1	Evaluation of swallowing movement using ultrasonography
2	
3	Takao Matsuo, M.S. ^{1), 2)} , Miwa Matsuyama, DDS, Ph.D. ³⁾ , Ken
4	Nakatani, Ph.D. ¹⁾ , Naoe Mori, M.S. ¹⁾
5	
6	¹⁾ Division of Speech-Language-Hearing Therapy, Department of
7	Rehabilitation Sciences, Faculty of Allied Health Sciences, Kansai
8	University of Welfare Sciences, 3-11-1 Asahigaoka, Kashiwara city,
9	Osaka 582-0026 Japan
10	²⁾ Department of Oral Health Care and Rehabilitation, Doctor's
11	Course of Oral Health Science, Graduate School of Oral Sciences,
12	Tokushima University, 3-18-15 Kuramoto-cho, Tokushima-shi,
13	Tokushima, 770-8504, Japan
14	³⁾ Department of Oral Health Care and Rehabilitation, Institute of
15	Biomedical Sciences, Tokushima University Graduate School,
16	3-18-15 Kuramoto-cho, Tokushima-shi, Tokushima, 770-8504,
17	Japan
18	
19	Corresponding Author:
20	Takao Matsuo
21	Division of Speech-Language-Hearing Therapy, Department of
22	Rehabilitation Sciences, Faculty of Allied Health Sciences, Kansai
23	University of Welfare Sciences, 3-11-1 Asahigaoka, Kashiwara city,

- 24 Osaka 582-0026 Japan
- 25 E-mail: matuo.takao@gmail.com; Tel.: +81-72-978-0088; Fax:
- 26 +81-72-947-0775
- 27

28 Abstract

29	The aim of this study is to develop an index to assess swallowing
30	function by ultrasonography in order to evaluate the relationship
31	between movements of the hyoid bone and the larynx while
32	swallowing water. Forty-two younger participants (mean age, 20.3
33	\pm 3.4 years) and 42 older participants (mean age, 75.1 ± 10.6
34	years) with normal swallowing function were included in the study.
35	Movements of the hyoid bone and the larynx while swallowing 5
36	mL of water were observed using ultrasonography.
37	Two-dimensional distances from the starting points of the hyoid
38	bone and the larynx to their points of maximum movement were
39	measured as displacements. The hyoid bone-laryngeal motion ratio
40	was defined as the hyoid bone displacement divided by the
41	laryngeal displacement. Parameters were compared among four
42	groups: younger male, younger female, older male, and older
43	female. The hyoid bone displacement differed significantly
44	between the younger and older groups, and the laryngeal
45	displacement differed significantly between age groups and sexes.
46	The hyoid bone-laryngeal motion ratio was not significantly
47	correlated with age, height, or body weight, and did not show a
48	significant difference between the four groups. Thus, the hyoid
49	bone-laryngeal motion ratio is an index that evaluates swallowing
50	movement and is independent of physique and physiological

- 51 changes associated with aging.
- 52
- 53 Keywords: ultrasonography, hyoid bone, laryngeal movement,
- 54 swallowing movement, hyoid bone-laryngeal motion ratio

1 Introduction

56	The clinical investigation of swallowing disorders typically
57	involves a swallowing screening test followed by a close
58	examination of swallowing function by video fluoroscopy (VF),
59	which is considered the gold standard [1,2]. As well as showing
60	aspiration, VF can also show the movement of the oral cavity, the
61	pharynx, and the esophagus and is used to elucidate the regulatory
62	mechanisms of the various organs involved in swallowing [3].
63	Swallowing training programs can be designed based on the food
64	form, swallowing method, and posture for ingestion appropriate to
65	the pathology and severity of the patient's swallowing disorder.
66	However, there are many risks associated with VF such as
67	radiation exposure and the danger of aspirating the contrast
68	medium; thus, its use is not straightforward, even at medical
69	facilities [4]. Dysphagic patients may be encountered in settings
70	other than medical practice, such as nursing care facilities and
71	private residences [5]. Therefore, there is a need for diagnostic
72	techniques of swallowing disorders suitable in these settings. In
73	this study, we focused on the evaluation of swallowing function by
74	ultrasonography (US) which can be performed in a patient's home
75	and used at the bedside without radiation exposure or the danger of
76	aspiration of the contrast medium.

