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Structured ABSTRACT 

Objectives: The aim of this study was to evaluate whether a deep convolutional neural network 

(DCNN) could detect regional wall motion abnormalities (RWMAs) and differentiate groups of 

coronary infarction territories from conventional 2-dimensional echocardiographic images 

compared with cardiologist/sonographer or resident readers. 

Background: An effective intervention for reduction of misreading of RWMAs is needed. We 

hypothesized that a DCNN trained with echocardiographic images may provide improved 

detection of RWMAs in the clinical setting. 

Methods: A total of 300 patients with history of myocardial infarction were enrolled. In this 

cohort, 100 each had infarctions of the left anterior descending branch (LAD), left circumflex 

branch (LCX), and right coronary artery (RCA). The age-matched 100 control patients with 

normal wall motion were selected from our database. Each case contained cardiac ultrasound 

images from short axis views at end-diastolic, mid-systolic and end-systolic phases. After 100 

steps of training, diagnostic accuracies were calculated on the test set. We independently trained 

10 versions of the same model, and performed ensemble predictions with them. 

Results: For detection of the presence of wall motion abnormality, the area under the receiver-

operating characteristic curve (AUC) by deep learning algorithm was similar to that by 

cardiologist/sonographer readers (0.99 vs. 0.98, p =0.15), and significantly higher than the AUC 

by resident readers (0.99 vs. 0.90, p =0.002). For detection of territories of wall motion 

abnormality, the AUC by the deep learning algorithm was similar to the AUC by 

cardiologist/sonographer readers (0.97 vs. 0.95, p =0.61) and significantly higher than the AUC 
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by resident readers (0.97 vs. 0.83, p =0.003). In a validation group from an independent site 

(n=40), the AUC by the DL algorithm was 0.90. 

Conclusions: Our results support the possibility of DCNN use for automated diagnosis of 

RWMAs in the field of echocardiography. 

Key Words: echocardiography; artificial intelligence: regional wall motion abnormality; 

diagnostic ability 

 

Condensed ABSTRACT 

The aim of this study was to evaluate whether a deep convolutional neural network (DCNN) 

could detect regional wall motion abnormalities and differentiate groups of coronary infarction 

territories from conventional 2-dimensional echocardiographic images compared with expert and 

inexperienced readers. To detect the presence and territories of wall motion abnormality, the area 

under the receiver-operating characteristic curve by deep learning algorithm was similar to that 

by cardiologist/sonographer readers and significantly higher than the area under the curve by 

resident readers. These results demonstrate that DCNN can be trained to identify wall motion 

abnormality on echocardiographic images. 

 

Abbreviations and Acronyms: 

RWMAs = regional wall motion abnormalities, DCNN = deep convolutional neural network, 

LAD = left anterior descending branch disease, LCX = left circumflex branch disease, RCA = 

right coronary artery disease. 
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Two-dimensional echocardiography is currently the most widely used noninvasive imaging 

modality for evaluating regional wall motion abnormalities (RWMAs) in patients with coronary 

artery disease. Assessment of RWMAs is a Class I recommendation by the American College of 

Cardiology/American Heart Association and the European Heart Association by trained 

echocardiogram technicians in patients with chest pain in the emergency department (1,2). 

Identification of patients with RWMAs is useful to detect a significant occult coronary artery 

disease not evident by symptoms, electrocardiogram, or initial cardiac biomarkers. However, 

conventional assessment of RWMAs, which is based on visual interpretation of endocardial 

excursion and myocardial thickening, is subjective and experience-dependent (3). An effective 

intervention for reduction of misreading of RWMAs is needed (4-6). 

Machine learning helps computers to learn and develop rules without requiring human 

instruction at all stages. Recently, deep learning (DL) has become a powerful method for 

detection and classification of several diseases in many medical fields (7-12). It may be a useful 

artificial intelligence tool for the assessment of cardiovascular disease (13-16). Conventional 

machine learning usually requires predefined measurements to characterize the information in 

the input image (17). In contrast, deep learning directly calculates the results beyond the 

predefining process (7,18). In addition, the deep layer of the convolutional neural network is able 

to extract detailed low-level information from the original image and may be useful to detect 

echocardiographic problems (19,20). We hypothesized that a deep convolutional neural network 

(DCNN) trained with echocardiographic images may provide improved detection of the RWMAs 

in the clinical setting. Our aim of this study was to demonstrate that a DCNN can automatically 

differentiate groups of coronary infarction territories from conventional 2-dimensional 

echocardiographic images compared with inexperienced and expert readers. 
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Methods 

Study population. We retrospectively enrolled 400 patients who had undergone coronary 

angiography to evaluate coronary artery disease. In this cohort, 300 patients had prior myocardial 

infarctions. In brief, 100 patients had an anterior infarction (isolated left anterior descending 

branch disease: LAD), 100 had an infero-lateral infarction (isolated left circumflex branch 

disease: LCX) and 100 had an inferior infarction (isolated right coronary artery disease: RCA). 

