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 [Abstract] 26 

Unburned carbon measurement in fly ash using laser-induced breakdown spectroscopy with short 27 

nanosecond pulse width laser 28 

 29 

Renwei Liu, Yoshihiro Deguchi, Weigang Nan, Ruomu Hu, Zhenzhen Wang, Yuki Fujita, Seiya Tanaka, 30 

Kazuki Tainaka, Kenji Tanno, Hiroaki Watanabe, Jiping Liu, and Junjie Yan 31 

 32 

Abstract 33 

The unburned carbon in fly ash is one of the important factors for the boiler combustion condition. 34 

Controlling the unburned carbon in fly ash is beneficial for fly ash recycle and to improve the combustion 35 

efficiency of the coal. Laser-induced breakdown spectroscopy (LIBS) technology has been applied to 36 

measure the fly ash contents due to its merits of non-contact, fast response, high sensitivity, and real-time 37 

measurement. In this study, experimental measurements have been adopted for fly ash flows with the 38 

surrounding gases of N2 and CO2, while the CO2 concentration varified to evaluate the CO2 effect on the 39 

unburned carbon signal from fly ash powder. Two kinds of pulse width lasers, 6ns and 1ns, were separately 40 

adopted to compare the influence of laser pulse width. Results showed that compared with 6ns pulse width 41 

laser, plasma temperature was lower and had less dependence on delay time when using 1ns pulse width 42 

laser, and spectra had more stable background. By using 1ns pulse width laser, the emission signal from 43 

surrounding CO2 also decreased because of the less surrounding gas breakdown. The solid powder 44 

breakdown signals also became more stable when using 1ns pulse width laser. So it is demonstrated that 1ns 45 

pulse width laser has the merits for fly ash flow measurement using LIBS. 46 

 47 

Keywords: laser-induced breakdown spectroscopy; fly ash powder flow; short nanosecond pulse width 48 

laser; solid powder breakdown; surrounding gas breakdown. 49 

50 



Put your running title here: Elsevier General template 

 3 

1. Introduction 51 

 52 

The unburned carbon in fly ash is one of the important factors to evaluate the combustion efficiency of the 53 

boiler [1-3]. A fast-response measurement method of unburned carbon in fly ash can improve the control of 54 

boiler combustion. The improvement of the boiler combustion efficiency is beneficial for the fuels saving 55 

and the environment protection. Recycling the fly ash as the source of concrete is also important for its 56 

useful utilization. The carbon content in the fly ash is not conducive to its recycling. Therefore, the carbon 57 

content should be controlled. The online measurement of fly ash compositions is helpful to control the 58 

carbon content in time, because of the continuous coal combustion. The variation range of the unburned 59 

carbon in fly ash is very different for different boilers and combustion conditions. For large capacity boilers, 60 

the ash carbon content is usually about 2-15% [4]. For circulating fluidized bed boilers, it is about 10-20% 61 

[5]. When the coals species and load change in the plant, the fly ash content is also different. 62 

A variety of fly ash detection methods have been proposed and applied in fly ash measurement. The 63 

traditional methods, such as thermal gravimetric analysis method, microwave attenuation method, and 64 

electrostatic capacitance measurement method and so on [6, 7], are widely applied. X-ray diffraction (XRD) 65 

powder analysis or SEM methods [1, 8-11] have also been applied to measure the compositions and 66 

microstructure of the fly ash. For online measurement, however, these methods meet the difficulties due to 67 

the sample preparation. Therefore, laser-induced breakdown spectroscopy (LIBS) is proposed for fly ash 68 

measurement due to its merits of non-contact, fast-response, multi-element detection and online 69 

measurement. Up to now, LIBS technology has been applied in different fields such as power plants, steel 70 

making processes, environment, marine, food safety, and so on [12-14]. 71 

LIBS measurements of fly ash have also attracted much attention. The measurement properties and 72 

quantitative analysis method of fly ash were extensively studied [3, 15-23]. The influence of ambient 73 

pressure and temperature, powder sizes, laser energy and so on were discussed [3, 15-17]. Some calibration 74 

methods were proposed [18-21] to improve the quantitative measurement, such as internal standard method, 75 

plasma temperature correction method, multivariate calibration method, wavelet neural method. In some 76 

studies [22, 23], the fly ash samples were prepared as pellet to detect the elements of Ca, Mg, Fe and so on. 77 
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For the online measurement of fly ash flow in the boiler, LIBS measurement of fly ash has its own problem. 78 

LIBS measurement of powder flow should consider both the solid powder breakdown and the surrounding 79 

gas breakdown. Besides, the components of flue gas are very complex, such as NOX, SOX, CO2 and so on. 80 