77 Previous studies on the evaluation of swallowing function by

78	US [6-10] showed that movement of the hyoid bone and the larynx
79	could be quantitatively evaluated by visualizing the dynamics of
80	the various organs related to swallowing. Because normal
81	swallowing movement is confirmed by the appropriate movement
82	of the hyoid bone and the larynx [3,11], assessing the coordinated
83	movement of these organs is important for evaluating swallowing
84	movement. Only hyoid bone movement and not the larynx
85	movement or the coordination of both, was evaluated in previous
86	studies. The present study reviews previous methods for evaluating
87	swallowing movement by US and proposes a new index to
88	evaluate swallowing-related muscle coordination.
89	

90 2 Materials and Methods

91 **2.1 Participants**

92 The participants included 42 healthy younger and 42 healthy older 93 individuals with no medical history of any disease of the head and 94 neck region that influenced ingestion. The participants were divided by sex and age into four groups: younger male, younger 95 96 female, older male, and older female. A speech therapist with 5 97 years of experience with image US examined their swallowing 98 movements. 99 The study was approved by the Research Ethics Committee of 100 Kansai University of Welfare Sciences (Approval number: 17-64).

101 Written informed consent was provided by the participants.

102	2.2 Visualization of movement of the hyoid bone and larynx
103	The participant assumed a posture with the neck in a neutral
104	position such that a line from the acromion to the opening of the
105	ear canal was at 100° – 110° to the horizontal plane (Figure 1). To
106	minimize movement during the measurements, the head and the
107	neck were stabilized in this position using an immobilization
108	device (Figure 1).
109	A 5- to 12-MHz linear probe (Digital Color Doppler
110	Ultrasound System JS2; SonoScape Medical Corp, Centennial, CO,
111	USA) was attached to the left or right plate of the thyroid cartilage,
112	taking care to avoid disturbing the laryngeal elevation while
113	swallowing. Image US was directed toward the anterior angle of
114	the thyroid cartilage to visualize the movement of the larynx while
115	swallowing. The caudal and cranial sides were displayed on the
116	right and left sides of the US monitor, respectively. The superior
117	end of the thyroid cartilage was displayed on approximately
118	one-third of the right side of the monitor, with the image adjusted
119	to visualize the hyoid bone and larynx. The hyoid bone was
120	identified as a high echoic area with posterior acoustic shadow by
121	the echo scan. The measurement point was the tip of the caudal
122	hyoid bone, and the monitor displayed the cranial portion on the
123	left and the caudal portion on the right. The thyroid cartilage was

124 identified as a low echoic area by US. The measurement point was 125 the tip of the cranial thyroid cartilage (Figure 2). 126 The participants swallowed 5 mL of cold water and the 127 movements of the hyoid bone and the larynx were visualized by 128 US, acquiring images at a frame rate of 54 fps. This was performed 129 three to five times. Three of these image sets, in which the 130 movements of the hyoid bone and larynx could be sufficiently 131 tracked, were selected for the analysis. 132 2.3 Image analysis and parameter measurement 133 The acquired images were converted into audio video interleave 134 format and transferred from the US device's hard drive to a 135 personal computer, where they were analyzed using 136 two-dimensional data analysis software (Dipp Motion Ver 1.1.31; 137 DITECT Co, Tokyo, Japan). Markers were set at the anterior 138 inferior margin of the hyoid bone and the uppermost end of the 139 larynx, and measurement points were automatically tracked in each 140 frame using the tracking function of the analysis software. Vertical 141 and anteroposterior directions were considered to be the *x*- and 142 y-axes, respectively, and the distances moved in these directions 143 were measured. When the hyoid bone movement was accompanied 144 by an instantaneous shadow, this was corrected manually. 145 The swallowing movement was measured from the initiation 146 of the laryngeal elevation to the completion of the downward

