Palladium-Catalyzed Sequential Twofold Nucleophilic

 Substitution on 3-Bromopenta-2,4-dienyl Phosphate: Preparation of C_{1-} and C_{2}-Symmetric Doubly
Functionalized Allenes

Yen-Chou Chen ${ }^{\dagger, *}$ and Masamichi Ogasawara*, ${ }^{*}$

${ }^{\dagger}$ Department of Natural Science, Graduate School of Science and Technology and Research Cluster on
"Innovative Chemical Sensing", Tokushima University, Tokushima 770-8506, Japan
${ }^{\ddagger}$ Graduate School of Life Science, Hokkaido University, Kita-ku, Sapporo 001-0021, Japan
ogasawar@tokushima-u.ac.jp

RECEIVED DATE (to be automatically inserted after your manuscript is accepted)

Table of Contents/Abstract Graphic

Abstract

Readily available 3-bromopenta-2,4-dienyl esters (1x, acetate; 1y, benzoate; 1z, diethyl phosphate) were applied to the palladium-catalyzed reaction with various soft nucleophiles. The reaction proceeded through the twofold nucleophilic substitution via formal $\mathrm{S}_{\mathrm{N}} 2^{\prime}-$ and $\mathrm{S}_{\mathrm{N}} 2$-processes giving the various doubly functionalized allenes $\mathbf{2}$ in good yields. In the reactions of carboxylates $\mathbf{1 x}$ and $\mathbf{1 y}$, the first substitution took place at the $\mathrm{C}-\mathrm{Br}$ bond to form (allenyl)methyl ester intermediates 3. Because the

second substitution on $\mathbf{3}$ proceeded faster than the first substitution on $\mathbf{1 x}$ or $\mathbf{1 y}, \mathbf{3}$ were not isolable and C_{2}-symmetric allenes $\mathbf{2}$ were obtained even in the presence of remaining $\mathbf{1 x}$ and $\mathbf{1 y}$. On the other hand, the phosphate moiety was more reactive than the C-Br moiety in $\mathbf{1 z}$. The initial products from $\mathbf{1 z}$ were 5-Nu-3-bromopenta-1,3-dienes 4 which were less reactive than $\mathbf{1 z}$. Monosubstitution products $\mathbf{4}$ were isolable, and the stepwise introduction of two different Nu groups in C_{1}-symmetric allenes 2 was realized starting with $\mathbf{1 z}$ under the controlled reaction conditions. By the use of a chiral palladium catalyst, axially chiral doubly functionalized allenes were obtained in up to 95% ee.

Introduction

Development of novel and efficient methods of preparing allenic compounds has been an important subject due to synthetic usefulness of allenes in organic chemistry. ${ }^{1}$ In 2000 , we reported a palladiumcatalyzed reaction for preparing various functionalized allenes starting with an easily accessible 1-hydrocarbyl- or 1-silyl-2-bromo-1,3-diene and a soft nucleophile (Scheme 1, top). ${ }^{2}$ By the use of an appropriate chiral palladium species as a precatalyst, the reaction could provide enantiomerically enriched axially chiral allenes in up to 94% ee. ${ }^{3}$ A key intermediate of the palladium-catalyzed process is an (alkylidene- π-allyl)palladium species, ${ }^{4}$ that is somewhat similar to the widely accepted intermediates in the Tsuji-Trost reaction. ${ }^{5}$ Addition of an allenylmethyl ester to a zero-valent palladium species also provides an analogous (alkylidene- π-allyl)palladium species, ${ }^{6}$ and its reaction with soft nucleophiles gives comparable allenic products (Scheme 1, bottom). ${ }^{7}$ As shown in Scheme 1, the two Pd-catalyzed processes are closely related to each other.

Scheme 1. Palladium-Catalyzed Nucleophilic Substitution on 2-Bromo-1,3-dienes and Allenylmethyl Esters.

In 2012, we introduced 3-bromopenta-2,4-dienyl acetate (1x) as a unique bifunctional electrophile in the palladium-catalyzed reaction. ${ }^{8}$ Compound $1 \mathbf{x}$ possesses properties and substructures of both 2-bromo-1,3-dienes and allylic acetates, and it undergoes the "twofold Pd-catalyzed nucleophilic substitution" to give doubly functionalized C_{2}-symmetric allenes 2 in high yields with excellent regioselectivity. The vinylic $\mathrm{C}-\mathrm{Br}$ bond in $\mathbf{1 x}$ is more reactive than the allylic acetate moiety in the addition to $\operatorname{Pd}(0)$, and thus the primal intermediary product is allenylmethyl acetate 3 . Whereas monosubstituted intermediate $\mathbf{3}$ is more reactive than $\mathbf{1 x}$ in the palladium-catalyzed reaction, generated $\mathbf{3}$ is consumed faster than $\mathbf{1 x}$. Accordingly, $\mathbf{3}$ is not isolable nor detectable, and C_{2}-symmetric doubly substituted allene $\mathbf{2}$ is obtained preferentially even in the presence of remaining $\mathbf{1 x}$ (Scheme 2). In other words, stepwise introduction of two different Nu-groups in the doubly substituted allenes is not possible by the palladium-catalyzed reaction of $\mathbf{1 x}$.

Scheme 2. Palladium-Catalyzed Double Nucleophilic Substitution on 3-Bromo-2,4-pentadienyl Acetate 1 x .

In this article, we examine the effects of acyl groups in 3-bromopenta-2,4-dienyl esters in the palladium-catalyzed reaction. It is found that the reactivity of 3-bromopenta-2,4-dienyl diethyl phosphate ($\mathbf{1 z}$) is different from that of the corresponding carboxylates. The allylic phosphate moiety is the better leaving group than the vinylic bromide in $\mathbf{1 z}$, and the monosubstituted intermediates, bromodienes $\mathbf{4}$, can be isolated starting with $\mathbf{1 z}$. That is, stepwise introduction of two different Nu groups is realized starting with $\mathbf{1 z}$ leading to various doubly substituted unsymmetric (C_{1}-symmetric) allenic products 2 (Scheme 3).

Scheme 3. Palladium-Catalyzed "Sequential" Double Nucleophilic Substitution on 3-Bromo-2,4pentadienyl Diethyl Phosphate 1z.

Results and Discussion

Preparation of 3-Bromopenta-2,4-dienyl Esters 1. The substrates for this study, 3-bromopenta-2,4dienyl benzoate (1y), phosphate (1z), and carbonate (1w), were prepared as depicted in Scheme 4 starting with O-TBS-protected (Z)-3-bromopenta-2,4-dienol (5). ${ }^{9}$ The fluoride-induced desilylation of $\mathbf{5}$ followed by reactions with benzoyl chloride, diethyl chlorophosphate, or ethyl chlorocarbonate afforded $(Z)-\mathbf{1 w}-\mathbf{z}$ in $77-89 \%$ yields. Whereas unprotected 3-bromopenta-2,4-dienol was susceptible to polymerization, it was applied to the esterification without extensive purification/isolation. Among the three bromopentadienyl esters, carbonate $\mathbf{1 w}$ was found to be unstable and polymerize easily under the ambient conditions. Accordingly, $\mathbf{1 w}$ was eliminated from further studies, and $\mathbf{1 y}$ and $\mathbf{1 z}$ were examined in the palladium-catalyzed reactions (vide infra).

Scheme 4. Preparation of 3-Bromopenta-2,4-dienyl Esters (1w-z).

Preparation of \boldsymbol{C}_{2}-Symmetric Allenes by Palladium-Catalyzed Nucleophilic Double Substitution

 of $\mathbf{1}$. At the outset, substrates $\mathbf{1 x} \mathbf{x}$ were applied in the Pd-catalyzed reaction in the presence of excess (2.5 equiv with respect to $\mathbf{1}$) prototypical malonate pronucleophiles $\mathbf{6 a}$ or $\mathbf{6 b}$ (Table 1). All the three substrates reacted with 6a smoothly with a palladium catalyst ($2.0 \mathrm{~mol} \%$) generated in situ from $[\operatorname{PdCl}(\pi \text {-allyl })]_{2}$ and dpbp. The substrates were consumed completely within 12 hours and doubly functionalized C_{2}-symmetric allene 2aa was isolated in $83-89 \%$ yields (entries 1-3). Under the similar conditions, the reactions with phenylmalonate $\mathbf{6 b}$ provided the corresponding C_{2}-symmetric allene $\mathbf{2 b b}$ in good yields ranging 81% to 86% irrespective of the choice of the substrates (entries 4-6).Table 1. Palladium-Catalyzed Reactions of $\mathbf{1 x - z}$ with Excess Pronucleophile 6a or $\mathbf{6 b}$. ${ }^{\text {a }}$

${ }^{a}$ The reaction was carried out with $\mathbf{1}(0.50 \mathrm{mmol})$ and $\mathbf{6}(1.25 \mathrm{mmol})$ in THF in the presence of an appropriate base and a Pd-catalyst ($2 \mathrm{~mol} \%$) generated from $[\mathrm{PdCl}(\pi-\mathrm{allyl})]_{2}$ and dpbp. ${ }^{b}$ Isolated yield by silica gel chromatography. ${ }^{c}$ Taken from ref. 8.

