
 http://ahajournals.org by on N

ovem
ber 19, 2019

http://www.ncbi.nlm.nih.gov/gene/88
http://www.ncbi.nlm.nih.gov/gene/10142
http://www.ncbi.nlm.nih.gov/gene/287
http://www.ncbi.nlm.nih.gov/gene/9531
http://www.ncbi.nlm.nih.gov/gene/657
http://www.ncbi.nlm.nih.gov/gene/775
http://www.ncbi.nlm.nih.gov/gene/783


CALR3 19p13.11 NG_031959.2  NC_000019.9 (16589767..16607015, complement) http://www.ncbi.nlm.nih.gov/gene/125972  

CAPN3 15q15.1 NG_008660.1 NC_000015.9 (42646545..42704515) http://www.ncbi.nlm.nih.gov/gene/825  

CAV3 3p25 NG_008797.2 NC_000003.11 (8775486..8788451) http://www.ncbi.nlm.nih.gov/gene/859  

COL4A1 13q34 NG_011544.1 

NC_000013.10 (110801310..110959496, 

complement) http://www.ncbi.nlm.nih.gov/gene/1282  

DES 2q35 NG_008043.1  NC_000002.11 (220283099..220291461) http://www.ncbi.nlm.nih.gov/gene/1674  

DMD Xp21.2 NG_012232.1 NC_000023.10 (31137345..33357726, complement) http://www.ncbi.nlm.nih.gov/gene/1756  

DSC2 18q12.1 NG_008208.1 NC_000018.9 (28645938..28682388, complement) http://www.ncbi.nlm.nih.gov/gene/1824  

DSG2 18q12.1 NG_007072.3 NC_000018.9 (29078027..29128814) http://www.ncbi.nlm.nih.gov/gene/1829  

DSP 6p24 NG_008803.1 NC_000006.11 (7541808..7586946) http://www.ncbi.nlm.nih.gov/gene/1832  

ELN 7q11.23 NG_009261.1 NC_000007.13 (73442119..73484237) http://www.ncbi.nlm.nih.gov/gene/2006  

EMD Xq28 NG_008677.1 NC_000023.10 (153607597..153609883) http://www.ncbi.nlm.nih.gov/gene/2010  

GAA 17q25.2-q25.3 NG_009822.1  NC_000017.10 (78075339..78093680) http://www.ncbi.nlm.nih.gov/gene/2548  
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GATA4 8p23.1-p22 NG_008177.1  NC_000008.10 (11534433..11617510) http://www.ncbi.nlm.nih.gov/gene/2626  

GLA Xq22 NG_007119.1 

NC_000023.10 (100652779..100663001, 

complement) http://www.ncbi.nlm.nih.gov/gene/2717  

GPD1L 3p22.3 NG_023375.1 NC_000003.11 (32148003..32210207) http://www.ncbi.nlm.nih.gov/gene/23171  

HCN4 15q24.1 NG_009063.1 NC_000015.9 (73612200..73661605, complement) http://www.ncbi.nlm.nih.gov/gene/10021  

JUP 17q21 NG_009090.2 NC_000017.10 (39910859..39942964, complement) http://www.ncbi.nlm.nih.gov/gene/3728  

KCNE1 21q22.12 NG_009091.1 NC_000021.8 (35790910..35884573, complement) http://www.ncbi.nlm.nih.gov/gene/3753  

KCNE2 21q22.12 NG_008804.1 NC_000021.8 (35736323..35743440) http://www.ncbi.nlm.nih.gov/gene/9992  

KCNE3 11q13.4 NG_011833.1 NC_000011.9 (74165886..74178600, complement) http://www.ncbi.nlm.nih.gov/gene/10008  

KCNH2 7q36.1 NG_008916.1 

NC_000007.13 (150642044..150675402, 

complement) http://www.ncbi.nlm.nih.gov/gene/3757  

KCNJ2 17q24.3 NG_008798.1 NC_000017.10 (68164757..68176189) http://www.ncbi.nlm.nih.gov/gene/3759  

KCNQ1 11p15.5 NG_008935.1 NC_000011.9 (2466221..2870340) http://www.ncbi.nlm.nih.gov/gene/3784  
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KRAS 12p12.1 NG_007524.1 NC_000012.11 (25358180..25403870, complement) http://www.ncbi.nlm.nih.gov/gene/3845  

