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Abstract 

We previously reported that a weak current (WC, 0.3-0.5mA/cm2) applied to 20 

cells can induce endocytosis to promote cytoplasmic delivery of hydrophilic 

macromolecules (MW: < 70,000), such as dextran and siRNA, which leak from WC-

induced endosomes into the cytoplasm (Hasan et al., 2016). In this study, we evaluated 

the characteristics of WC-mediated endocytosis for application of the technology to 

cytoplasmic delivery of macromolecular medicines. WC induced significantly higher 25 

cellular uptake of exogenous DNA fragments compared to untreated cells; the amount 

increased in a time-dependent manner, indicating that endocytosis was induced after WC. 

Moreover, following WC treatment of cells in the presence of an antibody (MW: 150,000) 

with the lysosomotropic agent chloroquine, the antibody was able to bind to its 

intracellular target. Thus, high molecular weight protein medicines delivered by WC-30 

mediated endocytosis were functional in the cytoplasm. Transmission electron 

microscopy of cells treated by WC in the presence of gold nanoparticles covered with 

polyethylene glycol showed that the WC-induced endosomes exhibited an elliptical shape. 

In the WC-induced endosomes, ceramide, which makes pore structures in the membrane, 

was localized. Together, these results suggest that WC can induce unique endocytosis and 35 

that macromolecular medicines leak from endosomes through a ceramide pore. 
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1. Introduction 

Iontophoresis using weak current (WC; 0.3-0.5 mA/cm2) is a technology that 

promote permeation of ionized drug molecules for transdermal drug delivery (Kalia, et 

al., 2004; Karpiński, 2018). Electric repulsion and electro-osmosis are thought to be the 45 

primary mechanisms related to iontophoresis (Kalia, et al., 2004). Molecules that are 

amenable to iontophoresis are typically ionic, hydrophobic, and exhibit low molecular 

weights (<10,000). As such, iontophoresis was thought to be unsuitable to promote 

transdermal delivery of hydrophilic macromolecules such as proteins and nucleic acids. 

However, several groups reported the delivery of macromolecules, such as 50 

proteins and nucleic acids, by iontophoresis (Hashim, et al., 2010; Liu, et al., 2013; Patel, 

et al., 2013; Labala, et al., 2017). Hashim et al. succeeded in transdermal delivery of NF-

kB decoy oligonucleotides by iontophoresis, and suppression of tumor necrosis factor-a 

production (Hashim, et al., 2010). Liu, et al. reported the intradermal delivery of 

oligodeoxynucleotides by combination of a chemical penetration enhancer with 55 

iontophoresis (Liu, et al., 2013;). Patel, et al. delivered parvalbumin (MW: ca 12,000) 

across oral mucosa by iontophoresis (Patel, et al., 2013). Labala, et al. succeeded in the 

suppression of melanoma tumor by iontophoresis of signal transduction and activator of 

transcription factor 3 (STAT 3) and imatinib using gold nanoparticles (Labala, et al., 2017). 
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We previously demonstrated successful iontophoretic delivery of various nucleic 60 

acids, such as siRNA (MW: ca.12,000), CpG oligo DNA (MW: ca. 6,600), and liposomes 

encapsulating insulin into the skin (Kigasawa, et al., 2010; Kigasawa, et al., 2011, 

Kajimoto, et al., 2011) upon treatment with WC (0.3-0.5 mA/cm2). WC induced a 

decrease in the amount of the gap-junction protein connexin Cx43 and depolymerization 

of actin associated with tight-junction structures (Hama, et al., 2014). These findings 65 

indicate that the mechanism of skin penetration of hydrophilic macromolecules is via 

cleavage of intercellular junctions by WC (Hama, et al., 2014). 

 We also found that siRNA could be delivered by iontophoresis based on the 

successful knockdown of target mRNA in skin cells treated with WC (Kigasawa, et al., 

2010). This finding suggests that siRNA reaches the cytoplasm of WC-treated skin cells 70 

as RNAi reactions occur in the cytoplasmic space. We further found that WC-induced 

cellular uptake of siRNA is mediated by endocytosis (Hasan, et al., 2016a). In general, 

following endocytic cellular uptake, unmodified siRNA molecules (MW: ca. 12,000) 

cannot efficiently escape from conventional endosomes, such as clathrin-coated 

endosomes and macropinosomes, suggesting that cytoplasmic delivery of siRNA 75 

proceeds via an alternative mechanism. In our previous report, 10k FITC-dextran (MW: 

10,000) was widely dispersed in the cytoplasm 24 hr after treatment with WC, whereas 
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70k FITC-dextran (MW: 70,000) remained in the endosomes (Hasan, et al., 2016b). 