Palladium-Catalyzed Nucleophilic Single Substitution of 1z. While all three substrates 1x-z showed the similar results in the palladium-catalyzed reaction with an excess (2.5 equiv. to $\mathbf{1}$) soft nucleophile (Table 1), the carboxylates and the phosphate exhibited different reactivities in the reaction with a stoichiometric soft nucleophile.

Treatment of the carboxylate, $\mathbf{1 x}$ or $\mathbf{1 y}$, with an equimolar mixture of $\mathbf{6 a}$ and NaH (1 equiv with respect to $\mathbf{1}$) in THF in the presence of the $\mathrm{Pd} / \mathrm{dpbp}$ catalyst ($2 \mathrm{~mol} \%$) afforded C_{2}-symmetric allene 2aa in ca. 50% yield together with ca. 50% unreacted 1 (Scheme 5). ${ }^{8}$ This result indicated that presumed intermediate $\mathbf{3}$ was more reactive than $\mathbf{1 x}$ and $\mathbf{1 y}$ in the palladium-catalyzed nucleophilic substitution (see Scheme 2).

Scheme 5. Palladium-Catalyzed Reactions of Carboxylates $\mathbf{1 x}$ and $\mathbf{1 y}$ with Stoichiometric 6a.

On the other hand, the palladium-catalyzed reactions of phosphate $\mathbf{1 z}$ with stoichiometric soft nucleophiles provided the corresponding "single substitution" products, 5-(nucleophile-substituted)-3-bromopenta-1,3-dienes $\mathbf{4}$, predominantly. The results of the nucleophilic single substitution of $\mathbf{1 z}$ are listed in Table 2 with the detailed reaction conditions. The reactions of $\mathbf{1 z}$ with methylmalonate ($\mathbf{6 a}$) or acetoamidomalonate ($\mathbf{6 c}$) were conducted using the $\mathrm{Pd} / \mathrm{dpbp}$ precatalyst ($5 \mathrm{~mol} \%$). The reactions proceeded with good selectivity under the optimized conditions, and the corresponding single substitution products $\mathbf{4 a}$ and $\mathbf{4 c}$ were obtained in 88% and 83% yields, respectively (entries 1 and 2). In
both cases, the formation of the double substitution products, C_{2}-symmetric allenes $\mathbf{2}$, was minor. On the other hand, the reaction with bissulfone pronucleophile $\mathbf{6 d}$ was much less selective in the presence of the $\mathrm{Pd} / \mathrm{dpbp}$ precatalyst irrespective of the bases (entries 3 and 4). Although expected single-substitution product $\mathbf{4 d}$ was obtained in modest yields, the concomitant formation of C_{2}-symmetric allene $\mathbf{2 d d}$ was detected together with unreacted $\mathbf{1 z}$. It was found that the palladium precatalyst coordinated with a bulkier bis(triarylphosphine) ligand (DTBM-bp) showed the much better selectivity of the monosubstitution, and $\mathbf{4 d}$ was obtained in up to 88% selectivity under the optimized conditions (entries 5 and 6). The relatively low isolated yield (50%) of $\mathbf{4 d}$ was ascribed to the instability of the compound that polymerized/oligomerized slowly during chromatographic purification on silica gel. The reaction with N-pronucleophile 6e also took place in excellent selectivity with the $\mathrm{Pd} / \mathrm{dpbp}$ precatalyst, and the corresponding (boc) ${ }_{2} \mathrm{~N}$-substituted bromodiene $4 \mathbf{e}$ was isolated in 91% yield (entry 7). All $5-\mathrm{Nu}-3-$ bromopenta-1,3-dienes 4 were obtained as mixtures of the two geometric isomers with the E-isomers predominant in 82-88\%.

Table 2. Palladium-Catalyzed Reactions of $\mathbf{1 z}$ with Stoichiometric Pronucleophiles 6. ${ }^{\text {a }}$

| entry | $\mathrm{Nu}-\mathrm{H}$ | base | temp. | $\mathrm{P}-\mathrm{P}$ | $\mathbf{1 z / 4 / 2 ^ { b }}$ | yield of $\mathbf{4}^{c}$ | E / Z in $\mathbf{4}^{b}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | $\mathbf{6 a}$ | NaH | $0{ }^{\circ} \mathrm{C}$ | dpbp | $7 / 90 / 3$ | $88 \%(\mathbf{4 a)}$ | $84 / 16$ |
| 2 | $\mathbf{6 c}$ | $\mathrm{KO}^{t} \mathrm{Bu}$ | $23{ }^{\circ} \mathrm{C}$ | dpbp | $4 / 84 / 12$ | $83 \%(\mathbf{4 c})$ | $82 / 18$ |
| 3 | $\mathbf{6 d}$ | NaH | $23^{\circ} \mathrm{C}$ | dpbp | $70 / 19 / 11$ | - | - |
| 4 | $\mathbf{6 d}$ | $\mathrm{LiCH}_{2} \mathrm{SiMe}_{3}$ | $40^{\circ} \mathrm{C}$ | dpbp | $18 / 48 / 34$ | - | - |

5	$\mathbf{6 d}$	$\mathrm{LiCH}_{2} \mathrm{SiMe}_{3}$	$40^{\circ} \mathrm{C}$	DTBM-bp	$48 / 49 / 3$	-	-
6	$\mathbf{6 d}$	$\mathrm{LiCH}_{2} \mathrm{SiMe}_{3}$	$60^{\circ} \mathrm{C}$	DTBM-bp	$12 / 88 / 0$	$50 \%(4 d)$	$88 / 12$
7	$\mathbf{6 e}$	$\mathrm{KO}^{t} \mathrm{Bu}$	$40^{\circ} \mathrm{C}$	dpbp	$6 / 94 / 0$	$91 \%(4 e)$	$88 / 12$

${ }^{a}$ The reaction was carried out with $\mathbf{1 z}(0.20 \mathrm{mmol})$ and $\mathbf{6}(0.22 \mathrm{mmol})$ in THF in the presence of an appropriate base $(0.22 \mathrm{mmol})$ and a Pd-catalyst ($5 \mathrm{~mol} \%$) generated from $\mathrm{Pd}_{2}(\mathrm{dba})_{4}$ and a bisphosphine. ${ }^{b}$ Determined by the ${ }^{1} \mathrm{H}-\mathrm{NMR}$ measurements. ${ }^{c}$ Isolated yield by silica gel chromatography.

Palladium-Catalyzed Synthesis of \boldsymbol{C}_{1}-Symmetric Allenes 2. Single substitution products 4, obtained from $\mathbf{1 z}$ and a soft nucleophile Nu^{-}as in Table 2, were excellent substrates in the palladium-catalyzed "second" nucleophilic substitution to give doubly functionalized allenes 2. When a nucleophile Nu^{-}in the second palladium-catalyzed reaction was different from a Nu group in 4, doubly substituted unsymmetric (C_{1}-symmetric) allenes 2 were obtained selectively (except for the reactions of $\mathbf{4} \mathbf{e}$; vide infra). These C_{1}-symmetric allenes $\mathbf{2}$ could not be prepared starting with acetate $\mathbf{1 x}$ or benzoate $\mathbf{1 y}$ (see Schemes 2 and 5). The results of preparing the C_{1}-symmetric allenes are listed in Table 3. Both methylmalonate- or acetoamidomalonate-tethered bromodienes $\mathbf{4 a}$ and $\mathbf{4 c}$ were equally reactive and the treatments with an appropriate 6 gave the corresponding C_{1}-symmetric allenes in high yields ranging 72-94\% (entries 1-6). Allenes 2ad and 2cd, which possess a malonate and a bissulfone moieties within the molecules, were also accessed by the reverse introduction of the two functional groups. That is, the reactions of bissulfone-tethered $\mathbf{4 d}$ with a malonate pronucleophile $\mathbf{6 a}$ or $\mathbf{6 c}$ provided $\mathbf{2 a d}$ or $\mathbf{2 c d}$ in 84% and 77% yields, respectively (entries 7 and 8). While the palladium-catalyzed reactions of $\mathbf{4 a}, \mathbf{4 c}$, and $\mathbf{4 d}$ proceeded with excellent chemoselectivity to give the corresponding C_{1}-symmetric allenes exclusively, the products from $\mathbf{4 e}$ comprised of the two allenic species. For example, the reaction between $\mathbf{4 e}$ and $\mathbf{6 a}$ afforded C_{1}-symmetric allene 2ae in 21% yield together with C_{2}-symmetric allene 2aa in 46% yield (entry 9). The reactions of $\mathbf{4 e}$ with the other pronucleophile showed a similar trend (entries 10 and 11).