LAMP2 Xq24 NG_007995.1 

NC_000023.10 (119560003..119603204, 

complement) http://www.ncbi.nlm.nih.gov/gene/3920  

LDB3 10q22.3-q23.2 NG_008876.1 NC_000010.10 (88426542..88495829) http://www.ncbi.nlm.nih.gov/gene/11155  

LMNA 1q22 NG_008692.2 NC_000001.10 (156052369..156109880) http://www.ncbi.nlm.nih.gov/gene/4000  

MYBPC3 11p11.2 NG_007667.1 NC_000011.9 (47352957..47374253, complement) http://www.ncbi.nlm.nih.gov/gene/4607  

MYH11 16p13.11 NG_009299.1 NC_000016.9 (15796992..15950887, complement) http://www.ncbi.nlm.nih.gov/gene/4629  

MYH6 14q12 NG_023444.1  NC_000014.8 (23849942..23878836, complement) http://www.ncbi.nlm.nih.gov/gene/4624  

MYH7 14q12 NG_007884.1 NC_000014.8 (23881947..23904870, complement) http://www.ncbi.nlm.nih.gov/gene/4625  

MYL2 12q24.11 NG_007554.1 

NC_000012.11 (111348623..111358404, 

complement) http://www.ncbi.nlm.nih.gov/gene/4633  

MYL3 3p21.3-p21.2 NG_007555.2 NC_000003.11 (46899357..46904973, complement) http://www.ncbi.nlm.nih.gov/gene/4634 

D
ow

nloaded from
 http://ahajournals.org by on N

ovem
ber 19, 2019

http://www.ncbi.nlm.nih.gov/gene/3845
http://www.ncbi.nlm.nih.gov/gene/3920
http://www.ncbi.nlm.nih.gov/gene/11155
http://www.ncbi.nlm.nih.gov/gene/4000
http://www.ncbi.nlm.nih.gov/gene/4607
http://www.ncbi.nlm.nih.gov/gene/4629
http://www.ncbi.nlm.nih.gov/gene/4624
http://www.ncbi.nlm.nih.gov/gene/4625
http://www.ncbi.nlm.nih.gov/gene/4633
http://www.ncbi.nlm.nih.gov/gene/4634


MYLK 3q21 NG_029111.1 

NC_000003.11 (123331143..123603149, 

complement) http://www.ncbi.nlm.nih.gov/gene/4638  

MYOZ2 4q26-q27 NG_029747.1 NC_000004.11 (120056939..120108944) http://www.ncbi.nlm.nih.gov/gene/51778  

NKX2-5 5q34 NG_013340.1 NC_000005.9 (172659107..172662315, complement) http://www.ncbi.nlm.nih.gov/gene/1482  

NRAS 1p13.2 NG_007572.1 

NC_000001.10 (115247085..115259515, 

complement) http://www.ncbi.nlm.nih.gov/gene/4893  

PKP2 12p11 NG_009000.1 NC_000012.11 (32943680..33049780, complement) http://www.ncbi.nlm.nih.gov/gene/5318  

PLN 6q22.1 NG_009082.1 NC_000006.11 (118869442..118881587) http://www.ncbi.nlm.nih.gov/gene/5350  

PRKAG2 7q36.1 NG_007486.1 

NC_000007.13 (151253200..151574316, 

complement) http://www.ncbi.nlm.nih.gov/gene/51422  

PTPN11 12q24 NG_007459.1 NC_000012.11 (112856536..112947717) http://www.ncbi.nlm.nih.gov/gene/5781  

RAF1 3p25 NG_007467.1 NC_000003.11 (12625100..12705700, complement) http://www.ncbi.nlm.nih.gov/gene/5894  

RPS7 2p25 NG_011744.1 NC_000002.11 (3622853..3628509) http://www.ncbi.nlm.nih.gov/gene/6201  
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RYR2 1q43 NG_008799.2 NC_000001.10 (237205510..237997288) http://www.ncbi.nlm.nih.gov/gene/6262  

SCN1B 9q13.1 NG_013359.1 NC_000019.9 (35521555..35531353) http://www.ncbi.nlm.nih.gov/gene/6324  

SCN3B 11q23.3 NG_016283.1 NC_000011.9 (123499895..123525315, complement) http://www.ncbi.nlm.nih.gov/gene/55800  

SCN4B 11q23.3 NG_011710.1 NC_000011.9 (118004092..118023630, complement) http://www.ncbi.nlm.nih.gov/gene/6330  

SCN5A 3p21 NG_008934.1 NC_000003.11 (38589553..38691164, complement) http://www.ncbi.nlm.nih.gov/gene/6331  

