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Nuclear actin family proteins, comprising of actin and actin-related proteins (Arps), are
essential functional components of the multiple chromatinremodeling complexes. The
INO80 chromatin remodeling complex, which is evolutionarily conserved and has roles
in transcription, DNA replication and repair, consists of actin and actin-related proteins
Arp4, Arp5, and Arp8. We generated Arp5 knockout (KO) and Arp8 KO cells from the
human Nalm-6 pre-B cell line and used these KO cells to examine the roles of Arp5
and Arp8 in the transcriptional regulation mediated by the INO80 complex. In both of
Arp5 KO and Arp8 KO cells, the oxidative stress-induced expression of HMOX1 gene,
encoding for heme oxygenase-1 (HO-1), was signi�cantly impaired. Consistent with these
observations, chromatin immunoprecipitation (ChIP) assay revealed that oxidative stress
caused an increase in the binding of the INO80 complex to the regulatory sites ofHMOX1
in wild-type cells. The binding of INO80 complex to chromatin was reduced in Arp8 KO
cells compared to that in the wild-type cells. On the other hand, the binding of INO80
complex to chromatin in Arp5 KO cells was similar to that in the wild-type cells even under
the oxidative stress condition. However, both remodeling of chromatin at the HMOX1
regulatory sites and binding of a transcriptional activator to these sites were impaired in
Arp5 KO cells, indicating that Arp5 is required for the activation of the INO80 complex.
Collectively, these results suggested that these nuclear Arps play indispensable roles in
the function of the INO80 chromatin remodeling complex.

Keywords: actin family, chromatin, chromatin remodeling, heme ox ygenase-1, stress response

INTRODUCTION

In the nucleus of eukaryotes, the genomic DNA is packaged intoa complex nucleoprotein structure,
known as chromatin. Chromatin structure restricts the accessibility of factors involved in the DNA-
based cellular process, including transcription, DNA replication, and DNA damage repair. The
ATP-dependent chromatin-remodeling complexes regulate theseprocesses through remodeling
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of the chromatin structure. These complexes consist of an
enzymatic component and multiple subcomponents, which
regulate their complex functions. It is known that some of the
chromatin remodeling complexes contain actin family proteins
as essential subcomponents (Oma and Harata, 2011).

The actin family consists of conventional actin and actin-
related proteins (Arps). Arps are classi�ed into Arp1 to Arp10
subfamilies, and each subfamily is evolutionarily conserved
(Dion et al., 2010; Oma and Harata, 2011). The structure of the
core domain of actin and Arp molecules, known as the actin
fold, is highly conserved among the members of the actin family
(Fenn et al., 2011; Gerhold et al., 2012). On the other hand, each
member of this family has distinct molecular surface structure.
Whereas some of the Arps are predominantly localized in the
cytoplasm, several Arps (namely Arp 4, Arp 5, Arp 6, Arp 7, Arp
8, and Arp 9) are accumulated in the nucleus (Dion et al., 2010;
Oma and Harata, 2011). Consistent with these results, all of these
nuclear Arps were found to be parts of chromatin remodeling
complexes of which actin is also a component.

The INO80 chromatin remodeling complex contains four
actin family members: actin, Arp4, Arp5, and Arp8 (Oma and
Harata, 2011; Tosi et al., 2013). These actin family proteins of
the INO80 complex is evolutionarily conserved from yeast to
human (Cai et al., 2007; Wu et al., 2007; Yao et al., 2008).
Although actin and Arp4 are also found in some other chromatin
remodeling complexes, Arp5 and Arp8 are identi�ed as speci�c
components of the INO80 complex. In addition to containing the
Ino80 molecule as a sca�old, the budding yeast INO80 complex
also contains four topological modules, namely Arp8-, Arp5-,
Nhp10-, and Rvb-modules (Tosi et al., 2013).

Arp8 is included in the Arp8-module together with actin
and Arp4, and has histone binding ability (Shen et al., 2003;
Gerhold et al., 2012). We have recently reported that the human
Arp8 binds to double- and single-stranded DNAs (Osakabe et al.,
2014). We have also established gene knockout (KO) human
cell line lacking Arp8 (Arp8-KO cells), and showed that Arp8 is
required for the double strand DNA break (DSB) repair function
of the INO80 complex (Osakabe et al., 2014). However, human
Arp8's contribution to transcriptional regulation remains yet to
be analyzed using the Arp8KO cells. Although Arp5, which is
included in the Arp5-module, a module di�erent from the Arp8-
module, is supposed to have a distinctive role in the INO80
complex (Kitamura et al., 2015), our knowledge regarding the
function of the human Arp5 in the INO80 complex is still very
limited, especially its role in transcriptional regulation.