Together, these results suggest that WC-induced endosomes exhibit unique structural 

properties that allow for leakage of macromolecules having molecular weights <70,000. 80 

To better understand the characteristics of this unique WC-mediated endocytosis, 

we herein examined the temporal relationship between WC and cellular uptake, 

intracellular functionality of high molecular weight proteins delivered by WC, and 

morphological observation of WC-mediated endocytosis. We also sought to elucidate the 

characteristics of WC-induced endosomes in relation to leakage of macromolecules.  85 
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2. Materials and methods 

2.1. Materials 

Cell lysis buffer and plasmid DNA encoding luciferase (pGL3-C) were purchased from 90 

Promega Corporation (Madison, WI). Ag-AgCl electrodes were purchased from 3M 

Health Care (Minneapolis, MN). Monoclonal anti-ceramide (mouse IgM isotype) was 

purchased from Sigma-Aldrich Co., Ltd. (St. Louis, MO). Mouse monoclonal antibody 

against anti-nuclear pore complex protein and goat anti-mouse IgG labeled with Alexa 

Fluor 488 were obtained from Abcam (Cambridge, UK). Chloroquine was purchased 95 

from Nakalai Tesque, Inc. (Kyoto, Japan). The mouse melanoma cell line B16-F1 was 

obtained from Dainippon Sumitomo Pharma Biomedical Co., Ltd. (Osaka, Japan). Cells 

were cultured in Dulbecco’s modified Eagle's medium (DMEM) supplemented with 10% 

fetal bovine serum (FBS) at 37 C in 5% CO2.  

 100 

2.2. Preparation of DNA fragments 

DNA fragments encoding the luciferase open reading frame region were prepared by PCR 

using pGL3-C as a template. The PCR primer sequences were: 5'-

CCGAAAGGTCTTACCGGAAAACTCG-3' and 5'-

TCCAAACTCATCAATGTATCTTATC-3'. PCR was performed using a PrimeScript One 105 
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Step RT-PCR Kit Ver. 2 (Takara Co. Ltd., Japan). The PCR products were subjected to 

15% agarose gel electrophoresis and the relevant DNA fragments were extracted from the 

agarose gel using NucleoSpin Gel and PCR Clean-up (Takara Co. Ltd., Japan). The DNA 

fragment concentration in the extracted solution was determined using a Nanodrop 

instrument (Thermo Fisher Scientific Inc., Waltham, MA). 110 

 

2.3. Weak current (WC) treatment of cultured cells 

B16-F1 cells (1x105 cells/well) were cultured in 35-mm dishes for WC treatment. After 

18 hr of cell culture, the cells were washed with PBS before 800 l serum-free DMEM 

containing DNA fragment (0.5 g) or antibody (6 g) was added to the cells. Ag-AgCl 115 

electrodes with a 2.5 cm2 surface area were placed in the dish, and the cells were treated 

with a constant WC of 0.34 mA/cm2 for 15 min.  

 

2.4. Quantification of DNA fragments in cells exposed to WC 

Following WC treatment with DNA fragments, B16-F1 cells were incubated at 37 C for 120 

1 hr or 3 hr and cellular DNA was extracted using a GenElute Mammalian Genomic DNA 

Miniprep Kit (Sigma-Aldrich, St. Louis, MO). The amount of DNA was quantified based 

on a calibration curve of the DNA fragment amplified using a real-time PCR Thermal 
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Cycler Dice Real Time System III (Takara Bio Inc., Japan).  

 125 

2.5. Immunostaining of cells following WC treatment in the presence of anti-nuclear 

pore complex antibody 

Following WC treatment (0.34 mA/cm2, 15 min), B16-F1 cells were incubated for 3 hr at 

37 C in the presence of anti-nuclear pore complex protein antibody and 0.01 mM 

chloroquine before 1 ml DMEM containing 10% FBS was added to the cell dish. After 130 

21 hr incubation, the cells were washed with PBS. Then, 0.5 ml of PBS containing 4% 

paraformaldehyde was added and the cells were incubated for 20 min at room temperature. 

The cells were washed with PBS containing 1% BSA and 0.1% Triton. After washing, the 

cells were incubated for an additional 20 min at room temperature in the presence of PBS 

containing 1% BSA and 0.1% Triton. Goat anti-mouse IgG labeled with Alexa Fluor 488 135 

(1 μg/mL in 1%BSA-0.1%Triton-PBS) was then added to the dish, and the cells were 

incubated for 60 min at room temperature. After incubation, the cells were washed three 

times with 1% BSA-0.1% Triton-PBS. Nuclei were stained by incubating the cells for 30 

min in the presence of DAPI solution (1 μg/mL in PBS) and the cells were washed with 

PBS before observation with an LSM700 confocal laser scanning microscope (Carl Zeiss, 140 

Germany). 
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2.6. Transmission electron microscopic observation 

B16-F1 cells were treated with WC (0.34 mA/cm2) for 15 min in the presence of 

PEGylated gold nanoparticles having a diameter and zeta potential of 100 nm and -50 mV, 145 

respectively. Following WC treatment, cells were incubated for 4 hr; the culture medium 

was then removed and the cells were fixed with 2% paraformaldehyde (PFA) and 2% 

glutaraldehyde (GA) in 0.1 M phosphate buffer (PB) pH 7.4 at the incubation temperature, 

before subsequent incubation at 4 C. Thereafter, the cells were fixed with 2% GA in 0.1 

M PB at 4 C overnight. After fixation, the samples were washed 3 times with 0.1 M PB 150 

for 30 min per wash, and post-fixed with 2% osmium tetroxide (OsO4) in 0.1 M PB at 4 

C for 1 hr. The samples were dehydrated in graded ethanol solutions (50%, 70%, 90%, 

100%) by incubating for 5 min each in 50% and 70% solutions at 4 C, in 90% solution 

for 5 min at room temperature, and 3 changes of 100% ethanol for 5 min each at room 

temperature. The samples were transferred to Quetol-812 resin (Nisshin EM Co., Tokyo, 155 

Japan) and allowed to polymerize for 48 hr at 60 C. The polymerized resins were cut 

into ultra-thin, 90 nm sections with an ultramicrotome equipped with a diamond knife 

(Ultracut UCT; Leica, Vienna, Austria). The sections were mounted on copper grids that 

were stained with 2% uranyl acetate at room temperature for 15 min, and then washed 
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with distilled water followed by secondary staining with lead stain solution (Sigma-160 

Aldrich Co., Tokyo, Japan) at room temperature for 3 min. The grids were observed by 

transmission electron microscopy (JEM-1400Plus; JEOL Ltd., Tokyo, Japan) at an 

acceleration voltage of 80 kV. Digital images (2048 x 2048 pixels) were taken with a 

CCD camera (VELETA; Olympus Soft Imaging Solutions GmbH, Münster, Germany). 