SGCD 5q33-q34 NG_008693.2 NC_000005.9 (155462147..156194799) http://www.ncbi.nlm.nih.gov/gene/6444  

SLC25A4 4q35 NG_013001.1 NC_000004.11 (186064417..186071538) http://www.ncbi.nlm.nih.gov/gene/291  

SMAD3 15q22.33 NG_011990.1 NC_000015.9 (67358036..67487533) http://www.ncbi.nlm.nih.gov/gene/4088  

SNTA1 20q11.2 NG_011622.1 NC_000020.10 (31995763..32031698, complement) http://www.ncbi.nlm.nih.gov/gene/6640  

SOS1 2p21 NG_007530.1 NC_000002.11 (39208690..39347686, complement) http://www.ncbi.nlm.nih.gov/gene/6654  

STARD3 17q11-q12   NC_000017.10 (37793333..37820454) http://www.ncbi.nlm.nih.gov/gene/10948  

TAZ Xq28 NG_009634.1 NC_000023.10 (153639877..153650065) http://www.ncbi.nlm.nih.gov/gene/6901  
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TBX5 12q24.1 NG_007373.1 

NC_000012.11 (114791735..114846247, 

complement) http://www.ncbi.nlm.nih.gov/gene/6910  

TGFBR1 9q22 NG_007461.1 NC_000009.11 (101867412..101916474) http://www.ncbi.nlm.nih.gov/gene/7046  

TGFBR2 3p22 NG_007490.1 NC_000003.11 (30647994..30735634) http://www.ncbi.nlm.nih.gov/gene/7048  

TMEM43 3p25.1 NG_008975.1  NC_000003.11 (14166440..14185180) http://www.ncbi.nlm.nih.gov/gene/79188  

TNNC1 3p21.1 NG_008963.1 NC_000003.11 (52485107..52488057, complement) http://www.ncbi.nlm.nih.gov/gene/7134  

TNNI3 19q13.4 NG_007866.2 NC_000019.9 (55663135..55669100, complement) http://www.ncbi.nlm.nih.gov/gene/7137  

TNNT2 1q32 NG_007556.1 

NC_000001.10 (201328136..201346836, 

complement) http://www.ncbi.nlm.nih.gov/gene/7139  

TPM1 15q22.1 NG_007557.1 NC_000015.9 (63334838..63364114) http://www.ncbi.nlm.nih.gov/gene/7168  

VCL 10q22.2 NG_008868.1 NC_000010.10 (75757836..75879918) http://www.ncbi.nlm.nih.gov/gene/7414  
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Table S2. Silico predictive algorithms used in the study. 

Category Basis Name Website Prediction Threshold 

Missense 

prediction 

 

Evolutionary conservation 

FATHMM http://fathmm.biocompute.org.uk <-1.5 Damaging 

>-1.5 Tolerated 

  SIFT http://sift.jcvi.org <0.05 Deleterious 

>0.05 Tolerated 

 

 

 Align GVGD http://agvgd.iarc.fr/agvgd_input.php ≧C15 Probably Damaging 

Missense 

prediction 

Protein structure/function and 

evolutionary conservation 

Mutation Taster http://www.mutationtaster.org Disease causing 

  Polyphen-2 http://genetics.bwh.harvard.edu/pph2 ≧0.432 Possibly Damaging 

≧0.85 Probably Damaging 
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Reference 

1.Richards S, Aziz N, Bale S, Bick D, Das S, Gastier-Foster J, Grody WW, Hegde M, Lyon E, Spector E, Voelkerding K, Rehm HL. Standards and 

guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and 

Genomics and the association for molecular autopsy. Genet Med 2015; 17:405–423. 

 

Missense and 

insertion/ 

deletions 

prediction 

Alignment and measurement of 

similarity between variant 

sequence and protein sequence 

homolog 

PROVEAN http://provean.jcvi.org/index.php <-2.5 Deleterious 

>-2.5 Neutral 

Missense and 

insertion/ 

deletions 

prediction 

Contrasts annotations of 

fixed/nearly fixed derived alleles 

in humans with simulated 

variants 

CADD http://cadd.gs.washington.edu ≧20  1% most deleterious 

≧30  0.1%most deleterious  
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Table S3. Frequency of MYH7 and MYBPC3 in LVNC, HCM and DCM patients. 