8

147	laryngeal movement. The hyoid bone displacement and the
148	laryngeal displacement were defined by the two-dimensional
149	maximum distances of the hyoid bone and the larynx movements
150	from their starting points (Figure 3). The elevation and descending
151	phases were defined as the period from the starting point to the
152	position of maximum movement and the period from this position
153	back to the resting position, respectively. The hyoid bone and the
154	laryngeal displacements were measured in both elevation and
155	descending phases. In addition, an index of swallowing, the hyoid
156	bone-laryngeal (HL) motion ratio, was calculated as the hyoid
157	bone displacement (elevation phase) divided by the laryngeal
158	displacement (elevation phase).
159	The height and body weight of each participant were also
160	recorded as basic information. Table 1 summarizes the participants'
161	physical characteristics for the four groups based on sex and age.
162	2.4 Statistical analysis
163	Pearson's correlation analysis was used to evaluate correlations
164	among the participants' physical characteristics and hyoid bone
165	displacement, laryngeal displacement, and HL motion ratio.
166	One-way analysis of variance was used to evaluate differences in
167	the hyoid bone displacement, the laryngeal displacement, and the

- 168 HL motion ratio among the four groups. Tukey's method was used
- 169 for post hoc multiple comparisons. The statistical analysis was

- 170performed using IBM SPSS Statistics for Windows, Version 24.0171(IBM Corp., Armonk, NY, USA), and the significance level was172set at p < 0.05.
- 173

174 **3 Results**

175 Table 2 summarizes the Pearson correlation coefficients for the 176 correlations between the swallowing parameters (the hyoid bone 177 displacement, the laryngeal displacement, and the HL motion ratio) 178 and the participants' heights and body weights. Both the hyoid 179 bone and the laryngeal displacements showed significant positive 180 correlations with height, indicating that displacement increased 181 with height. The hyoid bone displacement during the descending 182 phase and the laryngeal displacement during the elevation phase 183 showed significant positive correlations with body weight. The HL 184 motion ratio showed no significant correlations with height or 185 weight. 186 Figure 4 summarizes the comparisons of the swallowing 187 parameters between the four groups based on sex and age. There

- 188 were significant differences between two or more groups for the
- 189 hyoid and the laryngeal displacements during both the elevation
- 190 and descending stages. In contrast, the HL motion ratio showed no
- 191 significant differences among the four groups.
- 192 Together, these findings suggest that the HL motion ratio

193 index was independent of height, weight, sex, and age.

194

195 **4 Discussion**

196	The evaluation of swallowing function by VF can be used to assess
197	the various organs involved in swallowing and the presence or
198	absence of aspiration. However, VF has a number of associated
199	risks, such as radiation exposure and the danger of aspiration of
200	contrast medium. There are also various restrictions and conditions
201	regarding equipment and personnel. These risks and restrictions
202	can make it difficult to perform VF in individuals in nursing care
203	facilities and private residences. Image US is simpler to use and
204	less invasive than VF, and the hyoid bone and the laryngeal motion
205	analysis by US images provides data that are consistent with those
206	obtained by VF [9,12,13]. For these reasons, we used US in this
207	study to measure the movement of the hyoid bone and the larynx.