Reactive oxygen species (ROS), which are highly reactive in
nature and cause oxidative stress, are known to disturb cellular
homeostasis, which in some cases lead to the development
of cancer and other diseases (Loboda et al., 2016). ROS are
known to induce transcription of a set of genes, and heme
oxygenase-1 (HO-1), which is a representative oxidative
stress-inducible protein, has potent anti-in�ammatory,
antioxidative and antiproliferative e�ects (Vile et al., 1994;
Camhi et al., 1995; Maeshima et al., 1996). Recently,Katoh
et al. (2011)observed that Ino80 and Arp4 in complexes
associate with the promoter ofHMOX1 gene, which
encodes for HO-1, suggesting a possibility that the INO80

complex is involved in the transcriptional regulation of
HMOX1.

In this study, we examined the roles of human Arp5 and Arp8
in the transcriptional regulation mediated by the INO80 complex
using respective KO cells. We observed that these actin family
proteins have distinctive roles in the activation ofHMOX1. Using
ChIP analysis we found that Arp8, but not Arp5, is required for
the binding of INO80 complex to chromatin. On the other hand,
both remodeling of chromatin at theHMOX1 regulatory sites
and binding of a transcription activator to these regulatorysites
were impaired in Arp5 KO cells. These observations provided
novel information about the distinctive functional contributions
of actin family proteins in the transcriptional regulation mediated
by the human INO80 complex.

MATERIALS AND METHODS

Cell Culture and Induction of Oxidative
Stress
Nalm-6 pre-B cells were cultured at 37� C in Roswell Park
Memorial Institute medium containing GlutaMAXTM-I
(Invitrogen) supplemented with 10% fetal bovine serum,
penicillin, and streptomycin as described previously (Ono et al.,
2009). To induce oxidative stress, hemin (Sigma) was added to
the culture medium to a �nal concentration of 20mM.

Establishment of Arp5-Knockout (KO) Cells
Arp5 KO cells were generated using protocols similar to that was
used for the generation of Arp8 KO cells (Osakabe et al., 2014)
with some modi�cations. Brie�y, the left (3.1 kb) and right (3.6
kb) arms of the targeting vectors were, respectively, ampli�ed by
PCR using the genomic DNA puri�ed from Nalm-6 pre-B cells
as the template. The left arm and the right arm contained exons
2–3 and intron 5, respectively (see Supplementary Figure S1).
The disruption of both alleles of theARP5gene was con�rmed
by Southern blot analysis using probes shown in Supplementary
Figure S1. Arp5 knockout cells were successfully established,
and they were con�rmed to be devoid of Arp5 by Western blot
analysis using an anti-Arp5 antibody.

Western Blot Analysis
Western blot analysis was performed as was described earlier
(Kitayama et al., 2009) using anti-Arp5 (Kitayama et al., 2009),
anti-Ino80 (Abcam), anti-a-tubulin (Sigma), anti-MafK (Santa
Cruz Biotechnology), anti-Bach1 (Dohi et al., 2008), or anti-Nrf2
(Santa Cruz Biotechnology) antibody. An anti-IgG conjugated
to horseradish peroxidase (Promega) was used as the secondary
antibody, and ECL Western blotting detection reagents (GE
Healthcare) were used for the detection of bound antibodies.

Quantitative RT-PCR Analysis
Total RNA from human Nalm-6 pre-B cells was extracted with
the RNeasy Mini kit (QIAGEN) following the manufacture's
protocol. To prepare cDNA, an aliquot (2.0mg) of the extracted
RNA was incubated with 10ml of 2xMaster Mix (Applied
Biosystems) (RT bu�er, 100 mM dNTP Mix, 10 mM random
primers, 1ml Multiscribe Reverse Transcriptase, RNase inhibitor,
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nuclease-free water) for 10 min at 25� C, for 120 min at 37� C
and �nally for 5 min at 85� C. An aliquot of this cDNA was
used for quantitative PCR as described (Kusakabe et al., 2016).
Quantitative PCR was carried out using gene speci�c primers
for humanHMOX1 (50-CTCTCGAGCGTCCTCAGC-30and 50-
TTCAGGGCCTCTGACAAATC-30) and for human36B4(50-
CGACCTGGAAGTCCAACTAC-30 and 50-ATCTGCTGCATC
TGCTTG-30).