Gene % Frequency of 

mutations in LVNC 

patients in this study 

(n=102) 

% Frequency of 

mutations in HCM in 

Japanese cohort* 

(n=127) 

% Frequency of 

mutations in HCM in 

French cohort† 

(n=172) 

% Frequency of 

mutations in HCM in 

US cohort study‡ 

(n=389) 

% Frequency of 

mutations in DCM in 

Finnish cohort study§ 

(n=145) 

MYH7 19.6        24.4 26.2 15.2 0.7 

MYBPC3 0.98 15 26.2 18 0 

 * Heart Vessels. (2016). doi:10.1007/s00380-016-0920-0. † Circulation 2003; 107: 2227–2232. ‡J Am Coll Cardiol 2004; 44: 1903–1910. 

 § Eur Heart J. 2015;36(34):2327-2337.   
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Table S4. Novel mutations, absent in Exome Aggregation Consortium and Human Genetic Variation Database (HGVD). 

     Prediction    

Gene variant FATHMM SIFT Polyphen2 Align 

GVGD 

Mutation Taster Provean CADD 

MYH7 R941C Damaging 

Score: -2.13 

Deleterious 

Score:0 

Probably Damaging 

Score:1 

C65 Disease causing Deleterious 

Score: -6.13 

34 

 Q315R Damaging 

Score: -2.33 

Deleterious 

Score:0.011 

Possibly Damaging 

Score:0.51 

C0 Disease causing Deleterious 

Score: -3.16 

23.8 

 F230S Damaging 

Score: -4.96 

Deleterious 

Score:0 

Probably Damaging 

Score:0.984 

C0 Disease causing Deleterious 

Score: -6.07 

27.7 

 K542N Damaging 

Score: -2.47 

Deleterious 

Score:0 

Probably Damaging 

Score:1 

C65 Disease causing Deleterious 

Score: -4.4 

31 
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 A223V Damaging 

Score: -3.17 

Deleterious 

Score:0.08 

Probably Damaging 

Score:0.854 

C0 Disease causing Deleterious 

Score: -2.75 

25.1 

 M362R Damaging 

Score: -3.64 

Deleterious 

Score:0 

Benign 

Score:0.001 

C0 Disease causing Deleterious 

Score: -5.15 

26.9 

 K542T Damaging 

Score: -2.48 

Deleterious 

Score:0 

Possibly Damaging 

Score:0.517 

C65 Disease causing Deleterious 

Score: -4.4 

27.4 

 E667V Damaging 

Score: --2.46 

Tolerated  

Score:0.113 

Probably Damaging 

Score:0.994 

C65 Disease causing Deleterious 

Score: -5.14 

26.1 

 E448K Damaging 

Score: -2.22 

Deleterious 

Score:0.002 

Possibly Damaging 

Score:0.798 

C0 Disease causing Deleterious 

Score: -2.61 

32 

 L693R Damaging 

Score: -4.85 

Deleterious 

Score:0 

Probably Damaging 

Score:0.997 

C65 Disease causing Deleterious 

Score: -5.29 

28.3 

 R712H Damaging Deleterious Probably Damaging C25 Disease causing Deleterious 35 

D
ow

nloaded from
 http://ahajournals.org by on N

ovem
ber 19, 2019



Score: -4.54 Score:0 Score:0.988 Score: -4.35 

 c.896-1 G>A NA NA NA NA NA NA 24.9 

TAZ Q159P Damaging 

Score: -4.39 

Deleterious 

Score:0.001 

Probably Damaging 

Score:0.993 

C0 Disease causing Deleterious 

Score: -5.73 

23.4 

 M185V Damaging 

Score: -3.16 

Deleterious 

Score:0.03 

Probably Damaging 

Score:0.932 

C0 Disease causing NA 26.6 

 L169F Damaging 

Score: -4.78 

Deleterious 

Score:0.01 

Probably Damaging 

Score:0.886 

C0 Disease causing Deleterious 

Score: -3.33 

31 

 H176Y Damaging 

Score: -3.15 

Deleterious 

Score:0 

Probably Damaging 

Score:0.999 

C0 Disease causing NA  16.57 

 

ACTC1 T231R Damaging 

Score: -4.39 

NA Probably Damaging 

Score:0.908 

C65 Disease causing Deleterious 

Score: -2.65 

24.9 

 Y93H Damaging NA Possibly Damaging C65 Disease causing Deleterious 24 
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Score: - 3.43 Score:0.531 Score: -3.59 