208 4.1 Evaluation of swallowing movement by US

209 When VF and US were compared in the present study, the

- 210 presence or absence of aspiration was observed by VF, but not in
- 211 evaluations of swallowing function by US. However, US allows
- 212 visualization of muscle movement and cartilage components. VF is
- 213 used to assess swallowing in clinical settings, however it has a
- 214 number of limitations, such as practicality and the exposure of
- 215 patients to radiation. Image US is widely used in clinical practice

216	because of its low cost, safety, and speed, and because there is no
217	radiation exposure. In addition, because it is non-invasive, US can
218	be performed repeatedly as required. Image US can be used to
219	evaluate the movement of soft tissue, such as muscles and tendons,
220	in real-time. Thus, useful information can be obtained in clinical
221	practice by evaluating dynamic US images during muscle
222	contraction. Many techniques using US to examine swallowing
223	function have recently been reported [7,9,10]. For example, it is
224	possible to measure muscle dynamics related to the hyoid bone
225	using an evaluation method that combines the M and B modes [8]
226	and Doppler function [6]. In previous studies, swallowing function
227	was evaluated mainly by focusing on the hyoid bone. In the present
228	study, we confirmed the coordinated movement of the hyoid bone
229	and the larynx during swallowing and also constructed a
230	movement index indicating the swallowing function of a healthy
231	subject. We certainly consider that this indicates innovation in the
232	evaluation of swallowing function by US. Although VF is the gold
233	standard for confirming suspected dysphagia [1, 2], an evaluation
234	of swallowing by US as well as VF could facilitate the appropriate
235	management of swallowing function.

4.2 Hyoid bone movement

237 VF has been used to measure the hyoid bone movements238 while swallowing [3,11], during which, the hyoid bone moves

239	upward in the early phase, then forward, and finally downward to
240	return to the resting position [14]. Recently, Okada et al. [15]
241	analyzed the length of the suprahyoid muscles using 320-row area
242	detector computed tomography and observed that forward
243	movement of the hyoid bone and the thyrohyoid muscle
244	contraction occurred simultaneously. In the present study, the
245	measurement starting point was set at the initiation of the laryngeal
246	elevation, and the hyoid bone displacement during the elevation
247	phase was considered to correspond to the forward movement of
248	the hyoid bone. In Okada et al.'s study [15], the mean distance of
249	forward movement of the hyoid bone measured in 26 healthy men
250	was 12.8 ± 5.0 mm; in comparison, the hyoid bone displacement
251	during the elevation phase in the 18 younger male participants in
252	the present study was 12.3 ± 2.4 mm. In a study using VF [16], the
253	mean distance of forward movement of the hyoid bone while
254	swallowing 5 mL of cold water, measured in 20 older adults, was
255	11.7 ± 5.5 mm. In the present study, the mean hyoid bone
256	displacement during the elevation phase in the two older groups
257	was 9.9 ± 4.7 mm. Thus, our results were consistent with those of
258	previous studies.

259 **4.3 Laryngeal movement**

260 Previous studies by VF have reported the laryngeal elevation

while swallowing to be approximately 20–30 mm [17,18]. In

262	comparison, the mean laryngeal displacement during the elevation
263	phase in the present study was 23 mm in the younger groups and
264	19 mm in the older groups. Logemann et al. [1] noted that the
265	laryngeal elevation decreased in older adults compared to younger
266	people, consistent with the finding of the present study using US.
267	In our study, there was a significant difference in laryngeal
268	displacement during the elevation phase between the younger male
269	group and the two older groups. There was also a significant
270	difference between the younger and older female groups, but no
271	significant difference between the younger female group and the
272	older male group. Laryngeal displacement correlated positively
273	with height, and the mean height of the younger female group was
274	lower than that of the younger male group. Therefore, the laryngeal
275	displacement may have been influenced by both height and sex.
276	When measuring the laryngeal elevation by VF, it is possible to
277	calculate the position of the larynx relative to the cervical spine
278	[1,19]. The larynx descends relative to the cervical spine in older
279	people [1], and it is thought that the laryngeal elevation increases
280	to compensate for this, to maintain swallowing function. The
281	significant difference in the laryngeal displacement between the
282	younger female and older male groups may therefore be the result
283	of the older male participants being taller than the younger female
284	participants along with an increase in laryngeal elevation to

285 compensate for the lower position of the larynx.