The age-matched control group comprised 100 patients without obstructive coronary artery 

disease. None of the patients had atrial fibrillation or severe valvular disease. We have selected 

images with good or adequate acoustic detail on the basis of visualization of the LV walls and 

endocardium in order to test deep learning algorithm on echocardiographic images. To overcome 

the issue for the generalizability, we have gathered a separate validation group of 40 patients 

who were referred for coronary angiography from an independent site (Hoetsu Hospital in 

Tokushima, Japan). In this cohort, there were 10 patients with LAD asynergy, 5 patients with 

LCX asynergy, 9 patients with RCA asynergy, and 16 patients without asynergy. The 

Institutional Review Board of the Tokushima University Hospital approved the study protocol 

(no. 3217). 

Echocardiography. Echocardiography was performed using a commercially available ultrasound 

machine (Vivid E9/E95; and GE Healthcare, Waukesha, WI). All echocardiographic 

measurements were obtained according to American Society of Echocardiography 

recommendations (21). All images were stored digitally for playback and analysis. Visual 

RWMAs were interpreted using short axis views by 10 cardiologist/sonographer and 10 resident 

observers’ consensus (22). Three territories (LAD, LCX, and RCA) were evaluated in the 

coronary angiography with combined wall motion evaluation using apical and short axis views. 
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We used consensus expert agreement of RWMA on the echo images as a gold standard, with the 

experts (K.K and H.Y. with >10 years’ experience with echocardiography) able to take into 

account additional information available from angiography and ventriculography. These 

classifications were blinded from the results of the other analysis. The short-axis view which 

results in a circular view of the LV can be used at the middle level. The LAD feeds segments of 

anterior septum and anterior free wall, the RCA feeds segments of infero-septum and inferior 

free wall, and the LCX feeds segments of infero-lateral and lateral wall. 

Import data. The import data process is shown in Figure 1. Each case contains cardiac 

ultrasound images from mid-level short axis views. To adjust for differences between patients in 

frame rate and heart rate, we used images at end-diastolic, mid-systolic and end-systolic phases. 

We transformed all DICOM images into 128x128 resolution portable network graphics images 

with down sampling. Three territories of data, as well as the control group data, were divided 

into a training set and a test set (80:20), so that total 400 cases with 1200 images were split with 

256 cases (786 images) as the training set, 64 cases (192 images) as the validation set, and 80 

cases (240 images) as the test set. We performed two steps of analysis; protocol 1: to detect the 

presence of RWMAs, and protocol 2: to detect the territory of RWMAs. 

Deep learning model. The overall process is shown in Central Illustration. Detection of the 

presence of RWMAs and the territory of RWMAs was accomplished by a DCNN. We used 

ResNet, DenseNet, Inception-ResNet, Inception, and Xception for a DCNN (23-25). In order for 

the DCNN model to return the answer, one fully connected layer with 50% dropout was added to 

the model. DCNN trained from images assessed by expert cardiologists was used to estimate the 

probability of RWMAs in the LAD, LCX and RCA territories. The maximum probability was 

used as the probability of patient disease. The fully connected layers transform the image 
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features into the final LAD, LCX, and RCA scores, by adjusting weights for neuron activations 

during training. Model training was performed on a graphics processing unit (GeForce GTX 

1080 Ti, NVIDIA, Santa Clara, California, USA). Once the network is trained, it will calculate 

how far the trained model’s output is from the actual output. Then, the cross-entropy function 

will try to reduce this error to a minimum point (26). Adam optimizer was used for training. 

After 100 steps of training, diagnostic accuracies were calculated on the test set. We 

independently trained 10 versions of the same DCNN model, and performed the voting scheme 

of ensemble prediction with them on the test set. We used the majority voting ensemble 

prediction to score the probability of RWMAs. The majority voting ensemble is one of 

representative ensemble methods that can combine the outputs of 10 trained different classifiers. 

These models were trained with the same initialization and learning rate policies. DL was 

performed with python 3.5 programming language with Keras 2.1.5. We have uploaded the code 

in GitHub and provided the link. GitHub: https://github.com/taka4abe/JACC_CV. 