 165 

2.7. Immunostaining of cells following WC treatment for detection of intracellular 

distribution of ceramide 

Following treatment with WC (0.34 mA/cm2, 15 min), B16-F1 cells were incubated for 

24 hr at 37 C. The cells were then washed with PBS. PBS (0.5 ml) containing 4% PFA 

was added and the cells were incubated for 20 min at 37 oC. The cells were washed three 170 

times with PBS containing 1% BSA and 0.1% Triton. After washing, the cells were 

incubated for an additional 20 min at 37 oC in the presence of PBS containing 1% BSA 

and 0.1% Triton. Then, the cells were washed with PBS containing 1% BSA. PBS 

containing 1% BSA and the primary antibody (mouse anti-ceramide IgM) was added to 

the cells, and the cells were incubated for 1 hr at 37 oC. Following that, the cells were 175 

washed three times with PBS containing 1% BSA. Goat anti-mouse IgG labeled with 

Alexa Fluor 488 in 1%BSA-0.1%Triton-PBS was then added to the dish, and the cells 
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were incubated for 1 hr at 37 oC. After incubation, the cells were washed three times with 

1% BSA-0.1% Triton-PBS. Nuclei were stained by incubating the cells for 30 min in the 

presence of DAPI solution, and the cells were washed with PBS before observation with 180 

an LSM700 confocal laser scanning microscope (Carl Zeiss, Germany). 

 

22.8. Immunohistochemical analysis of ceramide in skin cross sections after 
WC treatment 

The hair on the back skin of Balb/c mice was clipped, and treatment with WC 185 

(0.34 mA/cm2, 1 hr) was performed on the skin by Ag/AgCl electrodes placed 

on absorbent cotton containing PBS. After 12 hr, the skin was collected, and 

soaked in 4% PFA for 1 hr at 4 oC. The skin was then soaked in 30% sucrose 

in PBS at 4 oC overnight. The skin was embedded in a freezing block of 

optimal cutting temperature (OCT) compound, and a cross section (10 μm) of 190 

the skin was prepared. Cross sections of skin were washed twice with PBS for 

5 min, and then treated with blocking solution (3% BSA in PBS containing 50 

μl of 0.1% Triton-X) for 1 hr at room temperature. Cross sections were washed 

an additional three times with PBS for 2 min. After washing, cross sections 

were treated with the primary antibody solution containing mouse anti-195 

ceramide IgM (4 μg/ml in 1% BSA-PBS) at 4 oC. After 18 hr of incubation, skin 
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cross sections were washed three times with PBS for 2min., and then 

incubated in a solution of the secondary antibody containing goat anti-mouse 

IgG labeled with Alexa Fluor 488 (4 μg/ml in 1% BSA-PBS) at room temperature 

for 30 min, and washed three-times with PBS for 2 min. Nuclei were stained 200 

by incubating the skin cross sections overnight in the presence of DAPI 

solution, and observed with an LSM700 confocal laser scanning microscope 

(Carl Zeiss, Germany). 

 

2.8. Statistical analysis 205 

Statistical analysis was performed using one-way ANOVA followed by the Tukey–

Kramer honest significant difference (HSD) test. P values <0.05 were considered to be 

significant, and were evaluated using KaleidaGraph (Hulinks Inc., Japan). 
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3. Results and Discussion 210 

We previously evaluated the uptake of siRNA (MW: ca.12,000), CpG oligo DNA 

(MW: ca. 6,600), in-stem molecular beacon (ISMB) (MW: ca. 12,000), which fluoresces 

upon binding to target mRNA, and an intelligent shRNA expression device (iRed) (MW: 

ca. 200,000) upon treatment with WC (Kigasawa, et al., 2010; Kigasawa, et al., 2011; 

Hasan, et al., 2016a, b). We found that ISMB emitted fluorescence following treatment 215 

of cells with WC, suggesting that macromolecules taken up by WC-mediated endocytosis 

could escape from endosomes (Hasan, et al., 2016b). However, it’s unclear whether the 

macromolecules were taken up during WC treatment.  

We sought to quantitatively evaluate cellular uptake of macromolecules 

following WC treatment. Fluorescent dyes or fluorescence-labeled materials, such as 220 

dextran, are typically used for evaluation of the amount of cellular uptake. However, 

autofluorescence of cells prevents accurate quantification using fluorescence 

measurements. Therefore, PCR measurement of DNA was employed in the present study 

for accurate quantification of WC-mediated cellular uptake. We first used plasmid DNA 

encoding luciferase as a macromolecule for quantification of the amount of cellular 225 

uptake. However, luciferase DNA was not detected by real-time PCR following WC 

treatment (data not shown). It’s possible that the MW of the plasmid DNA (ca. 3,500,000) 
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may have exceeded the size threshold that can be taken up by WC-mediated endocytosis. 