Chromatin Immunoprecipitation (ChIP)
Assay
ChIP assays was performed as described earlier (Kimura et al.,
2008) with some modi�cations. In brief, Nalm-6 pre-B cells (6–
9 � 107 cells in a 100 ml medium) were mixed with 2.7 ml
formaldehyde (the �nal concentration of 1%) and shaken at room
temperature for 5 min to crosslink proteins to DNA. To stop the
crosslinking reaction, 17.5 ml of 2M glycine was added, and the
cells were �rst washed with 30 ml PBS and then with 10 ml NP-40
bu�er [10 mM Tris-HCl (pH 8.0), 10 mM NaCl and 0.5% NP-40].
The cells were resuspended in 200ml SDS lysis bu�er [50 mM
Tris-HCl (pH 8.0), 10 mM EDTA, and 1% SDS], and to this
400ml ChIP dilution bu�er [50 mM Tris-HCl (pH 8.0), 167 mM
NaCl, 1.1% Triton X-100 and 0.11% sodium deoxycholate] was
added. This mixture was sonicated using a Bioruptor (CosmoBio)
for the shearing of the chromatin (� 500 bp). After removing
insoluble materials by centrifugation (12,000 g, 5 min), 200 ml
ChIP dilution bu�er was added to the supernatant to generate
the input fraction for the ChIP analysis. Protein A- and G-
Dynabeads (Invitrogen; 15ml suspension of each) were washed
and mixed with the ChIP input fraction and a speci�c antibody
to the protein of interest. This mixture was incubated overnight at
4� C with rotation. Following the incubation, beads were washed
sequentially with 1 ml of RIPA [50 mM Tris-HCl (pH 8.0), 1 mM
EDTA, 0.1% SDS, 1% Triton X-100, 0.1% sodium deoxycholate]-
150 mM NaCl bu�er, 1 ml RIPA-500 mM NaCl bu�er, and 1 ml
TE [10 mM Tris-HCl (pH 8.0) and 1 mM EDTA]. After removing
TE, beads were directly mixed with 200ml elution bu�er [10 mM
Tris-HCl (pH 8.0), 300 mM NaCl, 5 mM EDTA, 0.5% SDS]
and incubated overnight at 65� C to reverse the cross-linking.
Immunoprecipitated DNA was puri�ed and analyzed by real-
time PCR (ABI PRISM 7000 or CFX Connect Real-Time System).
Obtained values were normalized with that of DNA prepared
from the input fraction. Sequences of PCR primers used for the
real-time PCR were: HO-1 E1 (50-CAGTGCCTCCTCAGCTTC
TC-30and 50-CTCGGTGGATTGCAACATTA-30), HO-1 E2 (50-
CTCTGCCCCTGCTGAGTAAT-30 and 50-GAGCAGCTGGAA
CTCTGAGG-30), Rad54B intron9 (50-TAGCTGGGACTGCAG
GTGTA-30and 50-GTATTGCCAGGCCACAAGAT-30).

Nuclease Accessibility Assay
Nuclease accessibility assay was performed using the EpiQ
chromatin analysis kit (BIO-RAD). Permeabilized Nalm-6 pre-B
cells were treated with the nuclease supplied in the kit, the DNA
was puri�ed after the nuclease treatment, and the puri�ed DNA
was ampli�ed using the region speci�c primers and reagents
supplied in the EpiQ chromatin analysis kit according to the
protocol provided by the manufacturer of the kit. Sequences

of PCR primers for the E1, E2, exon5 ofHMOX1 used in
this assay were indicated above under ChIP Assay. Sequences
of other primers used in this assay were: HO-1 promoter (50-
GGGGGCTCTGGAAGGAGCAAAATCA-30 and 50-CAGTGT
GGGGTGGAGAGGAGCAGTC-30), GAPDH promoter: (50-
CGCACGTAGCTCAGGCCTCAAGACC-30 and 50-GGCTGA
CTGTCGAACAGGAGGAGCA-30).