Statistical analysis. Data are presented as mean ± SD. Differences between multiple groups were 

analyzed by ANOVA followed by Tukey’s post hoc analysis. The diagnostic performance of the 

DL algorithm and observers was evaluated using receiver operating characteristic (ROC) 

analysis and pairwise comparisons of the area under the ROC curve (AUC) according to the 

DeLong method (27). Statistical analysis was performed using standard statistical software 

packages (SPSS software 21.0; SPSS Inc, Chicago, IL, USA, and MedCalc Software 17; 

Mariakerke, Belgium). Statistical significance was defined by p < 0.05. 

Results 



8 

8 
 

The subject characteristics included in this study are shown in Table 1. The study population 

consisted of 300 patients with coronary artery disease (CAD) and 100 patients without CAD. LV 

ejection fraction was significantly lower in the LAD group than in the other groups. Wall motion 

score index was also higher in the LAD group than in the other groups. Figure 2 shows the value 

of the loss function on the training and validation sets for training a DCNN model. As shown in 

this figure, the model converges in the training process near the100th epoch, and the data 

distributions were narrow range. 

Detection for RWMAs. For detection of the presence of wall motion abnormality (wall motion 

abnormality vs. control), the AUC by the DL algorithm (ResNet) was similar to that by 

cardiologist/sonographer readers (0.99 vs. 0.98, p =0.15), and significantly higher than the AUC 

by resident readers (0.99 vs. 0.90, p =0.002). 

Results of the ROC analysis used to assess the diagnostic ability for detecting the territories of 

RWMAs are shown in Figure 3. We have compared the AUCs by several DL algorithms for 

detection of territories of wall motion abnormality (LAD vs. LCX vs. RCA vs. control). The DL 

with largest AUC was ResNet (AUC: 0.97), but there was no significant difference among DL 

algorithms except for the Xception model (ResNet: AUC: 0.97, DenseNet: AUC: 0.95, 

Inception-ResNet: AUC: 0.89, Inception: AUC: 0.90, and Xception: AUC: 0.85, vs. other 

algorithms, p <0.05). For detection of territories of wall motion abnormality, the AUC by the DL 

algorithm (ResNet) was similar to the AUC by cardiologist/sonographer readers (0.97 vs. 0.95, p 

=0.61) and significantly higher than the AUC by resident readers (0.97 vs. 0.83, p =0.003) 

(Supplement 1). To assess the diagnostic performance in each are separately, we have added the 

ROCs in Supplement 2. All AUCs were good. 
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To check the accuracy of RWMA identification for each coronary territory, we calculated 

the odds ratio of DL vs. cardiologist/sonographer readers for misclassification (Figure 4). In the 

results, DL had relatively low ratios of misclassification of RCA except for the Xception model. 

In addition, DL also had relatively low ratios of misclassification in the control group.  

Moreover, we have selected the top 10 misclassified cases of RWMA by DL (ResNet) 

and cardiologist/sonographer readers. Interestingly, they are cases in which 

cardiologist/sonographer readers and DL misclassification were very similar. DL and 

cardiologist/sonographer readers’ misclassification matched in 8 out of 10 cases. Thus, we 

reasoned that the DL read was similar to the cardiologist/sonographer read. In addition, the 

patients’ characteristics with misclassification by the DL were shown in Supplement 3. There 

was no statistically difference between correct classified group and misclassified group, but LV 

size (LVEDVi) was slightly larger in misclassified group than in correct classified group. One 

possible explanation is that the sample size with large LV size for development of DL model is 

relatively small. We may need the worsen cases for development of DL model in the further 

study. 

For detection of territories of wall motion abnormality in the separate validation group of 

40 patients from the independent site, the AUC by the DL algorithm was 0.90. The AUC was 

slightly smaller than the AUC in the original cohort. One explanation is that the original cohort 

had the equal distribution in each territory, the relatively low prediction performance in the 

classification was seen for the LAD asynergy, and the number of LAD asynergy was the largest 

in the newly gathered data. 

Discussion 
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Interpretation of wall motion abnormalities with echocardiography is observer-dependent and 

requires experience. An inexperienced reader sometimes misinterprets a wall motion 

abnormality, and significant training is required to become expert. DL algorithm is an objective 

method with no intra-observer error, and its accuracy is similar to that of visual assessment by 

experts. The diagnostic system can be used as a useful tool to classify RWMA in clinical 

evaluation. However, since the number of patients examined was limited, the present study 

should be considered a proof of concept, and we believe that larger prospective multicenter 

studies are warranted. 