Table 3. Palladium-Catalyzed Synthesis of C_{1}-Symmetric Doubly Functionalized Allenes 2 from 4. ${ }^{\text {a }}$

entry	bromodiene $\mathbf{4}$	$\mathrm{Nu}^{\prime}-\mathrm{H} \mathbf{6}$	base	yield of $C_{1} \mathbf{- 2}(\%)^{b}$	yield of $C_{2} \mathbf{- 2}(\%)^{b}$
1	$\mathbf{4 a}$	$\mathbf{6 c}$	${ }^{t} \mathrm{BuOK}$	$87(\mathbf{2 a c})$	-
2		$\mathbf{6 d}$	NaH	$91(\mathbf{2 a d})$	-
3		$\mathbf{6 e}$	${ }^{t} \mathrm{BuOK}$	$78(\mathbf{2 a e})$	-
4	$\mathbf{4 c}$	$\mathbf{6 a}$	NaH	$94(\mathbf{2 a c})$	-
5		$\mathbf{6 d}$	NaH	$72(\mathbf{2 c d})$	-
6	$\mathbf{4 d}$	$\mathbf{6 a}$	NaH	$84(\mathbf{2 a d})$	-
7	$\mathbf{6 e}$	${ }^{t} \mathrm{BuOK}$	$93(\mathbf{2 c e})$	-	
8	$\mathbf{6 c}$	${ }^{t} \mathrm{BuOK}$	$77(\mathbf{2 c d})$	-	
9		$\mathbf{6 a}$	NaH	$21(\mathbf{2 a e})$	$46(\mathbf{2 a a})$
10		$\mathbf{6 c}$	${ }^{t} \mathrm{BuOK}$	$15(\mathbf{2 c e})$	$44(\mathbf{2 c c})$
11		$\mathbf{6 d}$	NaH	$33(\mathbf{2 d e})$	$59(\mathbf{2 d d})$

${ }^{a}$ The reaction was carried out with $4(0.10 \mathrm{mmol})$ and $6(0.15 \mathrm{mmol})$ in THF in the presence of an appropriate base and a Pd-catalyst ($5 \mathrm{~mol} \%$) generated from $[\mathrm{PdCl}(\pi \text {-allyl })]_{2}$ and dpbp. ${ }^{5}$ Isolated yield by silica gel chromatography.

The C_{2}-symmetric allenes obtained from (boc) $)_{2} \mathrm{~N}$-tethered $4 \mathbf{e}$ do not possess the (boc) $)_{2} \mathrm{~N}$ group. These observations implied that the (boc) $)_{2} \mathrm{~N}$ moieties in 2ae, 2ce, and 2de functioned as leaving groups under the palladium catalysis. Indeed, this possibility was confirmed by the reaction of 2ae with excess $\mathbf{6 a}$ in the presence of the $\mathrm{Pd} / \mathrm{dpbp}$ species, which provided 2aa in 75% yield (Scheme 6). The results in Table 3 and Scheme 6 clearly indicated that the (boc) ${ }_{2} \mathrm{~N}$ group needed to be introduced at the second step in the preparation of mono- $\mathrm{N}(\mathrm{boc})_{2} C_{1}$-symmetric allenes such as 2ae and 2ce.

Scheme 6. Palladium-Catalyzed Substitution at $\mathrm{N}(\mathrm{boc})_{2}$ Moiety in 2ae.

The C_{1}-symmetric doubly functionalized allenes could be prepared by the "one-pot" procedure directly from $\mathbf{1 z}$ as outlined in Table 4. After the treatment of $\mathbf{1 z}$ with slight excess pronucleophile $\mathbf{6}$ and an appropriate base (1.1 equiv. to $\mathbf{1 z}$) in the presence of the $\mathrm{Pd} / \mathrm{dpb}$ precatalyst until the total consumption of $\mathbf{1 z}$ (checked by TLC), a second nucleophile, which was generated from $\mathbf{6}$ (typically different from the first one) and a base, was added to the reaction mixture without an additional palladium catalyst. Stirring the reaction mixtures for 24 h at $40^{\circ} \mathrm{C}$ gave the corresponding C_{1}-symmetric allenes in $60-81 \%$ yields. Although the yields by the one-pot procedure are competitive with or slightly lower than the combined yields from the two step sequence via 4 , the operational simplicity of the procedure provided easier access to doubly substituted unsymmetric allenes 2.

Table 4. Preparation of C_{1}-Symmetric Allenes 2 from $\mathbf{1 z}$ by "One-Pot" Procedure. ${ }^{\text {a }}$

| entry | $\mathrm{Nu}-\mathrm{H} 6$ | base-1 | temp | time | $\mathrm{Nu}^{\prime}-\mathrm{H} \mathbf{6}$ | base-2 | yield of $\mathbf{2}(\%)^{b}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | $\mathbf{6 a}$ | NaH | $0^{\circ} \mathrm{C}$ | 48 h | $\mathbf{6 c}$ | ${ }^{t} \mathrm{BuOK}$ | $60(\mathbf{2 a c})$ |
| 2 | | | | | $\mathbf{6 d}$ | NaH | $76(\mathbf{2 a d})$ |
| 3 | | | | | $\mathbf{6 e}$ | ${ }^{t} \mathrm{BuOK}$ | $81(\mathbf{2 a e})$ |
| 4 | $\mathbf{6 c}$ | ${ }^{t} \mathrm{BuOK}$ | $23^{\circ} \mathrm{C}$ | 24 h | $\mathbf{6 a}$ | NaH | $62(\mathbf{2 a c})$ |
| 5 | | | | | $\mathbf{6 d}$ | NaH | $64(\mathbf{2 c d})$ |
| 6 | | | | | $\mathbf{6 e}$ | ${ }^{t} \mathrm{BuOK}$ | $60(\mathbf{2 c e})$ |

${ }^{a}$ The reaction was carried out starting with $\mathbf{1 z}(0.20 \mathrm{mmol})$ in THF in the presence of a Pd-catalyst (5 $\mathrm{mol} \%$) generated from $\mathrm{Pd}_{2}(\mathrm{dba})_{4}$ and dpbp. ${ }^{b}$ Isolated yield by silica gel chromatography.

Palladium-Catalyzed Asymmetric Synthesis of Axially Chiral Allenes 2. Allenes 2 obtained in this study are axially chiral, and application of an appropriate chiral palladium species to the reaction may furnish 2 in enantiomerically enriched forms. Three malonate pronucleophiles 6a-c were chosen, and their asymmetric reactions with bromopentadienyl esters $\mathbf{1 x} \mathbf{x}$ were examined using a palladium precatalyst (5 mol \%) generated from $\mathrm{Pd}_{2}(\mathrm{dba})_{4}$ and (R)-segphos according to our previous studies (Table 5). ${ }^{3}$ The enantioselective reactions with $\mathbf{6 a}$ provided axially chiral allene 2aa in excellent yields ranging 87% to 92% irrespective of the choice of substrates $\mathbf{1 x - z}$, and the highest enantioselectivity of 88% ee was observed in the reaction of phosphate $\mathbf{1 z}$ (entries 1-3). The best result in the asymmetric synthesis of $\mathbf{2 b b}$ was obtained in the reaction of $\mathbf{1 y}$ in 99% yield and 85% ee (entry 5). Among the three pronucleophiles examined, 6c showed the highest enantioselectivity (entries 7-9). The highest enantioselectivity of 95% ee was recorded in the reaction between $\mathbf{1 y}$ and $\mathbf{6 c}$ using ${ }^{t} \mathrm{BuOCs}$ as a base (entry 8). All the axially chiral allenes obtained in Table 5 were levorotatory and their absolute configurations were deduced to be (R) by the Lowe-Brewster rule. ${ }^{10}$

Table 5. Palladium-Catalyzed Asymmetric Synthesis of Axially Chiral Allenes 2. ${ }^{\text {a }}$

entry	substrate $\mathbf{1}$	Nu-H 6	base	yield of $\mathbf{2}(\%)^{b}$	ee of 2 (\%)
1	$\mathbf{1 x}$	$\mathbf{6 a}$	NaH	$87(\mathbf{2 a a})$	79
2	$\mathbf{1 y}$			$92(\mathbf{2 a a})$	61
3	$\mathbf{1 z}$			$91(\mathbf{2 a a})$	88
4	$\mathbf{1 x}$	$\mathbf{6 b}$	${ }^{t}$ BuOCs	$79(\mathbf{2 b b})$	80

5	$\mathbf{1 y}$		$99(\mathbf{2 b b})$	85
6	$\mathbf{1 z}$		$77(\mathbf{2 b b})$	81
7	$\mathbf{1 x}$	$\mathbf{6 c}$	${ }^{t} \mathrm{BuOCs}$	$72(\mathbf{2 c c})$
8	$\mathbf{1 y}$		$74(\mathbf{2 c c})$	86
9	$\mathbf{1 z}$		$77(\mathbf{2 c c})$	95

${ }^{a}$ The reaction was carried out with $\mathbf{1}(0.20 \mathrm{mmol})$ and $\mathbf{6}(0.60 \mathrm{mmol})$ at $40{ }^{\circ} \mathrm{C}$ for 24 h in THF $(1.5$ mL) in the presence of an appropriate base and a chiral Pd -catalyst ($5 \mathrm{~mol} \%$) generated from $\mathrm{Pd}_{2}(\mathrm{dba})_{4}$ and (R)-segphos. ${ }^{\mathrm{b}}$ Isolated yield by alumina chromatography ${ }^{\mathrm{c}}$ Determined by chiral HPLC analysis.