RESULTS

Establishment of an Arp5 Gene Knockout
Human Cell Line
We generated human Arp5 KO cells and utilized them to analyze
the role of Arp5 in the INO80 chromatin remodeling complex.
Both the alleles of theARP5gene in the human Nalm-6 pre-B cell
line were disrupted using conventional gene knockout methods
and an Arp5 KO cell line was established (Supplementary
Figure S1). Western blot analysis by using a speci�c anti-Arp5
antibody con�rmed that no Arp5 was expressed in Arp5 KO cells
(Supplementary Figure S2A). Knockout ofARP5gene did not
bestow lethal phenotype in Arp5 KO cells; however, the growth
of Arp5 KO cells was slightly slower than that of the wild-type
cells (Supplementary Figure S2B). These Arp5 KO cells, along
with Arp8 KO cells (Osakabe et al., 2014), were used for further
analyzing the function of INO80 complex.

INO80 Complex Is Involved in Oxidative
Stress-Induced Expression of HMOX1
To determine whether the INO80 complex is involved in
transcriptional regulation ofHMOX1, we analyzed the expression
levels ofHMOX1 mRNA in wild-type, Arp5 KO, and Arp8 KO
cells. The expression level ofHMOX1 was moderately decreased
both in Arp5 KO and Arp8 KO cells in the absence of oxidative
stress with hemin (Figure 1, left panel). However, signi�cantly
decreased expression levels ofHMOX1 were observed in both
KO cells, as compared to that in the wild-type cells, following
induction with oxidative stress; notably, the expression level
of HMOX1 in Arp5 KO and Arp8 KO cells was� 1/100 of
that of the wild-type cells (Figure 1, right panel). This result
suggested that the INO80 complex is required for the induction
of HMOX1 expression with hemin and that Arp5 and Arp8 may
have essential roles in INO80complex function.

We also performed a genome-wide microarray transcription
analysis of control (without oxidative stress) and oxidative stress-
induced Arp5-KO and Arp8-KO cells. The relative change in
transcription of each gene in the gene loci was calculated
by comparing its transcription level in Arp5 KO or Arp8
KO cells with that in the wild-type cells. The raw data and
experimental details were deposited in the GEO database under
accession number GSE66888. We plotted the degree of change
in the transcription level of each gene whose transcription
was misregulated in Arp5 KO or Arp8 KO cells (> 2-fold)
(Figure 2A). The genes belonging to the groups I to IV under
each condition are listed in Supplementary Tables S1–S8. While
analyzing the results obtained from the cells without oxidative
stress (Figure 2A, left panel) and cells induced with oxidative
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FIGURE 1 | The INO80 complex is involved in HMOX1 expression. Quantitative RT-PCR (qRT-PCR) analysis ofHMOX1 mRNA in wild-type (WT), Arp5 KO, and
Arp8 KO cells. Left panel: control cells (not treated with hemin) and Right panel: cells treated with 20mM hemin, an oxidative stress inducer, for the indicated time. The
expression level ofHMOX1 in wild-type control cells (without oxidative stress) was arbitrarily set at 1. The expression of 36B4 gene was used to normalize the results.
Averages of at least three independent experiments (� standard deviation) are shown.

FIGURE 2 | Microarray analysis of Arp5 KO and Arp8 KO cells ind uced with or without oxidative stress. (A) Genes whose transcriptional changes were
signi�cant in Arp5 KO and Arp8 KO cells under control (withoutoxidative stress, left panel) and experimental (with oxidative stress, right panel) conditions were plotted
according to their log2 ratios. (B) Zone plot of transcript expression. Genes which were misregulated in these KO cells were counted and number of genes expressed
in each zone, as shown in(A) above, were plotted. The �lled bar indicates the number of genes in zone IV, expression levels of which were down-regulatedboth in
Arp5 KO and Arp8 KO cells. The open bar indicates total numberof other misregulated genes (Zones I, II, and III) in Arp5-KO and Arp8-KO cells.