The concentration of CO2 is usually up to the level of around 10% [24]. The induced CO2 plasma emits the 81 

carbon signal which introduces measurement error to the unburned carbon content of fly ash powder [25]. 82 

To reduce the CO2 effect, the measurement systems were designed and applied to reduce CO2 concentration 83 

[26-28], which were able to measure the fly ash flow continuously. For example, a cyclone system was 84 

applied to separate the fly ash powder with the flue gas [26]. Another system was designed as that the fly ash 85 

was dropped onto the conveying belt. The measurement position was covered by a chamber when 86 

introducing air to reduce the CO2 concentration [27, 28]. Reduction of CO2 concentration by sampling and 87 

measurement systems was a valid method to reduce the CO2 influence on unburned carbon signal for online 88 

measurement of fly ash. However, the detailed influence of CO2 on unburned carbon signal was not 89 

discussed entirely in these studies. Because the CO2 effect is rather sensitive to the concentration in 90 

surrounding gas and less than 1% CO2 causes the spurious C signal in LIBS spectra of fly ash [26]. 91 

The control of the solid powder breakdown and surrounding gas breakdown is also a way to decrease the 92 

surrounding gas effects. The laser pulse width is one important factor for laser-induced plasma, and many 93 

researches have testified the pulse width effects on LIBS measurement [29-35] for both gas-phase target and 94 

solid measurement. For gas-phase target measurement, the shorter pulse width laser induced a better target 95 

element measurement. For solid measurement, when using the shorter pulse width laser, more laser beam 96 

energy was concentrated on the solid surface, and craters on solid surface became more regular, such as 97 

picosecond or femtosecond laser. So the LIBS detection ability can be improved, such as the higher signal to 98 

noise ratio, lower background emission. Therefore, the laser-induced plasma processes of solid powder and 99 

surrounding gas can be changed when using different pulse width lasers. In this study, the CO2 effect on the 100 

unburned carbon signal was studied according to the laser-induced plasma processes. Two different 101 

nanosecond pulse width lasers were employed to discuss the laser-induced plasma processes of fly ash flow. 102 

 103 

2. Theory 104 
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 105 

In the LIBS measurement of powder flow, the sample is in the multi-phase condition including solid 106 

powder and surrounding gas. The laser-induced plasma formation processes of the solid powder and its 107 

surrounding gas can be summarized as follow [35, 36]: When the laser beam is focused on the sample, the 108 

solid powders firstly absorb energy and evaporate as the material vapour. Plasma is firstly generated within 109 

the material vapour. Because of the high pressure and temperature, the material vapour and plasma expand 110 

and mix with the surrounding gas and the residual part of the powder, which are also broken down through 111 

the electron collision, which can be enhanced through plasma reheating by laser pulse. The formation and 112 

development processes of plasma are illustrated in Fig.1. Fig.1 (a) is the plasma structure concept of the 113 

solid powder with the surrounding gas. When the laser energy is small, surrounding gas cannot be broken 114 

down directly due to its high breakdown threshold [19]. So the solid powder plasma is firstly generated, then 115 

expands and induces the breakdown of surrounding gas. Fig.1 (b) shows the diagram of different laser pulse 116 

width, and Fig.1 (c) illustrates the concept of differences of plasma evolution processes using different pulse 117 

width lasers. As mentioned in plasma formation processes, there is a time gap between the beginning time of 118 

solid breakdown and gas breakdown, while the end time of breakdown is near to the end time of laser pulse. 119 

When the laser pulse width becomes shorter, the time of plasma reheating by laser pulse will be shorter [30], 120 

and more plasma is formed within the solid material vapour. What’s more, when the laser pulse energy is 121 

same, the peak power is higher when the pulse width is shorter, as shown in Fig.1 (b), and more laser pulse 122 

energy is allocated to solid breakdown. In this way, the solid powder breakdown and surrounding gas 123 

breakdown can be controlled by the laser pulse width. Previously, the pulse width influence was discussed 124 

by comparing the nanosecond laser with picosecond or femtosecond lasers. The shorter pulse width laser can 125 

better concentrate energy for the target breakdown, but the complex laser system challenges their on-line 126 

applications. It has been mentioned [36] that the time of solid evaporation is usually within 1ns; while up to 127 

around 5ns, the material vapour expands to induce the surrounding gas breakdown. Therefore, even if 1ns 128 

pulse width, the plasma formation processes may also have obvious difference. Besides, 1ns nanosecond 129 

laser can keep its relative structure simplicity, which is good for online measurement. 130 
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The analysis of LIBS is usually based on the signal intensity of characteristic lines. The theoretical 131 

equation between the signal intensity and the concentration of measured species with the local thermal 132 

equilibrium (LTE) assumption has been proposed. The detailed explanation is shown in elsewhere [12].  The 133 