Consideration to Relative Reactivity between Carboxylate, Phosphate, and Bromide in 1.

 Substrates $\mathbf{1 x - z}$ possesses two different sites susceptible to activation with palladium catalysis, and the carboxylates and the phosphate show different reactivity toward the palladium-catalyzed nucleophilic substitution. Because the bromo substituents are more reactive than the carboxylate moieties in $\mathbf{1 x}$ and $\mathbf{1 y}$, the initially formed monosubstitution intermediates should be $\mathbf{3}$. The carboxylate moieties in $\mathbf{3}$ are more reactive than the bromide substituents in $\mathbf{1 x}$ and $\mathbf{1 y}$, and intermediates $\mathbf{3}$ are consumed faster than $\mathbf{1}$ (Scheme 7, top). Accordingly, $\mathbf{3}$ are not isolable and C_{2}-symmetric allenes $\mathbf{2}$ are preferentially obtained even in the presence of remaining $\mathbf{1 x}$ and $\mathbf{1 y} .{ }^{8}$ On the other hand, the phosphate substituent is more reactive than the $\mathrm{C}-\mathrm{Br}$ moiety in $\mathbf{1 z}$. Accordingly, the initial products from $\mathbf{1 z}$ are bromodienes $\mathbf{4}$ which are less reactive than $\mathbf{1 z}$. Therefore monosubstitution products $\mathbf{4}$ are isolable, and the introduction of two different Nu groups in allenes $\mathbf{2}$ is realized starting from $\mathbf{1 z}$ under the controlled reaction conditions (Scheme 7, bottom).Scheme 7. Proposed Reaction Pathways from 1 to 2.

Conclusions

In summary, we have demonstrated that readily available 3-bromopenta-2,4-dienyl esters $\mathbf{1 x} \mathbf{x} \mathbf{z}$ are excellent precursors to a variety of doubly functionalized allenes 2. The reaction of $\mathbf{1}$ and soft nucleophile 6 is catalyzed by the $\mathrm{Pd} / \mathrm{dpbp}$ complex, and $\mathbf{1}$ undergoes the twofold nucleophilic substitution via formal $\mathrm{S}_{\mathrm{N}} 2$ and $\mathrm{S}_{\mathrm{N}} 2$ processes to give the allenic products in high yields. Stepwise introduction of two different Nu groups can be realized by the reaction starting with phosphate $\mathbf{1 z}$ leading to the C_{1}-symmetric allenes, which are not accessible from carboxylates $\mathbf{1 x}$ and $\mathbf{1 y}$. By the use of a chiral palladium catalyst, axially chiral doubly functionalized allenes were obtained in up to 95% ee.

Experimental Section

General. All anaerobic and/or moisture-sensitive manipulations were carried out with standard Schlenk techniques under predried nitrogen or with glovebox techniques under prepurified argon. ${ }^{1} \mathrm{H}$ NMR (at 400 MHz) and ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (at 101 MHz) chemical shifts are reported in ppm downfield of internal tetramethylsilane. ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (at 162 MHz) chemical shifts are externally referenced to 85% $\mathrm{H}_{3} \mathrm{PO}_{4}$. Tetrahydrofuran was distilled from benzophenone - ketyl under nitrogen prior to use. Dichloromethane was distilled from CaH_{2} under nitrogen prior to use. O-TBS-protected (Z)-3-bromopenta-2,4-dienol (5), ${ }^{9}$ 1,3-benzodithiole-1,1,3,3-tetraoxide, ${ }^{11}$ dpbp, ${ }^{12}$ and (R)-segphos ${ }^{13}$ were prepared as reported. DTBM-bp was reported previously, ${ }^{14}$ however, no characterization data were
given. Synthetic procedure and characterization data of DTBM-bp are described in Supporting Information. All other chemicals were obtained from commercial sources and used without additional purification.
(Z)-3-Bromopenta-2,4-dienyl Benzoate (1y). To a stirred solution of $\mathbf{5}(3.00 \mathrm{~g}, 10.8 \mathrm{mmol})$ in THF $(40 \mathrm{~mL})$ was added a solution of tetrabutylammonium fluoride (1.0 M in $\mathrm{THF}, 10.8 \mathrm{~mL}, 10.8 \mathrm{mmol}$) dropwise at $0^{\circ} \mathrm{C}$. After stirring the solution for 30 min at room temperature, the reaction mixture was quenched with saturated $\mathrm{NH}_{4} \mathrm{Cl}_{a q}(100 \mathrm{~mL})$. The organic layer was separated, and the aqueous layer was extracted with ether three times. The combined organic layer was washed with brine, dried over MgSO_{4}, then concentrated under reduced pressure. The residue, crude (Z)-3-bromopenta-2,4-dienol, was dissolved in dichloromethane $(40 \mathrm{~mL})$, and to this were added pyridine $(2.14 \mathrm{~g}, 27.1 \mathrm{mmol})$ and benzoyl chloride ($3.04 \mathrm{~g}, 21.6 \mathrm{mmol}$) at $0{ }^{\circ} \mathrm{C}$. The solution was allowed to warm to room temperature and kept stirred for 1 h . The solution was diluted with dichloromethane (40 mL) and washed successively with water, saturated $\mathrm{CuSO}_{4 a q}$ twice, water, and brine. The organic layer was dried over MgSO_{4}, and concentrated under reduced pressure. The residue was purified by silica gel chromatography (hexane/ethyl acetate $=20 / 1$) followed by vacuum transfer to give $\mathbf{1 y}$ as a pale-yellow oil. Yield: 2.59 g (89\%). ${ }^{1} \mathrm{H}$ NMR (CDCl_{3}): $\delta 5.10(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 5.34(\mathrm{~d}, J=10.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.69(\mathrm{~d}, J=16.3 \mathrm{~Hz}$, $1 \mathrm{H}), 6.28(\mathrm{t}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.37(\mathrm{dd}, J=16.3$ and $10.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.41-7.49(\mathrm{~m}, 2 \mathrm{H}), 7.53-7.62(\mathrm{~m}, 1 \mathrm{H})$, 8.03-8.10 (m, 2H). ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 64.4,120.3,128.25,128.28,128.6,129.8,130.0,133.3$, 135.1, 166.5. ESI-HRMS Calcd for $\mathrm{C}_{12} \mathrm{H}_{11} \mathrm{BrO}_{2} \mathrm{Na}(\mathrm{M}+\mathrm{Na})$: 288.9840. Found: 288.9849.
(Z)-3-Bromopenta-2,4-dienyl Diethyl Phosphate (1z). This compound was prepared essentially in the same way of the synthesis of $\mathbf{1 y}$ using diethyl phosphoryl chloride ($3.73 \mathrm{~g}, 21.6 \mathrm{mmol}$) instead of benzoyl chloride. The crude product was purified by silica gel chromatography (benzene/EtOAc/Et ${ }_{3} \mathrm{~N}=$ $75 / 25 / 1$) followed by vacuum transfer to give 1 z as a pale-yellow oil. Yield: $2.86 \mathrm{~g}(88 \%) .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 1.31-1.40(\mathrm{~m}, 6 \mathrm{H}), 4.08-4.20(\mathrm{~m}, 4 \mathrm{H}), 4.81(\mathrm{dd}, J=8.6,5.9 \mathrm{~Hz}, 2 \mathrm{H}), 5.33(\mathrm{~d}, J=10.4 \mathrm{~Hz}$, $1 \mathrm{H}), 5.67(\mathrm{~d}, J=16.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.21(\mathrm{t}, J=5.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.34(\mathrm{dd}, J=16.3$ and $10.4 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 16.3\left(\mathrm{~d}, J_{\mathrm{CP}}=6.4 \mathrm{~Hz}\right), 64.2(\mathrm{~d}, J=5.7 \mathrm{~Hz}), 66.6\left(\mathrm{~d}, J_{\mathrm{CP}}=5.2 \mathrm{~Hz}\right), 120.5,127.5,128.8$
$\left(\mathrm{d}, J_{\mathrm{CP}}=7.5 \mathrm{~Hz}\right), 134.9 .{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta-0.28$. EI-HRMS Calcd for $\mathrm{C}_{9} \mathrm{H}_{16} \mathrm{BrO}_{4} \mathrm{PNa}(\mathrm{M}+$ Na): 320.9867. Found: 320.9875.
(Z)-3-Bromopenta-2,4-dienyl Ethyl Carbonate (1w). This compound was prepared essentially in the same way of the synthesis of $\mathbf{1 y}$ using ethyl chloroformate ($2.35 \mathrm{~g}, 21.6 \mathrm{mmol}$) instead of benzoyl chloride. The crude product was purified by silica gel chromatography (hexane/ $\mathrm{CHCl}_{3}=3 / 1$) followed by vacuum transfer to give $\mathbf{1 w}$ as a pale-yellow oil. Yield: $1.95 \mathrm{~g}(77 \%) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right): \delta 1.32(\mathrm{t}, J$ $=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 4.22(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 4.90(\mathrm{~d}, J=6.1 \mathrm{~Hz}, 2 \mathrm{H}), 5.33(\mathrm{~d}, J=10.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.67(\mathrm{~d}, J=$ 16.2 Hz, 1H), $6.17(\mathrm{t}, J=6.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.34(\mathrm{dd}, J=16.2$ and $10.5 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): \delta$ $14.4,64.5,66.9,120.5,127.7,128.2,135.0,155.1$. EI-HRMS Calcd for $\mathrm{C}_{8} \mathrm{H}_{11} \mathrm{BrO}_{3} \mathrm{Na}(\mathrm{M}+\mathrm{Na})$: 256.9789. Found: 256.9783.