stress (Figure 2A, right panel), we found a correlation between
the degree of misregulation observed in Arp5 KO (horizontal
axis) and Arp8 KO (vertical axis) cells (R2 D 0.64 and 0.77 in
the absence and presence of oxidative stress, respectively); more

than 90% of the misregulated genes were found either in zone
I (upregulated in both cell types) or in zone IV (downregulated
in both cell types) in the zone plot of transcript expression
(Figure 2B). This observation suggested that both Arp5 and
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Arp8 are required for the transcriptional regulation mediated by
the INO80 complex. Interestingly, the number of genes found
in the zone IV of the zone plot were signi�cantly increased
following the induction with oxidative stress (Figure 2B, p D 1.9
� 10� 17). In the absence of oxidative stress, genes belonging to
eight GO categories are signi�cantly accumulated (p < 0.01) in
the zone IV (Supplementary Table S9). On the other hand, in the
presence of oxidative stress, genes belonging to 48 GO categories
are signi�cantly accumulated in the zone IV (Supplementary
Table S10). Genes for heme oxygenase 1(HMOX1), glutathione
peroxidase (GPX3), and glutathione S-transferase (GSTM3) are
included in the zone IV only in the presence of oxidative stress.
These observations suggest that the INO80 complex is involved
in the expression of not only typical oxidative stress genes but
also many other genes.

Arp8, but Not Arp5, Is Involved in the
Binding of Ino80 to Chromatin
Human Arp8 has been shown to have histone- and DNA-binding
activities, which were suggested to contribute to the DSB repair
function of the INO80 complex (Kashiwaba et al., 2010; Osakabe
et al., 2014; Gerhold et al., 2015). Here, we used Arp8 KO cells
to examine whether Arp8 is involved in the binding of INO80
complex to chromatin without inducing DNA damage. When we
analyzed the amount of Ino80 in the chromatin fraction prepared
from the wild-type, Arp5 KO, and Arp8 KO cells by Western
blotting, we observed that the amount of chromatin-bound Ino80
in Arp8 KO cells decreased to around 50% of that in the wild-
type cells (Figure 3, Arp8-KO). On the other hand, absence of
Arp5 (Arp5 KO cells) did not have any signi�cant e�ect on
the binding of Ino80 to chromatin (Figure 3, Arp5-KO). These
results suggested that Arp8, but not Arp5, contributes to the
chromatin binding property of the INO80 complex.

INO80 Complex Binds to the Regulatory
Sites of HMOX1
Induction of HMOX1 expression is under the control of Maf-
recognition elements (MARE). Two enhancer regions, one distal

(E2) and another proximal (E1), have been identi�ed upstream
of the HO-1 coding region (Figure 4A); sequences of both
enhancers conform to the sequence of the MARE (Igarashi and
Watanabe-Matsui, 2014). To elucidate the role of Arp5 in the
activation of HMOX1 by the INO80 complex, we performed
chromatin immunoprecipitation (ChIP) assays using anti-Arp5
(Figure 4B, upper-left panel), anti-Arp8 (Figure 4B, upper-right
panel), and anti-Ino80 (Figure 4B, lower-right panel) antibodies.
As shown inFigure 4B, in the absence of oxidative stress (open
bars), Arp5, Arp8, and Ino80 exhibited slight, but signi�cant
binding to the E1 and E2 sites as compared to an INO80-free
Rad54B site (Park et al., 2010). The bindings of Arp5 to the E1
and E2 sites in the absence of oxidative stress were con�rmed
by the comparison of ChIP results with anti-Arp5 and control
antibodies (Supplementary Figure S3). After inducing oxidative
stress, the bindings of Arp5, Arp8, and Ino80 to the E1 and
E2 sites were increased (Figure 4B, �lled bars). These results
suggested binding of the INO80 complex to the regulatory sites
of HMOX1in response to oxidative stress.

Arp5 Is Not Required for the Binding of
Ino80 to Chromatin
To test whether Arp5 is required for the binding of INO80
complex to the regulatory sites ofHMOX1, ChIP assay was
performed using wild-type and Arp5 KO cells and an anti-Ino80
antibody. Interestingly, the binding of Ino80 to the E1 and E2
sites were not impaired in Arp5 KO cells both in the absence
and presence of oxidative stress (Figure 4C, left and right panels,
respectively). This result suggested that Arp5 is not requiredfor
the binding of INO80 complex to the E1 and E2 sites regardless
of whether or not the cells were subjected to oxidative stress.