4.4 HL motion ratio

287	The stylohyoid, the digastric, and the mylohyoid muscles
288	mainly function during the upward movement of the hyoid bone,
289	whereas the geniohyoid muscle mainly acts during the forward
290	movement of the hyoid bone [15]. During normal swallowing, the
291	infrahyoid muscles act antagonistically to the upward movement of
292	the hyoid bone. The forward movement of the hyoid bone and the
293	laryngeal elevation occur simultaneously while the hyoid bone
294	position is stably fixed by antagonism between the supra- and the
295	infrahyoid muscles. The distance of the hyoid bone displacement
296	measured in the present study corresponded to the distance of the
297	forward movement of the hyoid bone. Therefore, the HL motion
298	ratio is a potential index of the degree of coordination between the
299	geniohyoid muscle moving the hyoid bone forward and the
300	thyrohyoid muscle elevating the larynx. No significant difference
301	in HL motion ratio while swallowing was observed among the four
302	participant groups, suggesting that, for people with normal
303	swallowing function, the relationship between the laryngeal
304	elevation and the distance the hyoid bone moves forward is not
305	influenced by age or sex. Age-associated physiological changes
306	vary markedly among individuals. In addition, several factors
307	influence the swallowing function of older people [1,16,20]. When

308	evaluated individually, there were significant differences in the
309	hyoid bone and laryngeal displacements between the younger and
310	older groups and between male and female participants, suggesting
311	an influence on these parameters of physiological changes
312	associated with age and height. Conversely, such influences may
313	be excluded from evaluations based on the HL motion ratio. The
314	value of HL motion ratio for normal swallowing is approximately
315	0.5.

316 **4.5 Limitations of this study and future prospects**

This study had some limitations. Only two age groups were investigated and the number of participants was insufficient to clarify how the characteristics of swallowing movements changed with age. Furthermore, only healthy participants were included in the study. We intend to investigate whether the HL motion ratio could serve as a reference index in experiments with participants that include those with swallowing disorders.

324

325 **5** Conclusion

The hyoid bone and the laryngeal displacements while swallowing were measured in groups of healthy younger and older people. The results suggested that the HL motion ratio, an innovative index calculated as the hyoid bone displacement during the elevation

330 phase divided by the laryngeal displacement during the elevation

phase, is 0.5 for normal swallowing. This index is independent of
physiological changes associated with height and age.
Conflict of interest: The authors declare that they have no conflict
of interest.
Ethical approval: All procedures performed in studies involving

- human participants were performed in accordance with the
- Research Ethics Committee of Kansai University of Welfare
- Sciences (Approval number: 17-64) and with the 1964 Declaration
- of Helsinki and its later amendments or comparable ethical
- standards.

- Funding: This study was supported by the Japan Society for the
- Promotion of Science Grant-in-Aid for Young Scientists (B) Grant
- Number JP17K18264.
- Informed consent: Written informed consent was obtained from
- all participants for publication of this case report and
- accompanying images.
- Acknowledgments: Funding from the Japan Society for the
- Promotion of Science Grant-in-Aid for Young Scientists (B) Grant

