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In an attempt to monitor mm-level trace constituents, we ap-
plied here 1H-{13C-15N} triple-resonance nuclear magnetic reso-

nance (NMR) to 13C/15N-enriched l-Dopa as the inevitable pre-
cursor of the neurotransmitter dopamine in the brain. The per-

fect selectivity (to render endogenous components silent) and

mm-level sensitivity (700 MHz spectrometer equipped with
a cryogenic probe) of triple-resonance allowed the unambigu-

ous and quantitative metabolic and pharmacokinetic analyses
of administered l-Dopa/dopamine in the brain and liver of

mice. The level of dopamine generated in the brain (within the
range 7–76 mm, which covers the typical stimulated level of

~30 mm) could be clearly monitored ex vivo, but was slightly

short of the detection limit of a 7 T MR machine for small ani-
mals. This work suggests that mm-level trace constituents are

potential targets of ex vivo monitoring as long as they contain
N atom(s) and their appropriate 13C/15N-enrichment is syntheti-

cally accessible.

Multiple-resonance NMR is a powerful technique,[1–4] by which
particular protons in the sequence 1H-13C-15N (1H-{13C-15N} triple

resonance) or 1H-13C (1H-{13C} double resonance) can be detect-
ed highly selectively as a result of magnetic coherence transfer
1H!13C!15N!13C!1H or 1H!13C!1H. Although the applica-
tion of multiple-resonance NMR (double resonance in many
cases,[2, 3] mostly dealing with main metabolic sources such as

glucose, amino acids, and fatty acids, and triple resonance in
some[4]) to metabolic analysis is by no means rare, little is

known, to the best of our knowledge, about its applicability to
hormone-like trace (mm-level) constituents. In the present

work, we applied triple-resonance NMR to 13C/15N-enriched
l-Dopa (l-3,4-dihydroxyphenylalanine) as the inevitable precur-

sor of neurotransmitter dopamine (2-(3,4-dihydroxyphenyl)-

ethylamine) in the brain.
Dopamine plays important roles in motivation, reward, and

motor control,[5] and problems with its metabolism can trigger
several neurological/psychological disorders such as Parkin-

son’s disease, schizophrenia, and depression.[6, 7] Scheme 1 sum-
marizes the l-Dopa-to-dopamine metabolism and its inhibition.

The brain is not directly accessible by dopamine, which cannot

pass through the blood–brain barrier (BBB). Instead, dopamine
is generated in situ in the brain upon decarboxylation of its

precursor, l-Dopa which is BBB-permeable, by the enzyme
AAAD (aromatic l-amino acid decarboxylase). Dopamine thus

generated in the brain undergoes rather rapid deactivation
upon oxidative deamination by the enzyme MAO (monoamine

oxidase, types A and B).

In clinical practice, l-Dopa as the precursor of dopamine is
often administered together with inhibitors of enzymes

AAAD[8] and MAO-A and MAO-B[9] as codrugs to maintain ap-
propriate high concentrations of dopamine in the brain. An-

other way to achieve high dopamine levels (~30 mm[10, 11a, b] or
~2 mm[11c])[12] is to electrically stimulate the brain. In this work,

we took 13C/15N-enriched l-Dopa as a triple-resonance probe

to monitor dopamine in mice with a stimulated level of
~30 mm in the brain taken as a criterion to evaluate the per-
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formance of the present method. We use the selectivity and
sensitivity of triple-resonance high resolution NMR with a cryo-

genic probe to perform quantitative metabolic/pharmacokinet-

ic analysis of l-Dopa/dopamine in the extracts of brain and
liver of mice, showing that the stimulated dopamine level

(~30 mm) in the brain can be detected ex vivo. This work also
illustrates where we are on the path to direct in vivo MR spec-

troscopic (MRS) monitoring of this neurotransmitter system.
13C/15N-enriched l-Dopa (13C/15N-l-Dopa, Figure 1 a) with a 1H-

13C-15N sequence involving the asymmetric center was ob-

tained starting from 13C/15N-glycine in an optical yield of 94 %
ee, as detailed in the Supporting Information. 13C/15N-enriched

dopamine (13C/15N-dopamine, Figure 1 b) was also prepared
from K13C15N. One-dimensional (1D) 1H-{13C-15N} triple-reso-

nance spectra (13C-decoupled) of 13C/15N-l-Dopa and 13C/15N-
dopamine showed a single peak at 3.85 ppm or at 3.14 ppm

for the methine proton (1H-13C-15N) of l-Dopa or the methylene
protons (1H2-13C-15N) of dopamine, respectively. The enzymatic
decarboxylation of 13C/15N-l-Dopa (d= 3.85 ppm) to dopamine

(d= 3.14 ppm) in 4-(2-hydroxyethyl)-1-piperazineethanesulfonic
acid (HEPES) buffer containing the decarboxylation enzyme