Arp5 Is Required for the Chromatin
Remodeling at the Regulatory Sites of
HMOX1
To test the possibility whether Arp5 is required for the
remodeling of chromatin by the INO80 complex, we analyzed
the structure of chromatin at the E2 and E1 sites ofHMOX1.

FIGURE 3 | Quanti�cation of chromatin-bound Ino80 in wild-ty pe, Arp5 KO, and Arp8 KO cells. (A) The chromatin fractions prepared from the indicated cells
were immunoblotted with an anti-Ino80 antibody (top panel) and an anti-H3 antibody (lower panel), which was used as an internal control.(B) The intensity of the
chromatin-bound Ino80 band was normalized with respect to that of H3 band in each case, and the relative amount of chromatin-bound Ino80 in each cell line was
normalized with respect to that in the wild-type cells. Student's t-test was used to determine theP-value. *P < 0.05.
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FIGURE 4 | Analysis of the binding of INO80 complex to the regul atory sites of HMOX1. (A) Schematic representation of the humanHMOX1 locus. Arrows
indicate positions of PCR primer pairs used for the ChIP analysis. (B) The quantitative-ChIP assay was performed by using anti-Arp5 (B, upper-left panel), anti-Arp8
(B, upper-right panel), and anti-Ino80 (B, lower-right panel) antibodies. The amount of immunoprecipitated fragment for each site was normalized with respect to the
input fraction value, and was shown as relative enrichment to that of the INO80-free Rad54 site (Park et al., 2010). Open and �lled bars represent chromatin binding in
control (without oxidative stress) and experimental (withoxidative stress) cells, respectively.(C) The binding of Ino80 to the regulatory sites in wild-type (WT)and
Arp5-KO cells was analyzed by ChIP assay by using an anti-Ino80antibody in control (without oxidative stress, left panel)and experimental (with oxidative stress, right
panel) cells. Open and �lled bars represent chromatin-boundIno80 in WT and Arp5-KO cells, respectively. Data shown are averages from at least three independent
experiments (� standard deviation). *P < 0.05 (inB,C).

Since open form of chromatin permits accessibility of chromatin
DNA to exogenous nuclease digestion, we determined nuclease
accessibility of chromatin at the regulatory sites of the wild-type
and Arp5 KO cells (Figure 5, left and right panels, respectively)
by quantifying the un-cut DNA by qPCR. Under oxidative stress

condition, chromatin accessibility to nuclease at the E2 and E1
sites and also at a promoter site adjacent to the E1 site increased
similarly in the wild-type cells (Figure 5, left panel). On the other
hand, although chromatin accessibility to nuclease at the E2 and
the promoter sites did not change upon induction with oxidative
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FIGURE 5 | Comparison of chromatin structure at the regulatory element sites of HMOX1. Chromatin is isolated from wild-type (WT) and Arp5 de�cient cells,
treated with nuclease, genomic DNA is then isolated and chromatin accessibility to nucleases was measured by amplifying the puri�ed DNA using quantitative-PCR. If
the chromatin forms a loose structure, the PCR ampli�cation ef�ciency is low because the genomic DNA is digested by the nuclease. The nuclease accessibility value
obtained for each regulatory site ofHMOX1 was normalized with that for theGAPDHpromoter site, and was shown relative to the nuclease accessibility value
obtained for the exon 5 site in control cells (without oxidative stress). Data shown are averages from at least three independent experiments (� standard deviation).
*P < 0.05; **P < 0.01.

stress, the increase in accessibility at the E1 site was partially
impaired when Arp5 KO cells were subjected to oxidative stress
(Figure 5, right panel). These results suggested that, in response
to oxidative stress, the INO80 complex remodels chromatin
structure at the regulatory regions ofHMOX1 and that Arp5
is required for this activity of the INO80 complex. At the E1
site, some additional chromatin remodeling complexes might be
involved in the change of chromatin structure.