signal can be calculated as the ratio of Itarget/Ireference [16, 20, 27] to discard the absolute intensity fluctuation 134 

influence of the spectra. Plasma temperature is one of the main influencing factors for signal variation. To 135 

evaluate plasma temperature, similar as the Saha-Boltzmann multi-line graph theory [37], the plasma 136 

temperature indicator is proposed [3]. Plasma temperature indicator is defined as the ratio of same element 137 

from different upper energy levels: Ii,j1/Ii,j2. i means the emission element, j1, j2 mean different upper energy 138 

levels. According to the relation between Itarget/Ireference and Ii,j1/Ii,j2, the plasma temperature correction factor 139 

can be determined [5, 19, 26]. Plasma temperature correction method is applied to reduce the influence of 140 

plasma temperature fluctuation on the signal intensity. In this study, IMg1/IMg2 was defined as the plasma 141 

temperature indicator. The functional relation between IC/ISi1 and IMg1/IMg2 was fitted into some exponential 142 

relation and the exponential term of IMg1/IMg2 was the temperature correction factor, which can be calculated 143 

theoretically but actually determined according to the experiment due to the complex laser-induced plasma 144 

processes [3, 16]. 145 

 146 

3. Experimental 147 

 148 

The experimental diagram of fly ash measurement using LIBS is presented in Fig.2. It contained two 149 

lasers, a spectrometer, an ICCD camera and auxiliary equipment. These two lasers were both nanosecond 150 

lasers with different pulse widths operating at 1064nm. The laser marked as Laser 1 was a laser with the 151 

pulse width of 6ns (LOTIS TII 2132-UTF). The laser marked as Laser 2 was a laser with the pulse width of 152 

1ns (Hamamatsu Photonics, Microchip Laser L12968-01). During the experiment, one laser was operated 153 

and the optical path of laser beam was altered by the up-and-down adjustment of Mirror 2. Both lasers were 154 

operated at the frequency of 10Hz. The Focus Lens 1 with the focal length of 200mm was employed to focus 155 

the laser beams onto the fly ash powder flow. In order to compare the influence of laser pulse width on fly 156 

ash measurement, the conditions of these two laser beams including laser energy, beam shape, beam 157 
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diameter and beam axis in front of Focus Lens 1 at the same point were adjusted to the same by a series of 158 

optical components. The laser energy was 7mJ/pulse and the beam diameter was 8mm. The low laser energy 159 

was set to induce solid powder plasma and to avoid the direct breakdown of surrounding gas. Because of the 160 

transmittance of the gas, its breakdown threshold is usually higher than that of solid [29, 38, 39]. In this 161 

study it was testified that 7mJ/pulse is lower than the gas breakdown threshold and it cannot induce the gas 162 

breakdown directly. The plasma emission was detected at the coaxial direction with the laser beam. The 163 

plasma emission was reflected by a filter that reflects the light below 400nm, and then focused onto the fiber 164 

by the Focus Lens 2 with the focal length of 220mm.  165 

The emission signals from the plasma were detected by the combination of a spectrometer (SOL, NP-250-166 

2), an ICCD camera (Andor, iStar DH334T-18U-03), and auxiliary equipment. The spectrometer with two 167 

channels was employed, which can simultaneously detect the spectra with different resolution when using 168 

the different gratings. In this study, the resolution of Channel 1 was 0.076nm/pixel with the grating of 169 

600l/mm. The wavelength region was 240~320nm. The resolution of Channel 2 was 0.012nm/pixel with the 170 

grating of 3600l/mm. The wavelength region was 244~256nm. The gate width was set as 500ns. The delay 171 

time was different when using different pulse width lasers. When Laser 1 was used, the delay time was 300, 172 

500, 800, 1000, 1500ns. When Laser 2 was used, the delay time was 5, 10, 25, 50, 100ns. The accumulation 173 

was 100 times of laser shot and the experimental result under the same condition was measured 3 times. 174 

In this study, the employed fly ash sample with unburned carbon of 24.9% was sampled from a furnace in 175 

the lab. The compositions of fly ash were checked by the conventional chemical analysis methods (Japanese 176 

Industrial Standards JIS-M-8801, JIS-M-8815) [16]. The main components of fly ash sample are listed in 177 

Table 1. The fly ash was introduced to the measurement area by a feeder (Nisshin Engineering Inc. Feedcon-178 