AAAD was completed in 1 h, as revealed by the triple-reso-
nance analysis (Figure 1 c) in accord with the results of high-

performance liquid chromatography (HPLC) monitoring (Fig-

ure 1 d).
Decarboxylation and its inhibition in complex biological mix-

tures such as liver lysate could also be readily monitored by
triple-resonance. 13C/15N-l-Dopa (0.5 mm) in crude mouse liver

lysate was incubated for 45 min. After workup, the mixture
was subjected to NMR analysis. The conventional 1H NMR spec-

trum (Figure 1 e, top) was completely useless ; all 1H-containing

molecules in the lysate represent their signals. The 1H-{13C-15N}
triple-resonance spectrum (Figure 1 e, bottom) exhibited two

signals at 3.85 ppm for l-Dopa and 3.14 ppm for dopamine in
a ratio of 1:7 (12 % and 86 % of l-Dopa used, respectively), indi-

cating that most of the l-Dopa had undergone decarboxyla-
tion by endogenous AAAD contained in the liver lysate to give
dopamine. In the presence of carbidopa (BBB-impermeable),

a potent AAAD inhibitor that is clinically used as a codrug to-
gether with l-Dopa (referring to Scheme 1), the build-up of

dopamine was effectively suppressed (~85 %) even at [carbido-
pa] = 5 mm (0.01 equiv of l-Dopa (0.5 mm)) (Figure 1 f, bottom)

and completely suppressed at [carbidopa] = 50 mm (0.1 equiv)

(Figure 1 f, top). Triple resonance can thus completely suppress
noise signals arising from endogenous components in complex

biological mixtures to allow the unambiguous and quantitative
metabolic analyses of 13C/15N-enriched substrates therein.

In vitro and ex vivo spectra were obtained with a 700 MHz
(16.4 T) NMR spectrometer equipped with a high-sensitivity

Scheme 1. l-Dopa-to-dopamine metabolism and its inhibition.

Figure 1. Structures of a) 13C/15N-l-Dopa and b) 13C/15N-dopamine and analy-
sis of the l-Dopa-to-dopamine conversion. Time course of the change in
c) 1H-{13C-15N} NMR spectra and d) HPLC profiles of 13C/15N-l-Dopa (0.5 mm)
in 40 mm HEPES containing 80 mm NaCl, 100 mm pyridoxal phosphate, and
AAAD (20 ng ml¢1), incubated at 37 8C for 0 or 60 min. The HPLC trace at the
top is for the control run in the absence of AAAD at 60 min. e) Conventional
1H (top) and 1H-{13C-15N} (bottom) NMR spectra of a mouse liver lysate con-
taining 13C/15N-l-Dopa (0.5 mm) in 2 mm Tris-HCl, 0.1 mm EDTA, 0.1 mm 2-
mercaptoethanol, and 100 mm pyridoxal phosphate, incubated at 37 8C for
45 min. f) Inhibitory effects of carbidopa on the decarboxylation of 13C/15N-l-
Dopa. 1H-{13C-15N} NMR spectra obtained in the presence of carbidopa (5 or
50 mm) as an AAAD inhibitor, under the same conditions as in e). The 1H-
{13C-15N} NMR spectra were obtained after 256 scans.
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cryogenic probe after 256 scans (~7 min), where the detection
limit, i.e. , the lowest concentration to give S/N = 3, of 13C/15N-

dopamine lies at around 4 mm. Triple-resonance spectra of 13C/
15N-dopamine as phantom samples (500 mL) were also ob-

tained with an MR machine for small animals operating at 7 T
(300 MHz) without a cryogenic probe (Supporting Informa-

tion); the detection limit after 3600 scans (1 h) turned out to
be ~1 mm.

We proceeded to the l-Dopa/dopamine metabolic analysis

in mice, focusing on the effects of inhibitors of decarboxylation
(AAAD) and oxidation (MAO) enzymes. Mice (~16 g) were ad-

ministered 13C/15N-l-Dopa (0.63 mmol kg¢1) with or without
carbidopa (AAAD inhibitor) and MAO inhibitors [clorgyline and

selegiline (BBB-permeable MAO-A and MAO-B inhibitors, re-
spectively; see Scheme 1)] . After 1 h, brain and liver tissues

were collected and, after workup, their triple-resonance spectra

(256 scans) were obtained for doubly diluted (compared with
the tissue weights) solutions, as shown in Figure 2, where the

signal intensities for the brain and liver samples are weight-

normalized. In the absence of any inhibitors, a small amount of
dopamine (3.14 ppm) was detected in the brain, while a much

larger amount was found in the liver (bottom). l-Dopa with
a signal at 4.19 ppm[13] was hardly detected in the liver or the

brain. Most of the l-Dopa must have undergone wasteful de-
carboxylation by endogenous AAAD in the liver, and any dopa-

mine generated remained therein since it could not pass

though the BBB to reach the brain. In the presence of the
AAAD inhibitor carbidopa (63 mmol kg¢1), the dopamine level

in the brain increased, but only slightly (middle), probably be-
cause of its oxidative deamination by MAO to give dopal,

which of course exhibited no 1H-13C-15N signals. Indeed, when
the MAO inhibitors clorgyline (63 mmol kg¢1) and selegiline