Arp5 Is Required for Binding of Chromatin
to the HMOX1 Activator
In the transcriptional regulation ofHMOX1, a small Maf
oncoprotein, MafK, directly binds to MARE sequences at the
E1 and E2 sites ofHMOX1, and regulates both repression
and activation ofHMOX1 expression depending on its dimeric
partner (Igarashi and Watanabe-Matsui, 2014). In the absence of
oxidative stress, the repressor Bach1 associates with the E1and E2
sites by forming a heterodimer with MafK and repressesHMOX1.
On the other hand, under oxidative stress, Bach1 is released
from the chromatin when the NF-E2-related factor 1 (Nrf2)
associates with the E1 and E2 sites by forming a heterodimer
with MafK, which remains on the chromatin, and activates
HMOX1(Figure 6A). To examine the involvement of Arp5 in the
association and/or dissociation processes of these transcription
factors in the induced activation ofHMOX1 by oxidative stress,
ChIP assays were carried out using the wild-type and Arp5 KO
cells and speci�c antibodies against these transcription factors.
Both in wild-type and Arp5 KO cells, consistently similar level
of MafK binding was observed at the E1 and E2 sites under
both control (no oxidative stress) and oxidative stress conditions
(Figure 6B).

In wild-type cells, as was reported previously (Igarashi and
Watanabe-Matsui, 2014), the association of Bach1 to the E1

and E2 sites was observed under no oxidative stress condition
(Figure 6C, left panel), but not under oxidative stress condition
(Figure 6C, right panel). In Arp5-KO cells, the association and
dissociation of Bach1 were not disturbed (Figure 6C, Arp5-KO).

The binding of Nrf2 to E2 and E1 sites increased in response
to oxidative stress in wild-type cells (Figure 6D, WT), as was
reported previously (Igarashi and Watanabe-Matsui, 2014). In
contrast, the binding of Nrf2 to E2 and E1 sites in response
to oxidative stress was signi�cantly impaired in Arp5-KO cells
(Figure 6D, Arp5-KO). However, the total amount of Nrf2 and
Mafk proteins in the Arp5 KO cells was similar to that in the
wild-type cells (Supplementary Figure S4). Taken together with
the observations that Arp5 binds to the E1 and E2 sites even in the
absence of oxidative stress and that its binding to these sites was
increased in response to the stress, these results tend to suggest
that Arp5-dependent remodeling of chromatin by the INO80
complex is required for the binding of Nrf2 to the regulatory sites
of HMOX1.

DISCUSSION

Roles of Actin Family Proteins in the INO80
Complex
By using Arp5 KO and Arp8 KO cells, we have been able to
successfully demonstrate here that Arp5 and Arp8 have roles
in the INO80 chromatin remodeling complex, contributing to
the induction of HMOX1 by oxidative stress. We previously
reported that the conditional KO of Arp8 leads to cell
lethality (Osakabe et al., 2014). In the present study, we
demonstrated that KO of Arp5 causes cells to grow slow,
but does not cause cell lethality (Supplementary Figure S2).
These observed di�erences in phenotypes of Arp5 KO and
Arp8 KO cells support the contention that the actin family
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FIGURE 6 | Analysis of the binding of transcription regulato rs to the E2 and E1 sites of HMOX1 in wild-type and Arp5-KO cells. (A) In the absence of any
oxidative stress (left panel), the repressor Bach1 forms a heterodimer with MafK, which binds to the Maf recognition element (MARE) at the E2 and E1 sites, and
repressesHMOX1 transcription. In the presence of oxidative stress (right panel), Bach1 is released, and the activator Nrf2 forms a heterodimer with MafK and binds to
the MARE elements at E2 and E1. To analyze the binding of thesetranscriptional regulators, quantitative-ChIP assay was performed using antibodies against MafK
(B), Bach1 (C), and Nrf2 (D) in wild-type (open bar) and Arp5-KO (�lled bar) cells. The amount of immunoprecipitated fragment was normalized with respect to the
input fraction value. Data shown are binding relative to that of exon 5. Averages from at least three independent experiments (� standard deviation) are shown.
P-value (Student'st-test) for the difference between WT and Arp5 KO cells is indicated. *P < 0.05.

proteins Arp5 and Arp8 have distinctive roles in the INO80
complex.