μ Mtype). The feeding speed of the feeder was 200mg/min. A chamber covered the exit of the feeder to mix 179 

the fly ash with the surrounding gas of N2 and CO2 mixture. The N2 and CO2 were pre-mixed before 180 

introducing into the chamber. The pre-mixed surrounding gas was divided into two flows to totally cover 181 

and mix the fly ash powder under the N2 and CO2 mixture condition during the measurement process. One 182 

surrounding gas flow was introduced from the top of the chamber with the flow rate of 1L/min. The fly ash 183 

dropped out from the outlet pipe with the diameter of 3mm. Another gas was introduced to the underside of 184 
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the chamber to surround the outlet of pipe, with the flow rate of 4L/min.  In order to clarify the CO2 effect in 185 

this study, the CO2 volume percentage was set as 0%, 1.30%, 3.80%, and 6.18% in the measurement system. 186 

The laser beam was focused closely to this outlet pipe to ensure the measured fly ash mixed with the 187 

surrounding gas of N2 and CO2 mixture. 188 

 189 

4. Results and Discussion 190 

 191 

The spectrometer employed in this study with two channels can measure two wavelength ranges of the 192 

spectra simultaneously. The main elements in fly ash, such as C, Si, Al, Fe, Ca, Mg, were measured using 193 

Channel 1 with the wide wavelength range from 240nm to 320nm, with the resolution of 0.076nm/pixel. 194 

According to the previous studies, the C emission line at 247.86nm can be interfered by the neighbor lines 195 

such as Fe line at 247.98nm [11, 40, 41]. In order to clarify the unburned carbon in fly ash, the clear C 196 

emission line was detected using Channel 2 with the wavelength range from 244nm to 256nm, with the 197 

resolution of 0.012nm/pixel. The C content of fly ash sample employed in this study was 24.9% to discuss 198 

the surrounding gas effect on the solid powder measurement. It was verified that Fe line showed less 199 

interference on C signal in this study.   200 

The typical measured spectra of fly ash without CO2 using Laser 1 with the pulse width of 6ns is shown in 201 

Fig.3. The measured species and their specific wavelengths are listed in Table 2 according to the NIST 202 

database [42]. The emission intensity of the spectra in this paper was normalized with the corresponding 203 

maximum signal in each measured result. 204 

Itarget/Ireference and Ii,j1/Ii,j2 were defined according to the ratios of the characteristic emission lines, which 205 

were selected from the same channel. For the Itarget/Ireference, Si was selected as the reference element, because 206 

Si was a major component in fly ash. For unburned carbon measurement, the ratio of C (247.86nm)/Si1 207 

(251.61nm) in Channel 2 was used to evaluate the carbon content [3, 16]. Other elemental signals should 208 

also be considered [3], such as the ratio of Fe/Si2, Ca1/Si2, and Al/Si2 in Channel 1. The intensity of Al was 209 

the sum of Al1 and Al2. For the intensity ratio of the same element from different upper energy levels Ii,j1/Ii,j2, 210 
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Mg1 (ion, 279.55nm, 280.27nm)/Mg2 (atom, 285.21nm) was defined as the plasma temperature indicator, 211 

which showed the relation with the plasma temperature [16]. 212 

 213 

4.1 Pulse width effect on plasma temperature 214 

Plasma temperature indicator IMg1/IMg2 was evaluated in different delay time, which means the plasma 215 

evolution process. The dependence of IMg1/IMg2 on delay time using different lasers under different CO2 216 

concentration conditions is shown in Fig.4. From Fig.4, the plasma temperature was not affected by the CO2 217 

concentration obviously. However, the plasma temperature decreased when delay time increased. Comparing 218 

Fig.4 (a) and Fig.4 (b), the plasma states using two nanosecond lasers had obvious differences. When delay 219 

time was 300ns using Laser 1, IMg1/IMg2 was averagely 7.65 under different CO2 concentration conditions. 220 

While using Laser 2, IMg1/IMg2 was averagely only 3.03 when delay time was 5ns. The setting of delay time 221 

with Laser 1 cannot be shorter than 300ns, because the plasma temperature would be very high and the 222 

emission intensity would be very strong, saturating the ICCD detector. But it can be understood that the 223 

plasma temperature would be much higher if in delay time of 5ns using Laser 1.  Considering that the delay 224 

time of 5ns was just after the plasma formation, it means at the formation time, plasma temperature using 225 

Laser 1 was much higher than that using Laser 2. Along the evolution of plasma, using Laser 1, IMg1/IMg2 226 

varied as 7.65, 5.66, 4.51, 3.50, 2.00 from 300ns to 1500ns, with obvious dependence on delay time. While 227 

using Laser 2, IMg1/IMg2 varied as 3.03, 3.02, 2.96, 2.75, 2.44 when delay time increased from 5ns to 100ns, 228 

with less dependence on delay time. 229 

The high plasma temperature can introduce some problems for the LIBS measurement. The measured 230 

spectra without CO2 in delay time of 300ns using Laser 1 are shown in Fig.5. Comparing Fig.5 in delay time 231 

of 300ns and Fig.3 (a) in delay time of 800ns, the background signal was not horizontal and some emission 232 

lines were immersed in the background signals at higher plasma temperature in Fig.5. The Al line 233 

background in Fig.3 (a) was 0.048, and in Fig.5 was 0.185. At high plasma temperature, some effects 234 

influence the background, such as the strong bremsstrahlung, wide line broadenings, or self-absorption. 235 