2-Methyl-1,3-benzodithiole 1,1,3,3-Tetraoxide (6d). To a suspension of 1,3-benzodithiole-1,1,3,3tetraoxide $(3.00 \mathrm{~g}, 13.8 \mathrm{mmol})$ and $\mathrm{NaH}(0.40 \mathrm{~g}, 16.5 \mathrm{mmol})$ in THF $(30 \mathrm{~mL})$ was added a THF solution $(20 \mathrm{~mL})$ of iodomethane $(2.34 \mathrm{~g}, 16.5 \mathrm{mmol})$ at room temperature under nitrogen, and then the mixture was refluxed overnight. The mixture was filtered through a short pad of silica gel to remove precipitated inorganic salts. The silica gel pad was washed with a small amount of CHCl_{3} three times, and the combined solution was evaporated to dryness under reduced pressure. The residue was purified by column chromatography on silica gel $\left(\mathrm{CHCl}_{3} /\right.$ hexane/benzene/ $\left.\mathrm{Et}_{2} \mathrm{O}=9 / 2 / 2 / 1\right)$ to give the title compound as a white solid. Yield: $2.95 \mathrm{~g}(92 \%) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right): \delta 1.87(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 4.47(\mathrm{q}$, $J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.90-7.98(\mathrm{~m}, 2 \mathrm{H}), 8.01-8.07(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right): \delta 6.9,70.3,122.9$, 135.4, 137.7. ESI-HRMS Calcd for $\mathrm{C}_{8} \mathrm{H}_{8} \mathrm{O}_{4} \mathrm{~S}_{2} \mathrm{Na}(\mathrm{M}+\mathrm{Na})$: 254.9762 . Found: 254.9752 .

Preparation of \boldsymbol{C}_{2}-Symmetric Allenes 2 by Palladium-Catalyzed Double Substitution of $\mathbf{1}$. The reactions were conducted according to a reported procedure. ${ }^{8}$ The reaction conditions and the results are summarized in Table 1. A mixture of $[\mathrm{PdCl}(\pi \text {-allyl })]_{2}(1.8 \mathrm{mg}, 10 \mu \mathrm{~mol} / \mathrm{Pd}), \operatorname{dpbp}(5.7 \mathrm{mg}, 11 \mu \mathrm{~mol})$, and $1(0.50 \mathrm{mmol})$ was dissolved in THF $(5 \mathrm{~mL})$ and the solution was added to a mixture of $\mathbf{6}(1.25$ $\mathrm{mmol})$ and base (1.25 mmol) via cannula under nitrogen. The mixture was stirred for 12 h at $40^{\circ} \mathrm{C}$, then
filtered through a short pad of silica gel to remove precipitated inorganic salts. The silica gel pad was washed with a small amount of $\mathrm{Et}_{2} \mathrm{O}$ three times and the combined solution was evaporated to dryness under reduced pressure. The yellow residue was chromatographed on silica gel to give allene $\mathbf{2}$ in pure form. The ${ }^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}-\mathrm{NMR}$ spectra of 2aa and $\mathbf{2 b b}$ were consistent with those reported previously. ${ }^{8}$

Palladium-Catalyzed Nucleophilic Single Substitution of 1z. The reaction conditions and the results are summarized in Table 2. A mixture of $\mathrm{Pd}_{2}(\mathrm{dba})_{4}(5.8 \mathrm{mg}, 5.0 \mu \mathrm{~mol})$, a bisphosphine ligand ($10.5 \mu \mathrm{~mol}$), and $\mathbf{1 z}(60 \mathrm{mg}, 0.20 \mathrm{mmol})$ was dissolved in THF $(2 \mathrm{~mL})$, and the solution was added to a mixture of $6(0.22 \mathrm{mmol})$ and an appropriate base $(0.22 \mathrm{mmol})$ via a cannula under nitrogen. The mixture was stirred for 24 h , and then filtered through a short pad of silica gel to remove precipitated inorganic salts. The silica gel pad was washed with a small amount of EtOAc three times, and the combined solution was evaporated to dryness under reduced pressure. The yellow residue was chromatographed on silica gel to give bromodiene 4 in pure form. The characterization data of bromodiene products $\mathbf{6}$ are listed below.

Dimethyl 2-(3-Bromopenta-2,4-dienyl)-2-methylmalonate (4a). Colorless oil. Yield: 52 mg (88\%) starting with $1 \mathbf{c}(60 \mathrm{mg} ; 0.20 \mathrm{mmol}) . E / Z=84 / 16 .(E)-4 \mathrm{a}:{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right): \delta 1.45(\mathrm{~s}, 3 \mathrm{H}), 2.92(\mathrm{~d}, J=$ $7.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.74(\mathrm{~s}, 6 \mathrm{H}), 5.23(\mathrm{~d}, J=10.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.57(\mathrm{~d}, J=16.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.92(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H})$, $6.31(\mathrm{dd}, J=16.3$ and $10.4 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right): \delta 20.4,37.9,52.9,53.7,118.8,128.9$, 129.0, 135.8, 172.2. (Z)-4a: ${ }^{1} \mathrm{H}\left(\mathrm{CDCl}_{3}\right): \delta 1.44(\mathrm{~s}, 1 \mathrm{H}), 2.80(\mathrm{~d}, J=8.4 \mathrm{~Hz}), 3.73(\mathrm{~s}, 6 \mathrm{H}), 5.38(\mathrm{~d}, J=$ $10.8 \mathrm{~Hz}), 5.69(\mathrm{~d}, J=16.4 \mathrm{~Hz}), 6.00(\mathrm{t}, J=8.4 \mathrm{~Hz}), 6.58(\mathrm{dd}, J=16.4$ and 10.8 Hz$)$. ESI-HRMS Calcd for $\mathrm{C}_{11} \mathrm{H}_{15} \mathrm{BrO}_{4} \mathrm{Na}(\mathrm{M}+\mathrm{Na}): 313.0051$. Found: 313.0062.

Diethyl 2-Acetamido-2-(3-bromopenta-2,4-dienyl)malonate (4c). Pale-yellow oil. Yield: 60 mg (83%) starting with $\mathbf{1 c}(60 \mathrm{mg} ; 0.20 \mathrm{mmol}) . E / Z=82 / 18 .(E)-4 \mathrm{c} \cdot{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right): \delta 1.26(\mathrm{t}, J=7.1 \mathrm{~Hz}$, $6 \mathrm{H}), 2.04(\mathrm{~s}, 3 \mathrm{H}), 3.39(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 4.26(\mathrm{q}, J=7.2 \mathrm{~Hz}, 4 \mathrm{H}), 5.23(\mathrm{~d}, J=10.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.57(\mathrm{~d}, J$ $=16.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.81(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.29(\mathrm{dd}, J=16.3$ and $10.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.78(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 14.1,23.2,35.5,63.0,65.6,119.2,127.4,129.3,135.7,167.6,169.3 .(Z)-4 \mathrm{c}:{ }^{1} \mathrm{H}$ NMR
$\left(\mathrm{CDCl}_{3}\right): \delta 1.26(\mathrm{t}, J=7.2 \mathrm{~Hz}, 6 \mathrm{H}), 2.02(\mathrm{~s}, 3 \mathrm{H}), 3.29(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 4.25(\mathrm{qd}, J=7.1$ and 1.2 Hz , $5 \mathrm{H}), 5.37(\mathrm{~d}, J=10.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.67(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.84(\mathrm{t}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.53(\mathrm{ddd}, J=16.0$, 10.8, and $0.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.78(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): \delta 14.1,23.1,32.7,63.1,65.9,122.1,126.5$, 128.0, 129.7, 167.3, 169.5. ESI-HRMS Calcd for $\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{BrNO}_{5} \mathrm{Na}(\mathrm{M}+\mathrm{Na}): 384.0423$. Found: 384.0431 .