Although the structural details of the human INO80 complex
are not known yet, the fact that the components of the yeast
and human INO80 complexes are evolutionarily conserved
implies a high degree of structural similarity between these
complexes (Gerhold and Gasser, 2014). Arp8, but not Arp5,
is included in the Arp8 module together with actin and Arp4

(Tosi et al., 2013). The Arp8 module directly associates with
the helicase-SANT-associated (HSA) domain of the enzymatic
Ino80 ATPase sca�old. Arp8 has both histone- and DNA-
binding activities (Gerhold et al., 2012; Osakabe et al., 2014),
and Arp4 also has histone binding activity (Harata et al.,
1999; Nishimoto et al., 2012). Although actin itself has neither
histone- nor DNA-binding activity, actin in the budding yeast
INO80 complex is required for the binding of the INO80

Frontiers in Genetics | www.frontiersin.org 8 February 2017 | Volume 8 | Article 17



Takahashi et al. Actin Family in INO80 Complex

complex to extranucleosomal DNA (Bartholomew, 2013; Kapoor
et al., 2013). Consistent with this observation, a subcomplex
comprising of the actin family molecules belonging to the
Arp8 subdomain (actin, Arp4, and Arp8) and the HSA domain
fragment of Ino80 exhibited signi�cantly more a�nity for
DNA binding than expected from the individual subunits
(Gerhold et al., 2012). These observations suggested that, despite
displaying di�erent characteristics, actin family proteins in
the Arp8 module (i.e., actin, Arp4, and Arp8) function in a
cooperative manner so that the INO80 complex could bind to
chromatin.

Arp5 is also shown to be required for the function of
the INO80 complex in budding yeast (Yao et al., 2015,
2016). Arp5 is included in the Arp5 module, which indirectly
associate with the enzymatic Ino80 ATPaes sca�old through
the Rvb module (Tosi et al., 2013). In addition, Arp5 by
itself, unlike Arp8, is not able to bind to either DNA or
histone. The distinctive functions of Arp5 and Arp8 in the
INO80 complex may rise from their topological distribution
on the INO80 complex and di�erences in their biochemical
characters.

A Model Depicting the Function of Arp5
and Arp8 in HMOX1 Expression
Based on our observations, together with the results described
in previous reports (Zhang et al., 2006; Maruyama et al., 2013;
Igarashi and Watanabe-Matsui, 2014), we propose a model
depicting the roles Arp5 and Arp8 might play in the oxidative
stress-induced activation ofHMOX1(Figure 7). In the proposed
model, the INO80 complex initially binds to the regulatory sites
of HMOX1 with the help of Arp8, but not that of Arp5, in
response to oxidative stress. The repressor Bach1 is releasedfrom
the regulatory sites independently of the activity of the INO80
complex (top). Next, the chromatin remodeling activity of the
INO80 complex is induced with the help of Arp5. The remodeled
chromatin structure induces the biding of the activator Nrf2
to the regulatory sites (middle). Finally, another chromatin
remodeling complex BRG1 has been reported to be recruited to
these sites in an Nrf2-dependent manner (Zhang et al., 2006;
Maruyama et al., 2013). The BRG1 complex is shown to alter the
B-DNA structure at theHMOX1 promoter to Z-DNA structure
(Maruyama et al., 2013; Zhang et al., 2006). Z-DNA formation
reduces nucleosome occupancy and induces RNA polymerase II
recruitment to theHMOX1 promoter, and thereby activates the
transcription ofHMOX1(bottom).

Involvement of Nuclear Actin Family
Proteins in the Maintenance of Genome
Integrity
The oxidative stress causes injury to genome DNA, and this leads
to carcinogenesis, Alzheimer, aging, and various other diseases
(Ryter et al., 2006; Klaunig et al., 2010; Coppedè and Migliore,
2015; Foppoli et al., 2015; Loboda et al., 2016). Oxidative
stress inducible genes help in protecting the genome from the
stress. For example, HO-1 has a strong reducing capacity and
removes substances responsible for ROS formation. Therefore,

FIGURE 7 | A schematic model depicting the roles of Arp5 and Arp8 in
the oxidative stress-induced expression of HMOX1. See text for details.

the INO80 complex appears to play a role in the maintenance
of genome integrity by activating oxidative stress inducible genes
including HMOX1. It is also known that the INO80 complex
helps maintaining the genome stability via its roles in DNA
replication and DSB repair (Kawashima et al., 2007; Shimada
et al., 2008; Kashiwaba et al., 2010; Gerhold et al., 2015). Based
on the known broad functions of the INO80 complex in stress
response and DNA metabolism, it could be conferred that Arp5
and Arp8, possibly together with actin and Arp4, may have
indispensable roles in the maintenance of genome integrity.
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