What’s more, when the plasma temperature is high, the absolute emission intensity is strong, which is easy 236 

to saturate for the detector. The spectra behaviors change with the plasma formation and emission processes 237 
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[36]. The measured spectra using Laser 2 in delay time of 10ns and 100ns are shown in Fig.6, the 238 

backgrounds of Al line were 0.037 and 0.033, which didn’t show the obvious variation of the spectra in 239 

different delay time, so the signal background could be clearly judged. 240 

According to the theory, when using short 1ns pulse width laser, more energy is allocated to solid 241 

breakdown. While using long 6ns pulse width laser, plasma can be more reheated during gas breakdown. 242 

From Fig.4, it has testified that the plasma formation processes have obvious differences when using 6ns 243 

pulse width laser and 1ns pulse width laser, and plasma reheating processes have more obvious influence to 244 

increase plasma temperature. When using 1ns, the plasma temperature at the formation time was lower and 245 

had less dependence on delay time. 246 

The obvious dependence on delay time of spectra will induce the variation of the signal in the practical 247 

measurement. Because plasma formation process is very fast and not fixed, obvious dependence on delay 248 

time means plasma states have obvious differences with different delay time. In this way, the setting of delay 249 

time should carefully consider plasma evolution process. However, for Laser 2, the setting of delay time will 250 

be more robust. When the LIBS spectra are stabilized, it is benefit for the LIBS measurement of the powder 251 

flow. 252 

 253 

4.2 Pulse width effect on C signal 254 

4.2.1 Surrounding CO2 effects using different pulse width lasers 255 

The laser pulse width not only affects the plasma states, but also the breakdown of surrounding gas. The 256 

surrounding gas can also be broken down to generate the plasma. For example, the breakdown of 257 

surrounding CO2 in fly ash emits the carbon signal, which results in the spurious carbon signal to increase 258 

the calculated unburned carbon content in fly ash. 259 

The comparison of the spectra using two different lasers should be at similar plasma states. When delay 260 

time was 1000ns using Laser 1, IMg1/IMg2 showed the similar level as that using Laser 2. As for Laser 2, when 261 

delay time was 5ns and 10ns, even though IMg1/IMg2 showed the similar level as Laser 1, there would be 262 

other effects influencing signals just after plasma formation, so they were not suitable for the comparison. 263 

While after delay time of 50ns, IMg1/IMg2 was relatively small. Therefore, the measured spectra in delay time 264 
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of 25ns using Laser 2 were compared with that in delay time of 1000ns using Laser 1 because of their 265 

similar plasma temperature. 266 

The measured spectra of fly ash without CO2 and with 3.80% CO2 are shown in Fig.7 using Laser 1 in 267 

delay time of 1000ns in Channel 2. Comparing Fig.7 (a) and Fig.7 (b), when CO2 concentration increased 268 

from 0% to 3.80%, the C emission line intensity increased from 0.298 to 0.439. The C signal from the CO2 269 

breakdown resulted in the inaccurately quantitative analysis of the unburned carbon content in fly ash. The 270 

measured spectra of fly ash with different CO2 concentration using Laser 2 in delay time of 25ns in Channel 271 

2 are shown in Fig.8. Comparing Fig.8 (a) without CO2 and Fig.8 (b) with 3.80% CO2, the C emission line 272 

intensity changed from 0.257 to 0.259, which didn’t show the obvious change compared to that using Laser 273 

1.  274 

Therefore, the breakdown rate of surrounding gas was different from different lasers due to the pulse 275 

width effect. When the laser pulse width was shorter, such as 1ns, the breakdown rate of the surrounding gas 276 

decreased. The C signal from the CO2 breakdown reduced. 277 

According to the measured spectra, the dependence of IC/ISi1 on CO2 concentration is shown in Fig.9. 278 