Next, we prepared smaller molecular weight DNA fragment encoding the luciferase open 

reading frame region (MW: ca. 99,000) by PCR using luciferase plasmid DNA as a 230 

template, and exposed the cells to WC treatment in the presence of the DNA fragment. 

Although the DNA fragment was not detected in the cells immediately following WC 

treatment (data not shown), the intracellular amount of the DNA fragment was detected 

at 1 hr after WC treatment, and the amount of the DNA fragment in cells increased 

significantly at 3 hr after WC treatment (Fig. 1). These results suggest that WC can induce 235 

endocytosis. Drug delivery efficiency is generally thought to be related to the current 

intensity of WC. However, we previously optimized the current intensity (0.34 mA/cm2) 

based on in vivo experiments (Kigasawa et al., 2010). Treatment with higher current 

intensity (0.5 mA/cm2) was found to induce inflammation on the surface of the skin. 

Furthermore, we previously found that WC induces de-polymerization of actin 240 

cytoskeleton (Hama et al., 2014). As a result of these effects, cells are easily detached 

from the culture dish upon treatment with higher current intensity in vitro, making it 

difficult to treat cells with higher current intensity (> 0.5 mA/cm2) in an effort to optimize 

endosomal escape efficiency. Therefore, we used the previously identified optimized 

current intensity conditions used in the present study. 245 
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 We then sought to confirm the functionality of high molecular weight proteins 

following delivery to the cytoplasm by WC-mediated endocytosis, since we only 

evaluated the functionalities of nucleic acids in our previous reports (Kigasawa, et al., 

2010; Kigasawa, et al., 2011; Hasan, et al., 2016a, b). In the present study, an antibody 

(MW: ca. 150,000) was used as a representative functional high molecular weight protein 250 

to demonstrate the utility of WC-mediated cytoplasmic delivery. Cells were treated with 

WC in the presence of anti-nuclear pore complex antibody. As the molecular weight of 

this antibody exceeds the size that can leak from endosomes induced by WC, we 

performed WC treatment in the presence of the lysosomotropic agent chloroquine. In our 

previous study, we used chloroquine to enhance the escape of functional nucleic acids, 255 

namely iRed (MW: ca. 200,000), of which molecular weight was over 70,000, from WC-

induced endosomes (Hasan, et al., 2016b). Following WC treatment in the presence of 

the anti-nuclear pore complex antibody with chloroquine, immunohistochemical staining 

of cells was carried out using Alexa Fluor 488-labeled secondary antibody against anti-

nuclear pore complex antibody. The cytotoxicity of chloroquine was evaluated at various 260 

concentrations as a potential side effect. As shown in Supplementary Fig. 1, cell viability 

was not affected by the presence of 10 μM chloroquine. Thus, side effects of chloroquine 

were not observed under the experimental conditions. Using confocal microscopy, we 
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observed green fluorescence at the nuclear membrane, indicating that the anti-nuclear 

pore complex antibody associated with the surface of the nucleus (Fig. 2). These results 265 

suggest that high molecular weight protein antibodies delivered into the cytoplasm by 

WC had escaped from endosomes and exhibited functional binding. Thus, WC treatment 

can be used without carriers to deliver not only nucleic acids but also high molecular 

weight proteins, although supporting materials such as chloroquine may be required for 

effective endosomal escape. 270 

 To confirm the morphological characteristics of endocytosis induced by WC, we 

performed WC treatment in the presence of PEGylated gold nanoparticles (100 nm, -50 

mV), which were used for visualization of macromolecules taken up by WC-mediated 

endocytosis in the present study, and observed the cells after WC treatment by 

transmission electron microscopy (TEM). TEM images showed the presence of several 275 

gold nanoparticles in the endosomes (Figs. 3a1-a3), which exhibited elliptical shapes that 

differed from the spherical shape of typical endosomes, including clathrin-coated 

endosomes (El-Sayed and Harashima, 2013; Sandvig, et al., 2018). Furthermore, we also 

obtained images of the moment that endocytosis occurred following treatment with WC 

(Figs. 3b1-b3). The widths and depths of the endosomes were approximately 100-200 nm 280 

and 500 nm, respectively. Meanwhile, membrane protrusions indicative of the induction 
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of macropinocytosis were not observed, and the sizes of the endosomes were smaller than 

those of macropinosomes (> 1 μm) (El-Sayed and Harashima, 2013). These images 

suggest that WC-mediated endocytosis is not macropinocytosis or clathrin- or caveolae-

dependent endocytosis, although WC-mediated cellular uptake of siRNA was 285 

significantly reduced by inhibitors of macropinocytosis (amiloride) and caveolae-

mediated endocytosis (filipin) as shown in our previous study (Hasan, et al., 2016a). 

Based on previous studies, we speculated that the WC-mediated endocytosis 

observed by TEM (Fig. 3) may be dependent on the GTPase regulator associated with 

focal adhesion kinase-1 (GRAF1) (Hansen and Nichols; 2009; Grant and Donaldson, 290 

2009; El-Sayed and Harashima, 2013), although the endosome width was larger than that 

seen for GRAF1-dependent endocytosis (ca. 40 nm) (Lundmark, et al., 2008). GRAF1-

dependent endocytosis can be inhibited by the amiloride derivative 

ethylisopropylamiloride (EIPA) (El-Sayed and Harashima, 2013). Further, the caveolae 

inhibitor filipin is a cholesterol-binding agent that can inhibit the functionality of lipid 295 

raft membrane domains, which are associated with GRAF1-dependent endocytosis (El-

Sayed and Harashima, 2013). However, WC-mediated cellular uptake of siRNA was not 

inhibited by a high concentration sucrose solution that is known to inhibit clathrin-

dependent endocytosis (Khalil, et al., 2006). Taken together with our previous findings 
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and the results of inhibitor experiments, we hypothesized that WC-mediated endocytosis 300 

is GRAF1-dependent (Hasan, et al., 2016a). 