2-(3-Bromopenta-2,4-dienyl)-2-methylbenzodithiole 1,1,3,3-Tetraoxide (4d). White solid. Yield: $38 \mathrm{mg}(50 \%)$ starting with $\mathbf{1 c}(60 \mathrm{mg} ; 0.20 \mathrm{mmol}) . E / Z=88 / 12 .(E)-4 \mathrm{~d}:{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right): \delta 1.76(\mathrm{~s}$, $3 \mathrm{H}), 3.35(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 5.36(\mathrm{~d}, J=10.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.68(\mathrm{~d}, J=16.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.19(\mathrm{t}, J=6.9 \mathrm{~Hz}$, $1 \mathrm{H}), 6.43(\mathrm{dd}, J=16.3$ and $10.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.90-7.97(\mathrm{~m}, 2 \mathrm{H}), 8.00-8.08(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}$ $\left(\mathrm{CDCl}_{3}\right): \delta 16.7,31.6,76.3,120.6,123.4,124.0,132.0,135.3,135.5,135.8 .(Z)-4 d:{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right):$ $\delta 1.76(\mathrm{~s}, 3 \mathrm{H}), 3.18(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 5.51(\mathrm{~d}, J=10.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.80(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.19(\mathrm{t}, J=$ $6.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.66(\mathrm{~d}, J=16.0$ and $10.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.90-7.97(\mathrm{~m}, 2 \mathrm{H}), 8.00-8.08(\mathrm{~m}, 2 \mathrm{H})$. ESI-HRMS Calcd for $\mathrm{C}_{13} \mathrm{H}_{13} \mathrm{BrO}_{4} \mathrm{~S}_{2} \mathrm{Na}(\mathrm{M}+\mathrm{Na})$: 398.9336. Found: 398.9350.
N, N-Di(tert-butoxycarbonyl)- N-(3-bromopenta-2,4-dienyl)amine (4e). Pale-yellow oil. Yield: 66 $\mathrm{mg}(91 \%)$ starting with $\mathbf{1 c}(60 \mathrm{mg} ; 0.20 \mathrm{mmol}) . E / Z=88 / 12 .(E)-4 \mathrm{e}:{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right): \delta 1.50(\mathrm{~s}, 18 \mathrm{H})$, $4.46(\mathrm{~d}, J=5.6 \mathrm{~Hz}, 2 \mathrm{H}), 5.24(\mathrm{~d}, J=10.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.59(\mathrm{~d}, J=16.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.99(\mathrm{t}, J=5.6 \mathrm{~Hz}, 1 \mathrm{H})$, $6.31(\mathrm{dd}, J=16.4$ and $10.4 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right): \delta 28.2,47.8,82.9,118.9,125.7,131.3$, 135.2, 152.3. (Z)-4e: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 1.50(\mathrm{~s}, 18 \mathrm{H}), 4.35(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 5.40(\mathrm{~d}, J=10.6 \mathrm{~Hz}$, $1 \mathrm{H}), 5.69(\mathrm{~d}, J=16.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.12(\mathrm{t}, J=6.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.31(\mathrm{dd}, J=16.2$ and $10.5 \mathrm{~Hz}, 1 \mathrm{H})$. ESI-HRMS Calcd for $\mathrm{C}_{15} \mathrm{H}_{24} \mathrm{BrNO}_{4} \mathrm{Na}(\mathrm{M}+\mathrm{Na})$: 384.0786 . Found: 384.0775.

Preparation of \boldsymbol{C}_{1}-Symmetric Allenes 2 by Palladium-Catalyzed Substitution of 4. The reaction conditions and the results are summarized in Table 3. A mixture of $[\operatorname{PdCl}(\pi-\mathrm{allyl})]_{2}(1.0 \mathrm{mg}, 2.5 \mu \mathrm{~mol})$, dpbp ($2.9 \mathrm{mg}, 5.5 \mu \mathrm{~mol}$), and $4(0.10 \mathrm{mmol})$ was dissolved in THF $(1 \mathrm{~mL})$, and the solution was added to a mixture of $6(0.15 \mathrm{mmol})$ and an appropriate base $(0.15 \mathrm{mmol})$ via a cannula under nitrogen. The mixture was stirred for 24 h , and then filtered through a short pad of silica gel to remove precipitated
inorganic salts. The silica gel pad was washed with a small amount of EtOAc three times, and the combined solution was evaporated to dryness under reduced pressure. The yellow residue was chromatographed on silica gel to give allene $\mathbf{2}$ in pure form. The characterization data of C_{1}-symmetric allenes $\mathbf{2}$ are listed below.

Dimethyl 2-[6-Acetamido-6,6-di(ethoxycarbonyl)hexa-2,3-dienyl]-2-methylmalonate (2ac). ${ }^{1} \mathrm{H}$ NMR (CDCl_{3}): $\delta 1.26(\mathrm{t}, J=7.1 \mathrm{~Hz}, 6 \mathrm{H}), 1.42(\mathrm{~s}, 3 \mathrm{H}), 2.04(\mathrm{~s}, 3 \mathrm{H}), 2.52(\mathrm{dd}, J=7.9$ and $2.3 \mathrm{~Hz}, 2 \mathrm{H})$, 2.82-3.09 (m, 2H), $3.72(\mathrm{~d}, J=2.7 \mathrm{~Hz}, 6 \mathrm{H}), 4.22-4.26(\mathrm{~m}, 4 \mathrm{H}), 4.85-5.00(\mathrm{~m}, 2 \mathrm{H}), 6.81(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 14.1,19.9,23.0,32.6,35.8,52.7,53.8,62.7,66.4,84.1,85.6,167.6,169.1,172.2$, 207.7. ESI-HRMS Calcd for $\mathrm{C}_{20} \mathrm{H}_{29} \mathrm{NO} 9 \mathrm{Na}(\mathrm{M}+\mathrm{Na}): 450.1740$. Found: 450.1745 .

2-[6,6-Di(methoxycarbonyl)hepta-2,3-dienyl]-2-methylbenzodithiole 1,1,3,3-Tetraoxide (2ad). ${ }^{1} \mathrm{H}$ NMR (CDCl_{3}): $\delta 1.45(\mathrm{~s}, 3 \mathrm{H}), 1.77(\mathrm{~s}, 3 \mathrm{H}), 2.62(\mathrm{dd}, J=7.8$ and $2.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.94(\mathrm{dd}, J=7.8$ and 2.1 $\mathrm{Hz}, 2 \mathrm{H}), 3.74(\mathrm{~s}, 6 \mathrm{H}), 5.13-5.27(\mathrm{~m}, 2 \mathrm{H}), 7.88-7.96(\mathrm{~m}, 2 \mathrm{H}), 7.98-8.05(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 16.8,20.0,29.9,35.4,52.75,52.78,53.9,76.2,82.2,87.1,123.25,123.26,135.32,135.33$, 136.08, 136.10, 172.12, 172.15, 208.8. ESI-HRMS Calcd for $\mathrm{C}_{19} \mathrm{H}_{22} \mathrm{O}_{8} \mathrm{~S}_{2} \mathrm{Na}(\mathrm{M}+\mathrm{Na}): 465.0654$. Found: 465.0654.

Dimethyl 2-[5-\{N,N-Di(tert-butoxycarbonyl)amino\}penta-2,3-dienyl]-2-methylmalonate (2ae). ${ }^{1} \mathrm{H}$ NMR (CDCl_{3}): $\delta 1.44(\mathrm{~s}, 3 \mathrm{H}), 1.50(\mathrm{~s}, 18 \mathrm{H}), 2.58(\mathrm{dd}, J=7.8$ and $2.3 \mathrm{~Hz}, 2 \mathrm{H}), 3.72(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 6 \mathrm{H})$, 4.01-4.25 (m, 2H), 4.98-5.23 (m, 2H). ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 19.9,28.2,35.8,45.0,52.6,52.7,53.9$, 82.5, 87.5, 88.3, 152.3, 172.2, 172.3, 206.2. ESI-HRMS Calcd for $\mathrm{C}_{21} \mathrm{H}_{33} \mathrm{NO}_{8} \mathrm{Na}(\mathrm{M}+\mathrm{Na}): 450.2104$. Found: 450.2096.

2-[6-Acetamido-6,6-di(ethoxycarbonyl)hexa-2,3-dienyl]-2-methylbenzodithiole 1,1,3,3-

Tetraoxide (2cd). ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right): \delta 1.26(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.27(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.75(\mathrm{~s}, 3 \mathrm{H})$, $2.05(\mathrm{~s}, 3 \mathrm{H}), 2.81-2.99(\mathrm{~m}, 2 \mathrm{H}), 2.99-3.14(\mathrm{~m}, 2 \mathrm{H}), 4.01-4.41(\mathrm{~m}, 4 \mathrm{H}), 4.92-5.11(\mathrm{~m}, 1 \mathrm{H}), 5.11-5.32(\mathrm{~m}$, $1 \mathrm{H}), 7.87-7.96(\mathrm{~m}, 2 \mathrm{H}), 7.98-8.05(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right): \delta 14.11,14.13,16.7,23.1,29.8$,
$32.4,62.85,62.89,66.35,76.1,82.5,86.0,123.26,123.29,135.3,135.4,136.05,136.12,167.5,167.6$, 169.2, 208.8. ESI-HRMS Calcd for $\mathrm{C}_{22} \mathrm{H}_{27} \mathrm{NO}_{9} \mathrm{~S}_{2} \mathrm{Na}(\mathrm{M}+\mathrm{Na})$: 536.1025. Found: 536.1037.