354 Number JP17K18264 Foundation is gratefully acknowledged.

356 **References**

- 357 1. Logemann JA, Pauloski BR, Rademaker AW, Colangelo LA,
- 358 Kahrilas PJ, Smith CH. Temporal and biomechanical
- 359 characteristics of oropharyngeal swallow in younger and older men.
- 360 J Speech Lang Hear Res. 2000;43(5):1264-74.
- 361 2. Martino R, Pron G, Diamant N. Screening for oropharyngeal
- 362 dysphagia in stroke: insufficient evidence for guidelines.
- 363 Dysphagia. 2000;15(1):19-30.
- 364 3. Ekberg O. The normal movements of the hyoid bone during
- 365 swallow. Invest Radiol. 1986;22(1):92.
- 366 4. Bours GJ, Speyer R, Lemmens J, Limburg M, de Wit R. Bedside
- 367 screening tests vs. videofluoroscopy or fibreoptic endoscopic
- 368 evaluation of swallowing to detect dysphagia in patients with
- 369 neurological disorders: systematic review. J Adv Nurs.
- 370 2009;65(3):477-93.
- 371 https://doi.org/10.1111/j.1365-2648.2008.04915.x.
- 372 5. Shanley C, O'Loughlin G. Dysphagia among nursing home
- 373 residents: an assessment and management protocol. J Gerontol
- 374 Nurs. 2000;26(8):35-48.
- 375 6. Sonies BC, Wang C, Sapper DJ. Evaluation of normal and
- abnormal hyoid bone movement during swallowing by use of
- 377 ultrasound duplex-Doppler imaging. Ultrasound Med Biol.
- 378 1996;22(9):1169-75.

analysis of laryngeal elevation during swallowing. J Neurol.

7. Kuhl V, Eicke BM, Dieterich M, Urban PP. Sonographic

381 2003;250(3):333-7.

379

- 382 8. Yabunaka K, Sanada H, Sanada S, Konishi H, Hashimoto T,
- 383 Yatake H, Yamamoto K, Katsuda T, Ohue M. Sonographic
- assessment of hyoid bone movement during swallowing: a study of
- 385 normal adults with advancing age. Radiol Phys Technol.
- 386 2011;4(1):73-7. https://doi.org/10.1007/s12194-010-0107-9.
- 387 9. Hsiao MY, Chang YC, Chen WS, Chang HY, Wang TG.
- 388 Application of ultrasonography in assessing oropharyngeal
- 389 dysphagia in stroke patients. Ultrasound Med Biol.
- 390 2012;38(9):1522-8.
- 391 https://doi.org/10.1016/j.ultrasmedbio.2012.04.017.
- 392 10. Lee YS, Lee KE, Kang Y, Yi TI, Kim JS. Usefulness of
- 393 Submental Ultrasonographic Evaluation for Dysphagia Patients.
- 394 Ann Rehabil Med. 2016;40(2):197-205.
- 395 https://doi.org/10.5535/arm.2016.40.2.197.
- 396 11. Steele CM, Bailey GL, Chau T, Molfenter SM, Oshalla M,
- 397 Waito AA, Zoratto DC. The relationship between hyoid and
- 398 laryngeal displacement and swallowing impairment. Clin
- 399 Otolaryngol. 2011;36(1):30-6.
- 400 https://doi.org/10.1111/j.1749-4486.2010.02219.x.
- 401 12. Chi-Fishman G, Sonies BC. Effects of systematic bolus

- 402 viscosity and volume changes on hyoid movement kinematics.
- 403 Dysphagia. 2002;17(4):278-87.
- 404 13. Chen Y-C, Hsiao M-Y, Wang Y-C, Fu C-P, Wang T-G.
- 405 Reliability of Ultrasonography in Evaluating Hyoid Bone
- 406 Movement. J Med Ultrasound. 2017;25:90-95.
- 407 https://doi.org/10.1016/j.jmu.2017.01.002
- 408 14. Dodds WJ, Stewart ET, Logemann JA. Physiology and
- 409 radiology of the normal oral and pharyngeal phases of swallowing.
- 410 AJR Am J Roentgenol. 1990;154(5):953-63.
- 411 15. Okada T, Aoyagi Y, Inamoto Y, Saitoh E, Kagaya H, Shibata S,
- 412 Ota K, Ueda K. Dynamic change in hyoid muscle length associated
- 413 with trajectory of hyoid bone during swallowing: analysis using
- 414 320-row area detector computed tomography. J Appl Physiol.
- 415 2013;115(8):1138-45.
- 416 https://doi.org/10.1152/japplphysiol.00467.2013.
- 417 16. Kim Y, McCullough GH. Maximum hyoid displacement in
- 418 normal swallowing. Dysphagia. 2008;23(3):274-9.
- 419 17. Dantas RO, Kern MK, Massey BT, Dodds WJ, Kahrilas PJ,
- 420 Brasseur JG, Cook IJ, Lang IM. Effect of swallowed bolus
- 421 variables on oral and pharyngeal phases of swallowing. Am J
- 422 Physiol.1990;258(5 Pt 1):G675-81.
- 423 18. Sundgren P, Maly P, Gullberg B. Elevation of the larynx on
- 424 normal and abnormal cineradiogram. Br J