 Previous studies demonstrated that siRNA knockdown of expression of GRAF1 

and its co-factor Cdc42 could specifically inhibit GRAF1-dependent endocytosis 

(Lundmark, et al., 2008; El-Sayed and Harashima, 2013). Thus, to confirm whether WC-

mediated endocytosis is GRAF1-dependent, we examined the effect of RNAi targeting 305 

GRAF1 and Cdc42 on WC-mediated cellular uptake of the DNA fragment encoding 

luciferase by B16-F1 cells (Fig. 1). Pre-transfection of anti-Cdc42 siRNA or anti-GRAF1 

siRNA reduced the levels of Cdc42 and GRAF1 mRNA in B16-F1 cells to below 30% of 

that seen for non-transfected cells (Supplementary Fig. 2). However, contrary to our 

expectation, the increase in the amount of luciferase-encoding DNA fragment induced by 310 

WC was not reduced by siRNA against either Cdc42 or GRAF1 (Supplementary Fig. 2). 

We also examined the amount of Cdc42 protein, a key factor in GRAF1-dependent 

endocytosis, in cells after WC treatment by western blotting with an anti-Cdc42 antibody. 

Results showed that WC treatment did not affect the amount of Cdc42 protein or Cdc42 

phosphorylation, which inhibits Cdc42 function (Kwon, et al., 2000) (data not shown). 315 

More detailed analysis of the trigger mechanism of WC-mediated endocytosis is required 

in the future.  
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 Next, we focused on the membrane characteristics of WC-induced endosomes, 

which leak macromolecules such as siRNA into the cytoplasm. Previous results suggested 

that WC treatment was responsible for the leakiness of the endosomal membrane. It has 320 

been reported that ceramide can form ceramide channels in the mitochondrial outer 

membrane, and that inter-membrane space proteins (MW: <60,000) are released from the 

mitochondria via ceramide channels (Perera, et al., 2016). Thus, we hypothesized that 

leakiness in the endosomal membrane was caused by localization of ceramide induced by 

WC treatment. To confirm this hypothesis, we examined the intracellular distribution of 325 

ceramide following WC treatment by immunostaining using an anti-ceramide antibody. 

Green fluorescence of anti-ceramide antibody was observed homogeneously in untreated 

cells (Control) (Figs. 4a-1 and 4a-2), which indicates that ceramide is indeed present in 

the cells. On the other hand, strong green fluorescent signals were observed in the 

cytoplasm as dots, which may be due to the presence of vesicular compartments, such as 330 

endosomes (Figs. 4b-1 and 4b-2). The fluorescence intensity of ceramide in each confocal 

laser scanning microscopic image of immuno-stained cells (Fig. 4a and b) was quantified 

using the image analysis software Image J. The difference between WC-treated and 

untreated groups was statistically significant (p<0.01), and the fluorescence intensity of 

the WC-treated group was 1.8-fold higher than that of the untreated group (Fig. 4c). These 335 
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results suggest that localization of ceramide changed from the cytoplasm to endosomes 

upon treatment with WC. Thus, endosomal properties are likely to be altered by 

localization of ceramide following WC treatment; this phenomenon may be responsible 

for the leakiness of WC-induced endosomes. It’s possible that ceramide localized in 

endosomes results in the formation of pores that allow for macromolecules to leak through. 340 

To obtain information regarding WC treatment-induced endocytosis, the 

vesicular compartment in the cells after WC treatment were stained with LysoTracker, 

which can stain acidic compartments such as endosome/lysosomes, after WC treatment 

of B16-F1 cells. As shown in Supplementary Fig. 3(a, b), the intensity of red fluorescence 

derived from LysoTracker was not so potent, and there was no colocalization with green 345 

fluorescence indicating ceramide. Probably, since the ceramide pore would prevent 

acidification by leakage of proton, the WC treatment-induced endosomes could not be 

stained with LysoTracker. Then, we tried to clarify whether the WC treatment-induced 

vesicular compartments are conventional endosomes by immunostaining of the cells after 

WC treatment with antibody against Rab7, which is known as a marker of conventional 350 

endosomes. As shown in Supplementary Fig. 3(c, d), red fluorescent signals of Rab7 did 

not co-localize with green fluorescent signals of ceramide. From this result, it was 

suggested that the ceramide rich vesicular compartments induced by WC treatment would 
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not be the conventional endosomes containing Rab7. Further investigations for 

identification of detail properties and component of ceramide rich vesicular 355 

compartments are required in the future. 