Compared with IC/ISi1 under 0% CO2 condition, when the CO2 concentration increased, the maximum 279 

enhancement of IC/ISi1 using Laser 1 was 41.2%, while the maximum enhancement of IC/ISi1 using Laser 2 280 

was 26.7%. The intensity enhancement of IC/ISi1 using Laser 1 was higher than that using Laser 2. It 281 

indicated that the CO2 effect on unburned carbon measurement of solid fly ash powder could be reduced 282 

when using Laser 2. The increase of IC/ISi1 with CO2 in Fig.9 didn’t follow the linear relation due to the non-283 

uniformity of the fly ash powder and the mixture of powder and surrounding gas [19]. The measured carbon 284 

signals contained both the powder carbon signal and gas carbon signal. The fluctuation of the powder flow 285 

caused the fluctuation and inhomogeneity of the plasma. Therefore, one of the merits of fly ash 286 

measurement using Laser 2 is the reduction of gas breakdown to diminish the CO2 effect on unburned 287 

carbon measurement because of the effect on the solid powder and gas plasma processes, which can be 288 

applicable for other powder conditions. Another merit is that Laser 2 is a microchip laser with high 289 

durability and long lifetime. Laser 2 employed here is more available for online measurement of LIBS 290 

system due to its flexibility and durability.  291 
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 292 

4.2.2 Plasma temperature correction of C signal 293 

According to the previous study, the carbon signal intensity was affected by the plasma temperature [3, 294 

16]. As shown in Fig.4, plasma temperature showed the obvious delay time dependence using Laser 1. 295 

However, the plasma temperature showed a little change using Laser 2. Plasma temperature correction is 296 

necessary to reduce the plasma temperature effect on signals, especially for the measurement using Laser 1. 297 

The temperature correction factor for carbon signal was determined according to the relation between IC/ISi1 298 

and IMg1/IMg2. The variation of plasma temperature with delay time was different using different lasers. 299 

Therefore, the plasma temperature correction factor for each laser was determined respectively including all 300 

the CO2 concentration and delay time conditions.  301 

After applying the plasma temperature correction, the relation between the corrected IC/ISi1 and CO2 302 

concentration is shown in Fig.10. In Fig.10, the corrected IC/ISi1 in each CO2 concentration condition was the 303 

averaged result in all delay time. After plasma temperature correction, the maximum enhancement of IC/ISi1 304 

using Laser 1 was 30.4%, and the maximum enhancement of IC/ISi1 using Laser 2 was 19.7%. Compared 305 

with Fig.9, the enhancement of IC/ISi1 decreased after the plasma temperature correction. As for the standard 306 

deviation, the largest standard deviation in Fig.9 was 0.0712 of Laser 1 and 0.0646 of Laser 2, while the 307 

largest standard deviation in Fig.10 was 0.0649 of Laser 1 and 0.0624 of Laser 2. Plasma temperature 308 

correction didn’t make obvious difference on standard deviation. In a word, plasma temperature correction 309 

can partially decrease the influence of surrounding CO2 breakdown. 310 

 311 

4.3 Pulse width effect on solid breakdown signals 312 

According to the C quantitative calculation equation, solid powder breakdown signals of ICa1/ISi2, IFe/ISi2, 313 

IAl/ISi2 should also be concerned [16]. So the pulse width effect on these solid powder breakdown signals 314 

was also discussed here. As mentioned in Theory, for 6ns pulse width laser, more energy is introduced to 315 

plasma reheating process, while for 1ns pulse width laser, more energy is allocated to solid breakdown. In 316 

order to study the pulse width effect on these solid powder breakdown signals, ICa1/ISi2 was discussed here in 317 

detail under different experimental conditions. IFe/ISi2, IAl/ISi2 showed the consistent results [3, 16]. In the 318 
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case of IC/ISi1 analysis which was affected by the surrounding CO2 gas, it has been discussed above in detail.  319 

The CO2 concentration dependencies of ICa1/ISi2 in different delay time when using Laser 1 and Laser 2 320 

are shown in Fig.11. ICa1/ISi2 didn’t show the obvious change with CO2 concentration. When using Laser 1, 321 

the averaged ICa1/ISi2 under different CO2 concentration conditions was as high as 0.575 in delay time of 322 

300ns, and it decreased as delay time increased, varying as 0.536, 0.496, 0.380, 0.225, due to the higher 323 

upper energy level of Ca1 than that of Si2. However, the averaged ICa1/ISi2 using Laser 2 had less variation, 324 

varying as 0.342, 0.349, 0.347, 0.308, and 0.297 along the increase of delay time. Using Laser 2, ICa1/ISi2 325 

also had less dependence on delay time compared with that using Laser 1. The values of ICa1/ISi2 using Laser 326 

2 in different delay time were similar as that using Laser 1 in delay time of 1000ns. The results in Fig.11 327 

corresponded to the plasma temperature in Fig.4. Therefore, it indicated that plasma temperature has crucial 328 

effects on the solid breakdown signals. The signal stability under different lasers was also different, and the 329 

large relative standard deviation indicated the fluctuation of signals. For Laser 1, 8 results of total 20 results 330 

in Fig.11 (a) had the relative standard deviation more than 10%, and 3 of them were more than 20%. For 331 

Laser 2, 6 results in Fig.11 (b) had the relative standard deviation more than 10%, while only 1 of them was 332 

more than 20%. So the signals using Laser 2 had less fluctuations, which is beneficial for the measurement.  333 