(63 mmol kg¢1) were both present, there was a 5-fold increase
in the dopamine level in the brain, and a substantial amount

of l-Dopa that escaped decarboxylation remained in the liver
(top).[14, 15] The local concentrations of dopamine in the brain

(~400 mg) were estimated by calibration using an authentic
specimen to be 7 mm (in the absence of any inhibitors), 15 mm
(with AAAD inhibitor), and 76 mm (with AAAD and MAO inhibi-
tors). The inhibitor-dependent dopamine levels of 7–76 mm are

consistent with those of 5–120 mm[9a] reported for rat based on

HPLC analysis.
In this work, we investigated the usefulness of triple reso-

nance for monitoring dopamine at a stimulated ~30 mm level.
As shown above, a wide concentration range which includes
this critical 30 mm could be easily accessed by a combination
of l-Dopa and inhibitors. Selectivity and sensitivity are key

issues in applying NMR to complex biological mixtures. In this
context, the present work may be summarized as follows:
1) Triple resonance showed “perfect” selectivity. The probability

of the natural occurrence of the sequence 1H-13C-15N is as low
as 0.011 Õ 0.0037 = 0.00004 (0.004 %), where 0.011 and 0.0037

are the natural abundance of 13C and 15N, respectively, and the
mole-based selectivity factor for the 13C/15N-enriched target

over endogenous components is 1/0.00004 = 25000 (2.5 Õ 104).

Thus, endogenous components may effectively compete with
the enriched target at, for example, 10 mm, only when they are

present in unnaturally high concentrations of 10 Õ 104 mm=

0.1 m. An implication of this observation is that selectivity is by

no means a formidable issue to deal with for any mm-level
trace constituents as long as they contain N-atom(s) and their

appropriate double 13C/15N-enrichment is synthetically accessi-

ble. 2) This perfect, noiseless selectivity of triple resonance
gives rise to a mm sensitivity [4 mm, 256 scans under less time-

consuming (in minutes), one-dimensional (monitoring of 1H
signals only) conditions] . This allows unambiguous and quanti-

tative ex vivo metabolic/pharmacokinetic analyses of adminis-
tered l-Dopa and its metabolite dopamine, i.e. , ratiometric

monitoring of their decay/build-up profiles, which clearly

shows that the stimulated level of dopamine in the brain can
be monitored ex vivo. 3) Unfortunately, however, the key dopa-
mine level of 30 mm is short of the detection limit (~1 mm,
3600 scans) of the 7 T MR machine (noncryogenic probe) for

noninvasive, i.e. , in vivo, monitoring.[16] However, the gap be-
tween them is only a factor of ~30. This appears to be signifi-

cant since an increase in sensitivity of this extent (~30-fold)
may be achieved by combining an existing highest-field ma-
chine and a high-sensitivity cryogenic probe equipped with
a triple-resonance coil.[17] In-brain dopamine may then become
a real target of direct in vivo MRS with which we can record

the dopamine spectra in the brain.
In addition to a variety of techniques, based on HPLC,[18a]

biological (enzyme-linked immunosorbent assay, ELISA) affinity

(for the analysis of urine),[18b] microdialysis,[18c] electrochemical
techniques,[18c] and chemical sensing,[18d] a couple of methods

have recently been developed to monitor dopamine in the
brain. One is positron emission tomography (PET) using
11C-raclopride, which competitively binds to the dopamine re-
ceptor to enable the [dopamine]-dependent emission of

Figure 2. Effects of MAO inhibitors on the oxidative degradation of 13C/15N-
dopamine in mice. Weight-normalized 1H-{13C-15N} NMR spectra (256 scans)
for the extracts of brain (left) and liver (right) tissues of a mouse coadminis-
tered with 13C/15N-l-Dopa (0.63 mmol kg¢1) and carbidopa (63 mmol kg¢1) in
the absence (middle) or presence (top) of clorgyline (MAO-A inhibitor,
63 mmol kg¢1) and selegiline (MAO-B inhibitor, 63 mmol kg¢1). The corre-
sponding spectra in the absence of any inhibitors are shown at the bottom.
The tissue extracts obtained were redissolved in D2O and subjected to NMR
analysis. The in-brain concentrations of dopamine were quantified via cali-
bration and are shown.
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gamma rays.[19] The other is MRI using a protein-engineered
heme-based contrast agent which reversibly binds to dopa-

mine, thereby changing the relaxivity, and thus gives [dopa-
mine]-dependent images.[10] Both methods are highly sophisti-

cated, but are indirect and involve complicated complexation
processes. MRS is much simpler and can directly monitor the

targets and their transformations with minimal noise signals
which may arise from nonspecific binding, etc. Currently, the

metabolic analysis of 13C-glucose in the brain has received in-

creasing attention.[3] The present work shows a way to detect
mm-level trace constituents and has shed light on the issues to
be overcome for in vivo imaging. Further work is now under-
way along these lines with an ultimate goal of detection of hy-
podopaminergy in related diseases.

Experimental Section

1) General methods, 2) preparation, 3) monitoring of the l-Dopa-
to-dopamine conversion and subsequent dopamine oxidation, and
4) phantom MRS are included in the Supporting Information.
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