 To confirm whether the same phenomenon is observed in vivo, we performed 

WC treatment of mouse skin and used immunohistochemistry to evaluate the effect of 

WC on the skin distribution of ceramide, which would be a key factor in WC-mediated 

cytoplasmic delivery. As shown in Fig. 5, ceramide fluorescence in the cross section of 360 

the skin treated with WC was greater than that of untreated skin (Fig. 5a and b). In 

addition, the fluorescence intensity of WC-treated skin was 1.86-fold higher than that of 

untreated skin (Fig. 5c). These results confirm that ceramide is increased by WC treatment 

not only in vitro, but also in skin tissue in vivo. As we previously reported that in vivo WC 

treatment of siRNA on the skin showed significant gene knockdown (Kigasawa et al., 365 

2010), macromolecules could be delivered to the cytoplasm by WC treatment even in vivo. 

Thus, results obtained by in vivo immunohistochemistry support the conclusion that 

localization of ceramide causes leakiness of endosomes induced by treatment with WC. 

Furthermore, we examined the in vivo efficacy of WC treatment and cytoplasmic 

delivery of macromolecules using tumor-bearing mice. Regarding cytoplasmic delivery 370 

of macromolecules, we have already published the paper (Kigasawa, et al., 2010). In that 
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paper, we showed the significant mRNA knocking down by iontophoresis (WC treatment 

in vivo) of siRNA in the inflamed skin. The result is the evidence of the cytoplasmic 

delivery of macromolecules siRNA (MW:12,000) by WC in vivo, because the action site 

of siRNA is cytoplasmic space. Thus, significant RNAi effect indicates cytoplasmic 375 

delivery by WC in vivo. WC treatment with anti-glyceraldehyde-3-phosphate 

dehydrogenase (GAPDH) siRNA was performed on tumor-bearing mouse skin. As shown 

in Supplementary Fig. 4, mRNA level of GAPDH in tumor was significantly suppressed 

(37%) by WC treatment with anti-GAPDH siRNA. From this result, the WC treatment-

mediated cytoplasmic delivery of macromolecules in vivo was confirmed by using tumor-380 

bearing mice. 

To obtain information regarding the role of ceramide and preferential 

localization of ceramide in WC-induced endosomes, we focused on neutral 

sphingomyelinase 2 and acid sphingomyelinase. Neutral sphingomyelinase 2 has been 

reported to localize to the plasma membrane, Golgi and recycling compartments (Airola, 385 

et al., 2013). On the other hand, acid sphingomyelinase localizes in lysosomes (Jenkins, 

et al., 2009). Thus, we expected that the source of ceramide would be identified by 

inhibition of ceramide synthesis with specific inhibitors against those sphingomyelinases. 

In this study, we used GW4869 and imipramine as specific inhibitors of neutral 
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sphingomyelinase 2 and acid sphingomyelinase, respectively (Airola, et al., 2013; Arenz, 390 

et al., 2010). The relative fluorescence intensity, which indicates the amount of ceramide 

in the cells following WC treatment with a neutral sphingomyelinase inhibitor GW4869, 

was slightly decreased, but the difference was not statistically significant (Supplementary 

Fig. 5a). In contrast, for the acid sphingomyelinase inhibitor imipramine, the amount of 

ceramide did not change (Supplementary Fig. 5b). These results suggest that WC did not 395 

activate ceramide synthesis. WC treatment may increase ceramide in the cells by 

inhibition of degradation or metabolic pathways. However, it was difficult to confirm the 

contribution of degradation/metabolic pathway inhibition in this study. Future studies are 

needed to clarify the mechanism of ceramide increase by WC and obtain direct evidence 

of ceramide pores; that may be responsible for endosomal escape of macromolecules. 400 

The difference in the morphology of WC-induced endosomes from that of other 

endosomes may be the result of WC-induced endocytosis being a type of GRAF1-

dependent tubular endocytosis, although pretreatment with siRNA against GRAF1 and 

cdc42 did not affect WC-mediated cellular uptake (Supplemental Fig. 1). Cellular uptake 

induced by WC treatment was previously shown to be inhibited by amiloride and filipin 405 

(Hasan et al., 2016a). Another possible reason for the tubular morphology of WC-induced 

endosomes may be due to localization of ceramide in the endosomes via WC treatment. 
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However, it is difficult to clarify the exact reason for the tubular morphology of WC-

induced endosomes at this time. 

 In conclusion, we found that WC-mediated endocytosis occurred after treatment 410 

of cells with WC, and that WC treatment can trigger cellular uptake and cytoplasmic 

delivery of exogenous macromolecules. In addition, high molecular weight protein 

antibodies were functional following delivery into the cytoplasm mediated by WC in the 

presence of chloroquine. The WC-induced endosomes, which can leak macromolecules 

(MW: <70,000), exhibited elliptical shapes that differ from those of conventional 415 

endosomes, such as macropinosome, clathrin- or caveolae-dependent endosomes. 

Furthermore, ceramide was found to localize in endosomes following WC treatment. It is 

suggested that localization of ceramide may be cause of the leakiness of the endosomes 

induced by WC. Further investigations are necessary to better elucidate the exact 

mechanism of WC-mediated unique endocytosis. 420 

 

 

 

Acknowledgements  

This work was supported in part by JSPS KAKENHI Grant Number 18F18097 and 425 



26 
 

17H03976, and a Tokushima University research program for the development of an 

intelligent Tokushima artificial exosome (iTEX). 

 

Declaration of interests 

None.  430 

 

Author Contributions 

KKogure conceived and supervised the study, designed experiments, and wrote the 

manuscript; TShimokawa, NYamazaki, HAndo, TIshida, TFukuta and TTanaka 

supervised the study; TTorao, MMimura, YOshima, KFujikawa and MHasan performed 435 

experiments and analyzed data. All authors read and approved the final manuscript. 