TPM1 R238Q Damaging 

Score: -6.36 

Deleterious 

Score:0.001 

Probably Damaging 

Score:0.999 

C35 Disease causing Deleterious 

Score: -3.22 

35 

 D14G Damaging 

Score: -2.38 

Deleterious 

Score:0.001 

Probably Damaging 

Score:1 

C0 Disease causing Deleterious 

Score: -3.21 

29.9 

MYL2 E88K Tolerated 

Score: -1.15 

Deleterious 

Score:0.017 

Probably Damaging 

Score:0.995 

C15 Disease causing Deleterious 

Score: -3.62 

34 

TNNC1 E94A Damaging 

Score: -3.74 

Deleterious 

Score:0 

Benign 

Score:0.012 

C65 Disease causing Deleterious 

Score: -5.36 

24.2 

MYBPC3 G758D Tolerated 

Score: -1.64 

Deleterious 

Score:0.001 

Probably Damaging 

Score:0.926 

C65 Disease causing Deleterious 

Score: -5.96 

32 

LMNA A244V Damaging 

Score: -2.5 

Deleterious 

Score:0.001 

Probably Damaging 

Score:1 

C65 Disease causing Deleterious 

Score: -3.76 

34 
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The classification of novel variants is all likely pathogenic except TBX5 p. Arg279Ter. * Two patients have this variant. † Nonsense mutation and 

classification is pathogenic. 

SGCD N99H*  Damaging 

Score: -3.45 

Deleterious 

Score:0.05 

Possibly Damaging 

Score:0.744 

C0 Disease causing Neutral 

Score: -0.69 

23.4 

BMPR1A R284L Damaging 

Score: -3.32 

Deleterious 

Score:0 

Probably Damaging 

Score:0.988 

C65 Disease causing Deleterious 

Score: -6.74 

35 

HCN4 G480S Damaging 

Score: -7.52 

Deleterious 

Score:0.024 

Probably Damaging 

Score:1 

C55 Disease causing Deleterious 

Score: -5.74 

25.9 

TBX5† p. Arg279Ter NA NA NA C25 Disease causing NA 40 
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Table S5. Gene collapsing test of rare variants. 

Rank Gene Qualifying 

Cases 

Frequency 

Qualifying 

Cases (N=102) 

Qualifying 

Controls 

Cases 

Frequency 

Qualifying 

Controls  

(N=4327) 

Fisher’s 

Exact 

Test p-value 

1 MYH7 19 0.1862 41 0.0095 1.29 E-17 

2 TAZ 6 0.0588 2 0.0005 3.48 E-9 

3 MYL2 2 0.0196 5 0.0012 0.01 

4 ACTC1 2 0.0196 2 0.0005 0.003 

5 TPM1 2 0.0196 2 0.0005 0.003 

6 SGCD 2 0.0196 5 0.0012 0.01 

7 ANK2 1 0.0098 4 0.0009 0.251 

8 TNNC1 1 0.0098 5 0.0012 0.131 

9 BMPR1A 1 0.0098 5 0.0012 0.131 

10 KCNE3 1 0.0098 6 0.0014 0.151 

11 TBX5 1 0.0098 7 0.0016 0.170 

12 HCN4 1 0.0098 8 0.0018 0.193 

13 LMNA 1 0.0098 9 0.0021 0.208 

14 KCNH2 1 0.0098 20 0.0046 0.388 

15 MYBPC3 1 0.0098 35 0.0081 0.569 

16 JUP 1 0.0098 37 0.0086 0.589 
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Table S6. Specific variants found in subjects with systolic dysfunction versus those 

without dysfunction 

with systolic 

dysfunction 

without 
systolic 
dysfunction 

ID Gene variant ID Gene variant 

132 MYL2 E88K 250 MYH7 E677V 

133 ACTC1 Y93H 298 MYH7 R904C 

143 MYH7 E1801K 401 HCN4 G480S 

153 MYH7 E448K 

159 TAZ c.109+1G>C

233 KCNH2 A561T

247 MYH7 R712H

260 SGCD N99H

309 MYH7 M362R

312 ACTC1 T231R

313 TAZ M185V

315 MYBPC3 G758D

321 TNN1C E94A

327 TAZ L169F

333 MYH7 A223V

341 ANK2 R321W

350 TPM1 R238Q

361 MYH7 c.896-1 G>A

362 MYH7 F230S

365 MYL2 P144fs

377 MYH7 L693R

378 MYH7 L620P

386 TBX5 p. Arg279Ter
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390 MYH7 E1914K 

391 MYH7 E1801K 

392 MYH7 Q315R 

415 TAZ Q159P 

427 MYH7 R941C 

403 TAZ G197R 

404 MYH7 R23W 

405 LMNA A244V 

342 MYH7 P838L 

BMPR1A R284L 

280 MYH7 K542N 

JUP E146K 

274 KCNE3 R99H 

TAZ H176Y 

339 ANK2 W3620R 

MYH7 K542N 

234 SGCD N99H 

TPM1 D14G 
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Table S7. Details for each subject. 