Comparison with previous automated analysis. The use of quantitative assessment was expected 

to improve the accuracy and objectivity of echocardiographic image analysis. Several methods 

for measuring cardiac wall motion, strain and strain rate were developed to be performed with 

echocardiographic images (28-30). However, the reproducibility of quantitative measurements in 

echocardiography was limited by inter- or intra-observer variability. Recently, several groups 

have developed automated algorithms for the analysis of left ventricular function and endocardial 

border detection (31,32). However, most of them remain semi-automatic where the observer 

input is initially needed to manually annotate important landmarks (e.g., mitral plane, apex). 

Fully automated assessment is needed to obtaining quantitative results without any user 

interaction (e.g., markers positioning, contours drawing or modification). Our results 

demonstrate that DCNN can be trained to identify wall motion abnormality on echocardiographic 

images. The accuracy of DL algorithm is superior to inexperienced observers and is similar to 

expert observers. We believed this study is a milestone to apply the DL algorithm for 

echocardiographic images in the future. 
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Deep learning for Echocardiography. Previous machine learning approaches, requiring the 

extraction and integration of pre-identified imaging measurements, have shown automated and 

performance in cardiovascular disease (6). In this study, we developed an objective classification 

model for RWMAs based on a deep learning algorithm. Although we had a relatively small 

number of cases with images, we were able to improve performance using this algorithm. The 

learned structure that resulted showed that it was possible to approve the good agreement 

between DL diagnosis and expert consensus. Using a simple and available algorithm, we 

achieved great performance accuracy. It is possible that further significant improvements with 

DL could be achieved by the integration of additional imaging and clinical data. We were 

looking into how these encouraging results could help less-experienced observers improve their 

diagnostic accuracy, because the agreement between less-experienced observers and the experts 

is often low. In addition, resident readers had a relatively high ratios of misclassification to DL 

algorithm (ResNet) for RCA and LCX (RCA: odds ratio: 3.9, LCX: odds ratio: 2.2). Thus, DL 

algorithms may have a potential to help diagnosis for RCA and LCX territories. 

 Although there were advantages of using deep learning for echocardiography, the major 

limitation of DL is that echocardiographic images were a non-structured data set. The image 

quality depends on the machine vendors and software version. In the clinical setting, we have 

used several vendors with many versions. Thus, the normalization of images between vendors 

will be required when we apply this algorithm in the clinical setting using many vendors. 

Another limitation of DL is that the reason of different DL methods may behave 

differently is unclear. In our study, we apply five deep learning models to differentiate 

echocardiographic images. Basically, the number of parameters and layers are difference among 

the DL models employed in this study. One of the advantages in use of a DL model over the 
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other types of machine learning model is that the DL can construct the appropriate features 

automatically developed in the intermediate layers. The extracted features may be different 

among the DL models because of the different numbers of parameters and layers. On the other 

hand, this may also make a reason why a specific model is superior to the other one unclear. 

Unfortunately, there is no clear explanation in this field (one of the engineering issues). 

Clinical Implications. Interpretation of wall motion abnormalities with echocardiography is 

observer-dependent and requires experience. Assessment of RWMAs using the DL algorithm is 

an objective method with no intra-observer error, and its accuracy was equal to that of 

assessment by expert consensus. Echocardiographic assessment in artificial intelligence may be 

not necessary for experts; however, quantitative assessment is another advantage of artificial 

intelligence. In the future, we plan to expand our classification to identify different levels of 

RWMAs at the segment level and include images from stress echocardiography. We would also 

like to apply an algorithm to differentiate for several cardiovascular diseases. 

Limitations. This study of deep learning applied to echocardiographic data has several 

limitations. First, RWMA assessment is based on results of echocardiograph, coronary 

angiography and left ventriculography by expert consensus. Second, we used echocardiographic 

images at mid-level short axis view only, acquired in only one cycle to ensure applicability to a 

simple imaging protocol used in clinical routine. The identification of apical abnormalities has 

not been tested and, patients were chosen with infarcts involving the mid segments. Possibly, a 

larger set of training data could allow further improvement (33). Third, the echocardiographic 

images do not consist of structured data and cannot reconfigure. Thus, the accuracy of diagnosis 

may be influenced by the image quality. Fourth, we have gathered patients with single-vessel 

disease in this study, we were unable to assess patients with multi-vessel disease. In the further 
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big-data study, multi-vessel coronary disease might be included. Fifth, the number of patients 

was relatively limited. Generally, deep learning algorithms require thousands of patients with 

10x images. On the other hand, in our analysis, the DL diagnostic accuracy seemed to be good in 

the independent test cohort. We believe that this report can serve as an impetus for a large 

multicenter-study in the future. Our results confirm in principle that DCNN may be very 

informative to interpret regional wall motion abnormalities, but larger numbers of patients 

should be performed to assess the efficacy of the automatic classification system in the clinical 

setting. 