27 
 

References 

Airola, M.V., Hannun, Y.A., 2013. Sphingolipid metabolism and neutral 

sphingomyelinases. Handb. Exp. Pharmacol. 215, 57–76. https://doi.org/10.1007/978-3-440 

7091-1368-4_3. 

Arenz, C., 2010. Small Molecule Inhibitors of Acid Sphingomyelinase. Cell. Physiol. 

Biochem. 26, 1-8. https://doi.org/10.1159/000315100. 

El-Sayed, A., Harashima, H., 2013. Endocytosis of gene delivery vectors: from clathrin-

dependent to lipid raft-mediated endocytosis. Mol. Ther. 21, 1118-1130. 445 

https://doi.org/10.1038/mt.2013.54. 

Grant, B. D., Donaldson, J. G., 2009. Pathways and mechanisms of endocytic recycling. 

Nat. Rev. Mol. Cell Biol. 10, 597-608. https://doi.org/10.1038/nrm2755. 

Hama, S., Kimura, Y., Mikami, A., Shiota, K., Toyoda, M., Tamura, A., Nagasaki, Y., 

Kanamura, K., Kajimoto, K., Kogure, K., 2014. Electric stimulus opens intercellular 450 

spaces in skin. J. Biol. Chem. 289, 2450-2456. https://doi.org/10.1074/jbc.M113.514414. 

Hansen, C. G., Nichols, B. J., 2009. Molecular mechanisms of clathrin-independent 

endocytosis. J. Cell Sci. 122, 1713-1721. https://doi.org/10.1242/jcs.033951. 

Hasan, M., Nishimoto, A., Ohgita, T., Hama, S., Kashida, H., Asanuma, H., Kogure, K., 

2016a. Faint electric treatment-induced rapid and efficient delivery of extraneous 455 

hydrophilic molecules into the cytoplasm. J. Control. Release. 228, 20-25. 



28 
 

https://doi.org/10.1016/j.jconrel.2016.02.048. 

Hasan, M., Tarashima, N., Fujikawa, K., Ohgita, T., Hama, S., Tanaka, T., Saito, H., 

Minakawa, N., Kogure, K., 2016b. The novel functional nucleic acid iRed effectively 

regulates target genes following cytoplasmic delivery by faint electric treatment. Sci. 460 

Technol. Adv. Mater. 17, 554-562. https://doi.org/10.1080/14686996.2016.1221726. 

Hashim, I.I., Motoyama, K., Abd-Elgawad, A.E., El-Shabouri, M.H., Borg, T.M., Arima, 

H., 2010. Potential use of iontophoresis for transdermal delivery of NF-kappaB decoy 

oligonucleotides. Int. J. Pharm. 393, 127-134. https://doi.org/10.1016/j.ijpharm. 

2010.04.020. 465 

Jenkins, R.W., Canals, D., Hannun, Y.A., 2009. Roles and Regulation of Secretory and 

Lysosomal Acid Sphingomyelinase. Cell Signal. 21, 836–846. 

Kajimoto, K., Yamamoto, M., Watanabe, M., Kigasawa, K., Kanamura, K., Harashima, 

H., Kogure, K., 2011. Noninvasive and persistent transfollicular drug delivery system 

using a combination of liposomes and iontophoresis. Int. J. Pharm. 403, 57-65. 470 

https://doi.org/10.1016/j.ijpharm.2010.10.021. 

Kalia, Y. N., Naik, A., Garrison, J., Guy, R. H., 2004. Iontophoretic drug delivery. Adv 

Drug Deliv Rev. 56, 619-658. https://doi.org/10.1016/j.addr.2003.10.026. 

Karpiński, T. M., 2018. Selected Medicines Used in Iontophoresis. Pharmaceutics 10, pii: 



29 
 

E204. https://doi.org/10.3390/pharmaceutics10040204. 475 

Khalil, I. A., Kogure, K., Akita, H., Harashima, H., 2006. Uptake pathways and 

subsequent intracellular trafficking in nonviral gene delivery. Pharmacol. Rev. 58, 32-45. 

https://doi.org/10.1124/pr.58.1.8. 

Kigasawa, K., Kajimoto, K., Hama, S., Saito, A., Kanamura, K., Kogure, K., 2010. 

Noninvasive delivery of siRNA into the epidermis by iontophoresis using an atopic 480 

dermatitis-like model rat. Int. J. Pharm. 383, 157-160. https://doi.org/ 

10.1016/j.ijpharm.2009.08.036. 

Kigasawa, K., Kajimoto, K., Nakamura, T., Hama, S., Kanamura, K., Harashima, H., 

Kogure, K., 2011. Noninvasive and efficient transdermal delivery of CpG-

oligodeoxynucleotide for cancer immunotherapy. J. Control. Release. 150, 256-265. 485 

https://doi.org/ 10.1016/j.jconrel.2011.01.018. 

Kwon, T., Kwon, D. Y., Chun, J., Kim, J. H., Kang, S. S., 2000. Akt protein kinase inhibits 

Rac1-GTP binding through phosphorylation at serine 71 of Rac1. J. Biol. Chem. 275, 

423-428. https://doi.org/10.1074/jbc.275.1.423. 