 334 

5. Conclusions 335 

 336 

The unburned carbon in fly ash is an important factor to evaluate combustion efficiency. The low carbon 337 

content in fly ash means the good combustion of the boiler. Besides, the recycling of the fly ash also requires 338 

the low carbon content in fly ash. Online measurement of fly ash compositions helps to control the carbon 339 

content of fly ash, and LIBS technology can realize the online measurement compared to other methods. The 340 

LIBS measurement of fly ash powder flow should consider both the solid powder breakdown and 341 

surrounding gas breakdown, while the surrounding gas breakdown will introduce the carbon signal from 342 

CO2 gas to the unburned carbon measurement of fly ash. Experiments were designed using 6ns pulse width 343 

laser and 1ns pulse width laser to measure fly ash seperately to compare their properties. The results are 344 

concluded as follow. 345 
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1. At the formation time of plasma, plasma temperature using 6ns pulse width laser was much higher than 346 

that using 1ns pulse width laser. High plasma temperature affected the background of spectra and 347 

measurement accuracy. Using 6ns pulse width laser, the plasma temperature had obvious dependence on 348 

delay time, the parameters setting should consider the plasma states. It has testified that when the laser pulse 349 

width changes from 6ns to 1ns, the plasma formation process had obvious change, which showed the lower 350 

plasma temperature at the formation time, more stable background, and less dependence on delay time. 351 

2. The IC/ISi1 increased obviously with the increase of the CO2 concentration when using 6ns pulse width 352 

laser. The CO2 concentration dependence of IC/ISi1 was reduced when using 1ns pulse width laser under all 353 

the CO2 concentration conditions. The CO2 effect on unburned carbon measurement could be reduced when 354 

using 1ns pulse width laser. When applying the plasma temperature correction method, the increase of IC/ISi1 355 

with the CO2 concentration became smaller. 356 

3. The laser pulse width also influenced the solid breakdown signals stability. The powder breakdown 357 

signals using 1ns pulse width laser showed less delay time dependence and generally smaller relative 358 

standard deviations than that using 6ns pulse width laser.  359 

In summary, the CO2 effect on the unburned carbon signal can be reduced when using the laser with pulse 360 

width of 1ns, which also induces less variation of plasma temperature and solid powder breakdown signals 361 

like ICa1/ISi2, IFe/ISi2, IAl/ISi2. All these are beneficial for fly ash flow measurement. At the same time, the laser 362 

with pulse width of 1ns is a microchip laser with high durability and long lifetime, which is more suitable 363 

for the LIBS system integration for the industrial online application. In a word, 1ns pulse width laser is more 364 

suitable for the fly ash powder flow measurement using LIBS. 365 
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Figure Captions 

Fig.1 Plasma development processes during LIBS. 

Fig.2 Fly ash measurement system of LIBS using different lasers. 

Fig.3 Measured spectra of fly ash without CO2 using Laser 1. Conditions: pulse width: 6ns, delay time: 

800ns. 

Fig.4 Delay time dependence of IMg1/IMg2 using different lasers under different CO2 concentration conditions. 

Fig.5 Measured spectra without CO2 using Laser 1 in Channel 1. Conditions: pulse width: 6ns, delay time: 

300ns, resolution of 0.076nm/pixel. 

Fig.6 Measured spectra without CO2 using Laser 2 in Channel 1 in different delay time. Conditions: pulse 

width: 1ns, resolution of 0.076nm/pixel. 

Fig.7 Comparison of measured spectra of fly ash with different CO2 concentration using Laser 1 in Channel 

2. Conditions: pulse width: 6ns, delay time: 1000ns, resolution: 0.012nm/pixel. 

Fig.8 Comparison of measured spectra of fly ash with different CO2 concentration using Laser 2 in Channel 

2. Conditions: pulse width: 1ns, delay time: 25ns, resolution: 0.012nm/pixel. 

Fig.9 Dependence of IC/ISi1 on CO2 concentration using different lasers in Channel 2. Conditions of Laser 1: 

pulse width: 6ns, delay time: 1000ns. Conditions of Laser 2: pulse width: 1ns, delay time: 25ns. 

Fig.10 Dependence of averaged IC/ISi1 on CO2 concentration after plasma temperature correction in Channel 

2. Conditions: pulse width of Laser 1: 6ns, pulse width of Laser 2: 1ns. 

Fig.11 Dependence of ICa1/ISi2 on CO2 concentration in different delay time using Laser 1 and Laser 2. 

Conditions: Laser 1, pulse width: 6ns, delay time: 300ns, 500ns, 800ns, 1000ns, 1500ns. Laser 2, pulse 

width: 1ns, delay time: 5ns, 10ns, 25ns, 50ns, 100ns. 