Diethyl 2-Acetamido-2-[5-\{ $N, N-$ di(tert-butoxycarbonyl)amino\}penta-2,3-dienyl]malonate (2ce). ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right): \delta 1.25(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.26(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.51(\mathrm{~s}, 18 \mathrm{H}), 2.05(\mathrm{~s}, 3 \mathrm{H}), 2.94-$ $3.11(\mathrm{~m}, 2 \mathrm{H}), 4.05-4.16(\mathrm{~m}, 2 \mathrm{H}), 4.16-4.30(\mathrm{~m}, 4 \mathrm{H}), 4.98-5.01(\mathrm{~m}, 1 \mathrm{H}), 5.14-5.17(\mathrm{~m}, 1 \mathrm{H}), 6.89(\mathrm{~s}, 1 \mathrm{H})$. ${ }^{13} \mathrm{C}\left\{{ }^{\{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 14.10,14.11,23.0,28.2,32.5,45.1,62.6,62.7,66.5,82.6,86.2,88.6,152.4$, 167.6, 167.7, 169.3, 206.2. ESI-HRMS Calcd for $\mathrm{C}_{24} \mathrm{H}_{38} \mathrm{~N}_{2} \mathrm{O}_{9} \mathrm{Na}(\mathrm{M}+\mathrm{Na})$: 521.2475. Found: 521.2468.

2-[5-\{N,N-Di(tert-butoxycarbonyl)amino\}penta-2,3-dienyl]-2-methylbenzodithiole 1,1,3,3-

Tetraoxide (2de). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 1.51(\mathrm{~s}, 18 \mathrm{H}), 1.79(\mathrm{~s}, 3 \mathrm{H}), 2.86-3.05(\mathrm{~m}, 2 \mathrm{H}), 4.09-4.27(\mathrm{~m}$, $2 \mathrm{H}), 5.26-5.42(\mathrm{~m}, 2 \mathrm{H}), 7.87-7.94(\mathrm{~m}, 2 \mathrm{H}), 7.97-8.05(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right): \delta 16.7,28.2$, $30.0,44.6,76.3,82.8,84.6,89.9,123.26,123.28,135.29,135.31,136.11,136.14,152.3,207.2$. ESIHRMS Calcd for $\mathrm{C}_{23} \mathrm{H}_{31} \mathrm{NO}_{8} \mathrm{~S}_{2} \mathrm{Na}(\mathrm{M}+\mathrm{Na})$: 536.1389. Found: 536.1389.

Palladium-Catalyzed Substitution of $\mathbf{N}(\mathbf{b o c})_{2}$ Moiety in 2ae with Malonate. A mixture of $[\mathrm{PdCl}(\pi-$ allyl) $]_{2}(0.73 \mathrm{mg}, 2.0 \mu \mathrm{~mol})$, dpbp ($2.3 \mathrm{mg}, 4.4 \mu \mathrm{~mol}$), and 2ae $(34.0 \mathrm{mg}, 79.5 \mu \mathrm{~mol})$ was dissolved in THF (1 mL), and the solution was added to a mixture of $\mathbf{6 a}(20 \mathrm{mg}, 0.12 \mathrm{mmol})$ and $\mathrm{NaH}(3.0 \mathrm{mg}, 0.13$ mmol) via a cannula under nitrogen. The mixture was stirred at $40^{\circ} \mathrm{C}$ for 24 h and then filtered through a short pad of silica gel to remove precipitated inorganic salts. The silica gel pad was washed with a small amount of EtOAc three times, and the combined solution was evaporated to dryness under reduced pressure. The yellow residue was chromatographed on silica gel to give allene $\mathbf{2 a a}$ (21 mg ; 75\% yield).

Palladium-Catalyzed "One-Pot" Synthesis of $\boldsymbol{C}_{\mathbf{1}}$-Symmetric Allenes 2. The reaction conditions and the results are summarized in Table 4. A mixture of $\mathrm{Pd}_{2}(\mathrm{dba})_{4}(5.8 \mathrm{mg}, 5.0 \mu \mathrm{~mol}), \mathrm{dpbp}(5.8 \mathrm{mg}, 11$ $\mu \mathrm{mol}$), and $\mathbf{1 c}(60 \mathrm{mg}, 0.20 \mathrm{mmol})$ was dissolved in THF (2 mL), and the solution was added to a mixture of first pronucleophile $4(0.22 \mathrm{mmol})$ and an appropriate base $(0.22 \mathrm{mmol})$ via a cannula under nitrogen. The reaction progress was monitored by TLC. When $\mathbf{1 z}$ was consumed completely, a solution
of second pronucleophile $2(0.30 \mathrm{mmol})$ and an appropriate base $(0.30 \mathrm{mmol})$ in THF (1.5 mL) was added to the reaction mixture via a cannula under nitrogen. The mixture was stirred for 24 h at $40^{\circ} \mathrm{C}$, and then filtered through a short pad of silica gel to remove precipitated inorganic salts. The silica gel pad was washed with a small amount of EtOAc three times, and the combined solution was evaporated to dryness under reduced pressure. The yellow residue was chromatographed on silica gel to give allene 2 in pure form. The ${ }^{1} \mathrm{H}-$ and ${ }^{13} \mathrm{C}-\mathrm{NMR}$ analyses clarified that the allenic products obtained here were identical with those prepared from 4 (see Table 3).

Pd-Catalyzed Asymmetric Synthesis of (R)-(-)-2. To a mixture of $\mathrm{Pd}_{2}(\mathrm{dba})_{4}(5.8 \mathrm{mg}, 5.0 \mu \mathrm{~mol})$, (R)-segphos $(6.7 \mathrm{mg}, 11 \mu \mathrm{~mol}), \mathbf{6}(0.60 \mathrm{mmol})$, and an appropriate base $(0.50 \mathrm{mmol})$ in THF $(3 \mathrm{~mL})$ was added $\mathbf{1}(0.20 \mathrm{mmol})$ by means of syringe under nitrogen. After stirring the mixture for 24 h at $40^{\circ} \mathrm{C}$, the mixture was filtered through a short pad of $\mathrm{Al}_{2} \mathrm{O}_{3}$ to remove precipitated inorganic salts. The $\mathrm{Al}_{2} \mathrm{O}_{3}$ pad was washed with a small amount of a hexane/EtOAc (1:1) mixture, and the combined organic solution was evaporated to dryness under reduced pressure. The residue was purified by chromatography on $\mathrm{Al}_{2} \mathrm{O}_{3}$ to give $(R)-(-)-2$ in pure form. The absolute configurations were deduced to be (R) by the Lowe-Brewster rule ${ }^{10}$ from the signs of optical rotation. Axially chiral allenes 2aa, 2bb, and 2cc were reported previously as racemates. ${ }^{8}$ The conditions for the chiral HPLC analyses are listed below. (R)-(-)2aa: $[\alpha]^{29}{ }_{\mathrm{D}}=-21.5$ (c 3.03, CHCl_{3} for the sample of 88% ee). Chiral HPLC Analysis Conditions: Chiralpak OZ-H; eluent, hexane $/ \mathrm{PrOH}=10 / 1$; flow rate: $0.5 \mathrm{~mL} / \mathrm{min} ; t_{1}[(S)$-enantiomer $]=20.1 \mathrm{~min}, t_{2}$ $[(R)$-enantiomer $]=21.8 \mathrm{~min} .(R)-(-) \mathbf{- 2 b b}:[\alpha]^{31} \mathrm{D}=-22.5\left(c 4.77, \mathrm{CHCl}_{3}\right.$ for the sample of 85% ee $)$. Chiral HPLC Analysis Conditions: Chiralpak AD-H; eluent, hexane $/ \mathrm{PrOH}=20 / 1$; flow rate, 0.8 $\mathrm{mL} / \mathrm{min} ; t_{1}[(R)$-enantiomer $]=33.5 \mathrm{~min}, t_{2}[(S)$-enantiomer $]=42.1 \mathrm{~min} .(R)-(-)-\mathbf{2 c c}:[\alpha]^{21}{ }_{\mathrm{D}}=-51.8(c$ $0.49, \mathrm{CHCl}_{3}$ for the sample of 95% ee). Chiral HPLC Analysis Conditions: Chiralpak AD-H; eluent, hexane $/ \operatorname{PrOH}=10 / 1$; flow rate, $0.8 \mathrm{~mL} / \mathrm{min} ; t_{1}[(S)$-enantiomer $]=29.7 \mathrm{~min}, t_{2}[(R)$-enantiomer $]=31.9$ \min.

Supporting Information Available. Preparation of DTBM-bp, ${ }^{1} \mathrm{H}-,{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}-$, and ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}-\mathrm{NMR}$ spectra for all the new compounds, and chiral HPLC chromatograms. This material is available free of charge via the Internet at http://pubs.acs.org.

Acknowledgment. This work was supported by a Grant-in-Aid for Challenging Exploratory Research (16K13989) to M.O. from JSPS, Japan.

References and Footnotes.