Labala, S., Jose, A., Chawla, S.R., Khan, M.S., Bhatnagar, S., Kulkarni, O.P., Venuganti, 490 

V.V.K., 2017. Effective melanoma cancer suppression by iontophoretic co-delivery of 

STAT3 siRNA and imatinib using gold nanoparticles. Int. J. Pharm. 525, 407-417. 



30 
 

https://doi.org/10.1016/j.ijpharm.2017.03.087. 

Liu, K.C., Green, C.R., Alany, R.G., Rupenthal, I.D., 2013. Synergistic effect of chemical 

penetration enhancer and iontophoresis on transappendageal transport of 495 

oligodeoxynucleotides. Int. J. Pharm. 441, 687-692. https://doi.org/10.1016/j.ijpharm. 

2012.10.027. 

Lundmark, R., Doherty, G. J., Howes, M. T., Cortese, K., Vallis, Y., Parton, R. G., 

McMahon, H. T., 2008. The GTPase-activating protein GRAF1 regulates the 

CLIC/GEEC endocytic pathway. Curr. Biol. 18, 1802-1808. 500 

https://doi.org/10.1016/j.cub.2008.10.044. 

Patel, M.P., Churchman, S.T., Cruchley, A.T., Braden, M., Williams, D.M., 2013. 

Delivery of macromolecules across oral mucosa from polymeric hydrogels is enhanced 

by electrophoresis (iontophoresis). Dent. Mater. 29, e299-e307. 

https://doi.org/10.1016/j.dental.2013.09.003. 505 

Perera, M. N., Ganesan, V., Siskind, L. J., Szulc, Z. M., Bielawska, A., Bittman, R., 

Colombini, M., 2016. Ceramide channel: Structural basis for selective membrane 

targeting. Chem. Phys. Lipids. 194, 110-116. 

https://doi.org/10.1016/j.chemphyslip.2015.09.007. 

Sandvig, K., Kavaliauskiene, S., Skotland, T., 2018. Clathrin-independent endocytosis: 510 



31 
 

an increasing degree of complexity. Histochem. Cell Biol. 150, 107-118. 

https://doi.org/10.1007/s00418-018-1678-5. 

  



32 
 

Figure legends 

 515 

Figure 1. Cellular uptake of DNA fragments after WC treatment. 

The amount of intracellular DNA fragment taken up by B16-F1 cells was measured by 

real-time PCR of samples taken from untreated cells (white column) and those from cells 

taken 1 hr and 3 hr after WC treatment (black columns). Data are mean ± S.D (n=4). 

*p<0.005, vs. 1 hr WC(-) and 3hr WC(-), **p<0.001, vs. 1 hr WC(-), 1 hr WC(+) and 3 520 

hr WC(-). 

 

Figure 2. Immunostaining images of B16-F1 cells after WC treatment in the presence 

of anti-nuclear pore complex protein antibody. 

WC treatment was performed in the presence of anti-nuclear pore complex protein 525 

antibody and chloroquine. After WC treatment, B16-F1 cells were subjected to 

immunostaining with an Alexa Fluor 488-labeled secondary antibody and observed by 

confocal laser scanning microscopy: (a) Alexa Fluor 488-labeled secondary antibody 

(green); (b) transmitted light image; (c) nuclei stained with DAPI (blue), and (d) merged 

image of cells without (WC(-)) or with WC treatment (WC(+)). The scale bar indicates 530 

20 μm. 
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Figure 3. Transmission electron microscopy of cells after WC treatment in the 

presence of PEGylated gold nanoparticles. 

B16-F1 cells were fixed 4 hr after WC treatment with gold nanoparticles, and cross-535 

sections of the cells were observed by transmission electron microscopy. Gold 

nanoparticles (100 nm diameter) are indicated by white arrows and the scale bar indicates 

1,000 nm. Panels a-2 and b-2 show magnified images of the square enclosed by dotted 

white lines in a-1 and b-1. Endosomes are indicated by the dotted white lines in a-3 and 

b-3. 540 

 

Figure 4. Immunostaining images of B16-F1 cells using anti-ceramide antibody after 

WC treatment 

After WC treatment, B16-F1 cells were subjected to immunostaining with anti-ceramide 

antibody and an Alexa Fluor 488-labeled secondary antibody, and observed by confocal 545 

laser scanning microscopy: (a) untreated cells (WC(-)) and (b) cells subjected to WC 

treatment (WC(+)). Panels a-2 and b-2 show magnified images of the square enclosed by 

the dotted white lines in a-1 and b-1. Green indicates Alexa Fluor 488-labeled secondary 

antibody and blue indicates nuclei stained with DAPI. The scale bar indicates 20 μm. (c) 
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Relative intensity of fluorescence of the cells quantified using the image analysis software 550 

Image J. Data are mean ± S.D (n>3). *p<0.01. 

 

Figure 5. Immunohistochemical images of skin cross sections following WC 

treatment using anti-ceramide antibody 

Following WC treatment of mouse skin, cross sections of the skin were subjected to 555 

immunohistochemistry with anti-ceramide antibody and an Alexa Fluor 488-labeled 

secondary antibody, and observed by confocal laser scanning microscopy: (a) untreated 

skin (WC(-)) and (b) skin subjected to WC treatment (WC(+)).Green indicates Alexa 

Fluor 488-labeled secondary antibody and blue indicates nuclei stained with DAPI, 

respectively. The scale bar indicates 20 μm. (c) Relative fluorescence intensity of skin 560 

cross sections quantified using the image analysis software Image J. Data are mean ± S.D 

(n=3). *p<0.05. 
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