ID Gene variant Sex 

(1M 2F) 

age on 

set 

Heart 

failure 

family  history  (0 

no) 

LVEF% LVDD-Z 

SCORE 

Arrhythmia (0 

normal) 

Prognosis (0: 

alive) 

132 MYL2 E88K 1 0.083 1 father DCM 39 1.2 0 0 

133 ACTC1 Y93H 2 0 1 Mother LVNC 36 1.88 0 0 

143 MYH7 E1801K 1 0 1 0 42 1 0 0 

153 MYH7 E448K 2 0.083 0 Sister LVNC 46 0.795 0 0 

159 TAZ c.109+1G>C 1 0.167 1 Mother LVNC 20 2.888 0 death 

233 KCNH2 A561T 1 0 1 0 31 1.1116 non-specific change death 

247 MYH7 R712H 2 0 1 0 36 -0.244 0 Heart 

transplantation 
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250 MYH7 E677V 1 0.04 1 0 60 1.6326 0 0 

260 SGCD N99H 1 0.083 0 0 45 1.5 0 0 

298 MYH7 R904C 2 6 0 0 65 2.1 0 0 

309 MYH7 M362R 2 0.01 0 Father  and  brother 

LVNC 

39 1.08 0 0 

312 ACTC1 T231R 1 4 1 0 49.4 1.8727 Supraventricular 

tachycardia 

ICD 

313 TAZ M185V 1 0.083 1 Mother LVNC 40 3.3333 0 Heart 

transplantation 

315 MYBPC3 G758D 2 3 0 0 38.5 1.25 0 0 

321 TNN1C E94A 2 0.333 0 0 32.5 2.22 0 Heart 

transplantation 

327 TAZ L169F 1 0 1 brother LVNC 22 2.566 0 0 
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333 MYH7 A223V 1 0 1 0 10 -0.4 0 0 

339 MYH7 K542N 2 0 1 0 48 1 non-specific change 0 

341 ANK2 R321W 2 0.083 1 0 46.8 1.9166 non-specific change 0 

350 TPM1 R238Q 2 0 1 0 38.4 1.33 0 0 

361 MYH7 c.896-1

G>A

2 0 1 0 38 0.977 0 0 

362 MYH7 F230S 2 0.0833 0 0 40 -0.823 0 0 

365 MYL2 P144fs 2 0.0416 1 0 34 1.7391 0 0 

377 MYH7 L693R 2 0.0833 1 0 30 1.3333 0 0 

378 MYH7 L620P 2 0 1 Sister LVNC 20 0.1 AF 0 

386 TBX5 p. 

Arg279Ter 

1 0 1 0 31 1.88 non-specific change 0 

390 MYH7 E1914K 1 0 0 0 43.5 3.3833 0 0 

391 MYH7 E1801K 2 0.8333 1 0 38 2.6785 0 0 
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392 MYH7 Q315R 1 0.0833 1 0 29 2.1428 T wave 0 

415 TAZ Q159P 1 0.8333 1 Sister LVNC 14 2.4 0 0 

427 MYH7 R941C 2 1.5 0 father DCM 44.1 1.3709 0 0 

401 HCN4 G480S 2 0.0166 1 Mother LVNC 59.4 -0.833 0 0 

403 TAZ G197R 1 0.25 1 0 6 4.4523 0 0 

404 MYH7 R23W 2 0.08333 0 0 48.9 0.0408 0 0 

405 LMNA A244V 2 0.08333 1 Sister LVNC 34 1.89 0 0 

342 MYH7 P838L 2 0 1 0 38 1.72 ventricular 
 
fibrillation 

death 

342 BMPR1A R284L 
        

280 MYH7 K542N 1 0 1 0 40 2.16 0 death 

280 JUP E146K 
        

274 KCNE3 R99H 1 0.005 1 0 45 2.03 left bundle branch death 
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block 
 

274 TAZ H176Y 
        

234 SGCD N99H 1 0 1 0 27 3.3095 0 death 

234 TPM1 D14G 
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