Put your running title here: Elsevier General template 

 2 

 

Fig.1 

 

(a) Plasma structure concept of powder with surrounding gas 

 

(b) Diagram of the laser pulse width 

 

(c) Concept of time evolution process during laser-induced plasma 

Fig.1 Plasma development processes during LIBS. 
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Fig.2 

 

Fig.2 Fly ash measurement system of LIBS using different lasers. 
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Fig.3 

 

(a) Channel 1 with resolution of 0.076nm/pixel 

 

(b) Channel 2 with resolution of 0.012nm/pixel 

Fig.3 Measured spectra of fly ash without CO2 using Laser 1. Conditions: pulse width: 6ns, delay time: 

800ns. 
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Fig.4 

 

(a) Laser 1 with pulse width of 6ns 

 

(b) Laser 2 with pulse width of 1ns 

Fig.4 Delay time dependence of IMg1/IMg2 using different lasers under different CO2 concentration 

conditions. 
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Fig.5 

 

Fig.5 Measured spectra without CO2 using Laser 1 in Channel 1. Conditions: pulse width: 6ns, delay time: 

300ns, resolution of 0.076nm/pixel. 
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Fig.6 

 

(a) Delay time of 10ns 

 

(b) Delay time of 100ns 

Fig.6 Measured spectra without CO2 using Laser 2 in Channel 1 in different delay time. Conditions: pulse 

width: 1ns, resolution of 0.076nm/pixel. 
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Fig.7 

 

(a) Without CO2 

 

(b) With 3.80% CO2 

Fig.7 Comparison of measured spectra of fly ash with different CO2 concentration using Laser 1 in Channel 

2. Conditions: pulse width: 6ns, delay time: 1000ns, resolution: 0.012nm/pixel. 
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Fig.8 

 

(a) Without CO2 

 

(b) With 3.80% CO2 

Fig.8 Comparison of measured spectra of fly ash with different CO2 concentration using Laser 2 in 

Channel 2. Conditions: pulse width: 1ns, delay time: 25ns, resolution: 0.012nm/pixel. 
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Fig.9 

 

Fig.9 Dependence of IC/ISi1 on CO2 concentration using different lasers in Channel 2. Conditions of Laser 1: 

pulse width: 6ns, delay time: 1000ns. Conditions of Laser 2: pulse width: 1ns, delay time: 25ns. 
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Fig.10 

 

Fig.10 Dependence of averaged IC/ISi1 on CO2 concentration after plasma temperature correction in 

Channel 2. Conditions: pulse width of Laser 1: 6ns, pulse width of Laser 2: 1ns. 
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Fig.11 

 

(a) ICa1/ISi2 using Laser 1 

 

(b) ICa1/ISi2 using Laser 2 

Fig.11 Dependence of ICa1/ISi2 on CO2 concentration in different delay time using Laser 1 and Laser 2. 

Conditions: Laser 1, pulse width: 6ns, delay time: 300ns, 500ns, 800ns, 1000ns, 1500ns. Laser 2, pulse 

width: 1ns, delay time: 5ns, 10ns, 25ns, 50ns, 100ns. 
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Tables 

Table 1 Main compositions of fly ash sample 

Table 2 Measured species and the specific wavelengths [42] 
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Table 1 

Table 1 Main compositions of fly ash sample 

Ash Content (wt%) Unburned 
Carbon 
(wt%) 

SiO2 Al2O3 Fe2O3 K2O CaO TiO2 P2O5 SO3 MgO Na2O 

37.38 25.91 6.26 0.39 1.36 0.8 0.36 0.53 0.59 0.78 24.9 
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Table 2 

Table 2 Measured species and the specific wavelengths [42] 

species wavelength(nm) Ei(cm-1) Ek(cm-1) 
C  247.86 21648.01 61981.82 
Si1 251.61 223.16 39955.053 
Si1_1 250.69 77.12 39955.053 
Si1_2 251.43 0 39760.29 
Si1_3 251.92 77.12 39760.29 
Si1_4 252.41 77.12 39683.16 
Si1_5 252.85 223.16 39760.29 
Si2 288.16 6298.85 40991.884 
Fe  
(atom and ion) 

274.20- 
275.63 

415.93- 
8846.7 

36686.16- 
45289.80 

Ca1(ion) 315.89 25191.51 56839.25 
Ca2 (ion) 318.13 25414.4 56839.25 
Al1 308.22 0 32435.45 
Al2  309.27 112.06 32436.79 
Mg1 (ion) 279.55 0 35760.88 
Mg1 (ion) 280.27 0 35669.31 
Mg2  285.21 0 35051.26 

 

  


	ADP151C.tmp
	Tables