- 425 Radiol.1993;66(789):768-72.
- 426 19. Kahrilas PJ, Dodds WJ, Dent J, Logemann JA, Shaker R.
- 427 Upper esophageal sphincter function during deglutition.
- 428 Gastroenterology. 1988;95(1):52-62.
- 429 20. Leonard R, Kendall KA, McKenzie S. Structural displacements
- 430 affecting pharyngeal constriction in nondysphagic elderly and
- 431 nonelderly adults. Dysphagia. 2004;19(2):133-41.

433 Table 1 Characteristics of participant groups

		Younger group $(n = 42)$		Older grou	Older group $(n = 42)$		
		Male (<i>n</i> = 18)	Female $(n = 24)$	Male (<i>n</i> = 18)	Female $(n = 24)$		
A	Age (years)	20.5 ± 4.6	20.1 ± 2.5	76.5 ± 7.6	74.0 ± 12.4		
H	leight (cm)	171.3 ± 6.3	157.8 ± 5.0	159.6 ± 10.0	149.8 ± 5.8		
V	Veight (kg)	64.0 ± 11.8	50.2 ± 5.7	55.8 ± 7.6	54.2 ± 11.5		

434 Data are presented as the mean \pm SD

		Height		Weight				
		r	р	r	р			
Hyoid bone	Elevation phase	0.407	0.000**	0.159	0.143			
displacement	Descending phase	0.426	0.000	0.367	0.001**			
Laryngeal	Elevation phase	0.575	0.000	0.283	0.008**			
displacement	Descending phase	0.493	0.000	0.148	0.175			
	HL motion ratio	-0.130	0.232	-0.154	0.157			

Table 2 Correlations between swallowing parameters and participants' height and weight

438 * p < 0.05; ** p < 0.01. r, correlation coefficient p, probability HL, hyoid bone–laryngeal

440 Figure legends

- 441 **Fig. 1** Method for immobilizing the head and neck for the
- 442 measurements. The head was positioned with the line between
- the acromion and opening of the ear canal at an angle of 100–
- 444 110° to the horizontal plane.

Fig. 1 Method for immobilizing the head and neck for the measurements. The head was positioned with the line between the acromion and opening of the ear canal at an angle of 100–110° to the horizontal plane.

445

- 446 Fig. 2 (A) Probe position showing the hyoid bone and the
- 447 larynx at the frontal plane. (B) The measurement points for the
- 448 hyoid bone and the thyroid cartilage are indicated by asterisks.

Fig. 2 (A) Probe position showing the hyoid bone and the larynx at the frontal plane. (B) The measurement points for the hyoid bone and the thyroid cartilage are indicated by asterisks.

- 450 **Fig. 3** Visualization of the hyoid bone and the larynx by
- 451 ultrasonography.
- 452 (A) Distance from the resting position at which elevation of the
- 453 thyroid cartilage upper end begins, to the maximally elevated
- 454 position at which elevation ends. (B) Distance from the resting

455 position at which elevation of the hyoid bone begins, to the

456 maximally elevated position at which elevation ends.

Fig. 3 Visualization of the hyoid bone and the larynx by ultrasonography.

458 **Fig. 4** Comparisons between the four groups of the laryngeal

- 459 and hyoid bone displacements during the elevation and
- 460 descending phases and of the hyoid bone–laryngeal (HL)
- 461 motion ratio. The error lines represent the standard errors.