Conclusions. Our results support the possibility of DCNN use for automated diagnosis of 

myocardial ischemia in the field of echocardiography. 
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Clinical Perspectives: 

COMPETENCY IN MEDICAL KNOWLEDGE: A deep learning algorithm is an objective 

method with no intra-observer error, and its accuracy seems to be equal or superior to that of 

visual assessment by experts. 

 

COMPETENCY IN PATIENT CARE AND PROCEDURAL SKILLS: Regional wall 

motion abnormality should be carefully assessed in the clinical setting. Our results suggest that a 

deep learning algorithm is a useful method to detect regional wall motion abnormalities in 

patients with suspected coronary artery disease. 

 

TRANSLATIONAL OUTLOOK: Although this study suggests a utility of detecting regional 

wall motion abnormalities by a deep learning algorithm, this deep learning model should be 

improved upon with a larger cohort of coronary artery disease patients. 

 

Disclosures: None. 
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Figure legends: 

Figure 1: Import Data: Total 400 cases with 1200 images were split with 256 cases (786 

images) as the training set, 64 cases (192 images) as the validation set, and 80 cases (240 

images) as the test set. 

Figure 2: Training and Validation: The model converges in the training process near the100th 

epoch, and the data distributions were narrow range. 

Figure 3: Diagnostic Ability to Detect the Presence of Regional Wall-motion Abnormalities: 

The area under the curves by several deep learning algorithms for detection of territories of wall 

motion abnormality were good. 

Figure 4: Odds Ratio of Misclassification for Deep Learning vs. Cardiologists / 

sonographers: Deep learning had relatively low ratios of misclassification of RCA except for 

the Xception model. 

Central Illustration: Neural Networks for the Presence of Regional Wall-motion 

Abnormalities and the Territory of Regional Wall-motion Abnormalities: The fully 

connected layers transform the image features into the final scores, by adjusting weights for 

neuron activations during training. 

Supplement 1: Diagnostic ability to detect the presence of regional wall-motion abnormalities 

by ResNet, cardiologists/sonographers, and residents. 

Supplement 2: AUCs for three territories 

Supplement 3: Background of misclassified cases. 
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Table 1: Baseline characteristics of the study population 

 

 
Control LAD LCX RCA 

Number 100 100 100 100 

Age, yrs 70 ± 7 69 ± 11 73 ± 11 69 ± 11 

Male, n 62 76 69 74 

Heart rate, bpm 72 ± 15 71 ± 13 71 ± 13 71 ± 14 

LVEDVi, ml/m2 55 ± 14 74 ± 28* 64 ± 17*† 60 ± 18† 

LVESVi, ml/m2 20 ± 6 42 ± 24* 30 ± 12*† 26 ± 12† 

WMSI 0 1.5 ± 0.4* 1.3 ± 0.3*† 1.2 ± 0.2*†‡ 

LVEF, % 64 ± 4 47 ± 12* 53 ± 8*† 56 ± 10*† 

 

* p <0.05, vs. Control, †p <0.05, vs. LAD, ‡p <0.05, vs. LCX. 

Data are presented as number of patients (percentage), mean ± SD. Abbreviations: CAD, coronary artery 

disease; LAD, left anterior descending, LCX, left circumflex, RCA, right coronary artery; LVEDVi, left 

ventricular end diastolic volume index; LVESVi, left ventricular end systolic volume index; WMSI, wall 

motion score index; LVEF, left ventricular ejection fraction,  



Figure 1: Import data
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Figure 2: Training and Validation
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Figure 3: Diagnostic ability for detecting the territory of regional wall motion abnormalities
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Figure 4: Odds ratio of misclassification for DL vs. Human



Central Illustration: Neural network for the regional wall-motion abnormalities

End-D Mid-S End-S

Echo Images

Control

LAD

LCX

RCA

Neural Network

Control

Asynergy

Scoring

Neural Network Protocol 1

Protocol 2

Scoring

Model
Comparison of 

models

Model

Testing

Comparison of 
models

Training & 
Validation

TestingTraining & 
Validation


	ADPCC0D.tmp
	スライド番号 1
	スライド番号 2
	スライド番号 3
	スライド番号 4
	スライド番号 5