(1) (a) Krause, N., Ed. Science of Synthesis: Houben-Weyl Methods of Molecular Transformations; Georg Thieme Verlag: Stuttgart, 2008; Volume 44 (Cumulenes and Allenes). (b) Brummond, K. M.; DeForrest, J. E. Synthesizing Allenes Today (1982-2006). Synthesis 2007, 795. (c) Ogasawara, M. Catalytic Enantioselective Synthesis of Axially Chiral Allenes. Tetrahedron: Asymmetry 2009, 20, 259. (d) Yu, S.; Ma, S. How Easy Are the Syntheses of Allenes? Chem. Commun. 2011, 47, 5384. (e) Yu, S.; Ma, S. Allenes in Catalytic Asymmetric Synthesis and Natural Product Syntheses. Angew. Chem. Int. Ed. 2012, 51, 3074. (f) Ye, J.; Ma, S. Conquering Three-Carbon Axial Chirality of Allenes. Org. Chem. Front. 2014, 1, 1210.
(2) (a) Ogasawara, M.; Ikeda, H.; Hayashi, T. π-Allylpalladium-Mediated Catalytic Synthesis of Functionalized Allenes. Angew. Chem., Int. Ed. 2000, 39, 1042. (b) Ogasawara, M.; Okada, A.; Nakajima, K.; Takahashi, T. Palladium-Catalyzed Synthesis of Endocyclic Allenes and Their Application in Stereoselective $[2+2]$ Cycloaddition with Ketenes. Org. Lett. 2009, 11, 177. (c) Ogasawara, M.; Murakami, H.; Furukawa, T.; Takahashi, T.; Shibata, N. Synthesis of Fluorinated Allenes via Palladium-Catalyzed Monofluoromethylation Using FBSM. Chem. Commun. 2009, 7366.
(3) (a) Ogasawara, M.; Ikeda, H.; Nagano, T.; Hayashi, T. Palladium-Catalyzed Asymmetric Synthesis of Axially Chiral Allenes: A Synergistic Effect of Dibenzalacetone on High Enantioselectivity. J. Am. Chem. Soc. 2001, 123, 2089. (b) Ogasawara, M.; Nagano, T.; Hayashi, T. A New Route to Methyl
$(R, E)-(-)$-Tetradeca-2,4,5-trienoate (Pheromone of Acanthoscelides obtectus) Utilizing a PalladiumCatalyzed Asymmetric Allene Formation Reaction. J. Org. Chem. 2005, 70, 5764. (c) Ogasawara, M.; Okada, A.; Subbarayan, V.; Sörgel, S.; Takahashi, T. Palladium-Catalyzed Asymmetric Synthesis of Axially Chiral Allenylsilanes and Their Application to $\mathrm{S}_{\mathrm{E}} 2$ ' Chirality Transfer Reactions. Org. Lett. 2010, 12, 5736.
(4) (a) Ogasawara, M.; Okada, A.; Watanabe, S.; Fan, L.; Uetake, K.; Nakajima, K.; Takahashi, T. Synthesis, Structure, and Reactivity of (1,2,3- η^{3}-Butadien-3-yl)palladium Complexes. Organometallics 2007, 26, 5025. (b) Zeng, X.; Hu, Q.; Qian, M.; Negishi, E. Clean Inversion of Configuration in the PdCatalyzed Cross-Coupling of 2-Bromo-1,3-dienes. J. Am. Chem. Soc., 2003, 125, 13636.
(5) (a) Tsuji, J. Carbon-Carbon Bond Formation via Palladium Complexes. Acc. Chem. Res. 1969, 2, 144. (b) Trost, B. M.; Van Vranken, D. L. Asymmetric Transition Metal-Catalyzed Allylic Alkylations. Chem. Rev. 1996, 96, 395. (c) Trost, B. M.; Chulbom, L. Asymmetric Allylic Alkylation Reaction. In Catalytic Asymmetric Synthesis, 2nd ed.; Ojima, I., Ed.; VCH: New York, 2000; p 593. (d) Consiglio, G.; Waymouth, M. Enantioselective Homogeneous Catalysis Involving Transition-Metal-Allyl Intermediates. Chem. Rev. 1989, 89, 257.
(6) (a) Benyunes, S. A.; Brandt, L.; Fries, A.; Green, M.; Mahon, M. F.; Papworth, T. M. T. Reactions of Co-ordinated Ligands. Part 57. Synthesis, Structure and Interrelationship of 2-б-Butadienyl and Cationic (1,2,3- $)$-trans-Butadienyl-platinum and -palladium Complexes; Crystal Structures of cis-$\left[\mathrm{PtCl}\left\{\sigma-\mathrm{C}\left(\mathrm{CH}_{2}\right) \mathrm{C}(\mathrm{Et})=\mathrm{CH}_{2}\right\}(\mathrm{dppf})\right]$ and $\left[\mathrm{Pt}\left\{(1,2,3-\eta)-\right.\right.$ trans $\left.\left.-\mathrm{CH}_{2} \mathrm{C}(\mathrm{Et}) \mathrm{C}=\mathrm{CH}_{2}\right\}\left(\mathrm{PPh}_{3}\right)_{2}\right]\left[\mathrm{PF}_{6}\right]$. J. Chem. Soc., Dalton Trans. 1993, 3785. (b) Kleijn, H.; Westmijze, H.; Meijer, J.; Vermeer, P. The Palladium(0)-Catalysed Formation of 3-Methoxy-1,3-butadienes from Methoxypropadiene Derivatives and Organozinc Compounds. Recl. Trav. Chim. Pays-Bas 1983, 102, 378. (c) Djahanbini, D.; Cazes, B., Goré, J. Synthèse de Triméthylsilylméthyl-2 Diènes-1, 3. Tetrahedron 1985, 41, 867. (d) Nokami, J.; Maihara, A.; Tsuji, J. Preparation of Methyl 1,3-Dien-2-carboxylate by the Palladium-Catalyzed

Carbonylation of 2,3-Dien-1-ols. Tetrahedron Lett. 1990, 31, 5629. (e) Piotti, M. E.; Alper, H. Regioselective and in Some Cases Stereoselective Carbonylation of α-Allenic Alcohols to α Vinylacrylic Acids Catalyzed by a Cationic Palladium Complex. J. Org. Chem. 1994, 59, 1956.
(7) (a) Djahanbini, D.; Cazes, B., Goré, J. Reactive D'esters α-Alleniques. Synthese Regiospecifique de Diesters γ-Alleniques et de Dienes-1,3. Tetrahedron Lett. 1984, 25, 203. (b) Trost, B. M.; Tour, J. M. Synthesis of 4-(Dimethylphenylsilyl)buta-2,3-dien-1-ol and Its Use in Alkylation. J. Org. Chem. 1989, 54, 484. (c) Imada, Y.; Ueno, K.; Kutsuwa, K.; Murahashi, S. Palladium-Catalyzed Asymmetric Alkylation of 2,3-Alkadienyl Phosphates. Synthesis of Optically Active 2-(2,3-Alkadienyl)malonates. Chem. Lett. 2002, 140. (d) Trost, B. M.; Fandrick, D. R.; Dinh, D. C. Dynamic Kinetic Asymmetric Allylic Alkylations of Allenes. J. Am. Chem. Soc. 2005, 127, 14186.
(8) Ogasawara, M.; Suzuki, M.; Takahashi, T. Preparation of C_{2}-Symmetric Allenes by PalladiumCatalyzed Double-Nucleophilic Substitution on 3-Bromopenta-2,4-dienyl Acetate. J. Org. Chem. 2012, 77, 5406.
(9) (a) Cayzer, T. N.; Wong, L. S.-M.; Turner, P.; Paddon-Row, M. N.; Sherburn, M. S. Optimising Stereoselectivity in Intramolecular Diels-Alder Reactions of Pentadienyl Acrylates: Synthetic and Computational Investigations into the "Steric Directing Group" Approach. Chem. Eur. J. 2002, 8, 739. (b) Miller, N. A.; Willis, A. C.; Sherburn, M. S. Formal Total Synthesis of Triptolide. Chem. Commun. 2008, 1226.
(10) (a) Lowe, G. The Absolute Configuration of Allenes. Chem. Commun. 1965, 411. (b) Brewster, J. H. Helix Models of Optical Activity. Top. Stereochem. 1967, 2, 1.
(11) Kündig, E. P.; Cunningham, A. F., Jr. 1,3-Benzodithiole Tetraoxide as a $\mathrm{CH}_{2}{ }^{2-}$ Synthon. Tetrahedron 1988, 44, 6855.'
(12) dpbp $=2,2^{\prime}$-bis(diphenylphosphino)-1,1'-biphenyl. See: Ogasawara, M.; Yoshida, K.; Hayashi, T. 2,2'-Bis(diphenylphosphino)-1,1'-biphenyl: New Entry of Bidentate Triarylphosphine Ligand to Transition Metal Catalysts. Organometallics 2000, 19, 1567 and references cited therein.
(13) Saito, T.; Yokozawa, T.; Ishizaki, T.; Moroi, T.; Sayo, N.; Miura, T.; Kumobayashi, H. New Chiral Diphosphine Ligands Designed to Have a Narrow Dihedral Angle in the Biaryl Backbone. Adv. Synth. Catal. 2001, 343, 264.
(14) Mikami, K; Aikawa, K.; Korenaga, T. General Synthetic Route to Chiral Flexible Biphenylphosphine Ligands: The Use of a Chiral Additive Enables the Preparation and Observation of Metal Complexes Incorporating the Enantiopure Form. Org. Lett. 2001, 3, 243.

