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Abstract

The formation of virus movement protein (MP)-containing punctate structures on the cortical endoplasmic reticulum is
required for efficient intercellular movement of Red clover necrotic mosaic virus (RCNMV), a bipartite positive-strand RNA
plant virus. We found that these cortical punctate structures constitute a viral replication complex (VRC) in addition to the
previously reported aggregate structures that formed adjacent to the nucleus. We identified host proteins that interacted
with RCNMV MP in virus-infected Nicotiana benthamiana leaves using a tandem affinity purification method followed by
mass spectrometry. One of these host proteins was glyceraldehyde 3-phosphate dehydrogenase-A (NbGAPDH-A), which is a
component of the Calvin-Benson cycle in chloroplasts. Virus-induced gene silencing of NbGAPDH-A reduced RCNMV
multiplication in the inoculated leaves, but not in the single cells, thereby suggesting that GAPDH-A plays a positive role in
cell-to-cell movement of RCNMV. The fusion protein of NbGAPDH-A and green fluorescent protein localized exclusively to
the chloroplasts. In the presence of RCNMV RNA1, however, the protein localized to the cortical VRC as well as the
chloroplasts. Bimolecular fluorescence complementation assay and GST pulldown assay confirmed in vivo and in vitro
interactions, respectively, between the MP and NbGAPDH-A. Furthermore, gene silencing of NbGAPDH-A inhibited MP
localization to the cortical VRC. We discuss the possible roles of NbGAPDH-A in the RCNMV movement process.
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Introduction

Eukaryotic positive-strand RNA viruses replicate their genomes

using membrane-bound virus replication complexes (VRC), which

contain viral replicase proteins, viral RNA templates, and host-

factor proteins [1–5]. Viral replicase proteins modify the host

intracellular membrane morphology, including swelling, invagi-

nation, and the formation of spherules. Thus, VRC formation is

accompanied by the remodeling of intracellular membranes [3].

Studies of the subcellular localization of viral proteins using

immunoelectron microscopy or confocal laser scanning microsco-

py (CLSM) have shown that the movement proteins (MPs) of

several plant viruses colocalize with the viral replicase protein [6–

10], thereby suggesting that MPs are also components of VRCs.

However, the MPs that localize to VRCs are not likely to be

involved in the replication of viral genomic RNA because mutant

viruses that do not encode functional MP can accumulate viral

genomic RNA similar to that of the wild type virus with functional

MP in infected protoplasts [11,12]. MPs play central roles in the

cell-to-cell and systemic movement of plant viruses, and they have

been investigated intensively to determine their biochemical

characteristics; their subcellular localization, including the cellular

pathways that target them to the plasmodesmata (PD), the

cytoplasmic channels connecting plant cells; and their interactions

with host membranes or proteins [13–17].

The early process of VRC formation has been well character-

ized in Tobacco mosaic virus (TMV), which is the type member of

the well-studied genus Tobamovirus [18]. TMV virions that enter

host plant cells are partially uncoated, and the exposed 59 cap

structures are assumed to be recruited by unknown host factors to

form small particles that contain viral RNA on the cortical

endoplasmic reticulum (ER), before moving along the ER and

actin filaments. The replication cycles starts after translation of the

replicase proteins and the VRC increases in size. The punctate-

like TMV VRC forms on the cortical ER and moves along actin

filaments [18–20] or microtubules [21,22]. The intracellular

movement of VRC on actin filaments requires motor proteins

such as myosin, and it is considered to be necessary for the

targeting of viral genomic RNA to the PD [23–25]. The roles of

TMV MP in the VRC are unknown. The ‘‘126-bodies’’, which

comprise the fusion protein of TMV 126-kDa replicase compo-

nent protein and green fluorescent protein (GFP), can move along

actin filaments without MP [20].

Red clover necrotic mosaic virus (RCNMV) is a positive-strand

RNA virus with a bipartite genome that belongs to the genus
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Dianthovirus, in the family Tombusviridae [26]. Genomic RNA1

encodes p27 auxiliary replication protein, p88 RNA-dependent

RNA polymerase (RdRp), and coat protein (CP), while RNA2

encodes MP (Figure S1A). p27 and p88 induce the production of

an aggregate structure from ER membrane and they form the 480-

kDa replication complex, which is a key enzyme complex for virus

replication, via interactions with host chaperone proteins such as

heat shock protein (HSP) 70 and HSP90, and membrane traffic-

associated proteins such as Arf1 and Sar1 [27–31]. Using a

bimolecular fluorescence complementation (BiFC) assay, these

four host factors were shown to interact directly with p27 in the

large aggregate adjacent to the nucleus in Nicotiana benthamiana
cells [30,31]. However, when the p27-GFP fusion protein was

expressed with p88 and RNA2, it formed small punctate structures

on the cortical ER and later formed large aggregates adjacent to

the nucleus [32]. These results suggest that RCNMV VRC forms

small punctate structures on the cortical ER, which then change

their subcellular localization to form a large aggregate adjacent to

the nucleus.

RCNMV MP belongs to the 30K superfamily and it is required

for viral cell-to-cell and systemic movement [33,34]. RCNMV is

considered to pass through PD in the form of a viral RNA-MP

complex because CP is dispensable for viral cell-to-cell movement

[34] and MP also has the ability to bind single-stranded nucleic

acids [35]. Microinjected RCNMV MP can increase the size-

exclusion limit of PD and enable the transport of coinjected viral

RNA into neighbor cells [36]. Alanine-scanning mutant analysis

was used to determine the functional domains of the MP that bind

RNA and that target it to PD, both of which are required for viral

cell-to-cell movement [37,38]. However, the cellular pathway that

allows MP and/or MP-viral RNA complexes to target PD is

unknown.

Previously, we reported the subcellular localization of the fusion

protein of RCNMV MP and GFP (MP-GFP) in N. benthamiana
[10]. In addition to PD localization, MP-GFP expressed by a

recombinant virus formed punctate structures with p27 on the

cortical ER. Transiently expressed MP-GFP also localized to

punctate structures on the cortical ER, which was associated with

the replication of RNA1, but not with that of RNA2. These results

suggest that MP is recruited to the cortical ER by the viral

replicase complexes formed with RNA1. To demonstrate the

importance of cortical punctate structures containing MP, we

conducted a deletion analysis of MP and showed that 70 C-

terminus amino acids are required for both cortical punctate

structure formation and viral cell-to-cell movement [39]. Based on

these results, we hypothesized that the recruitment of MP by the

viral replication complex might help MP to acquire viral genomic

RNA1 that does not encode MP, thereby leading to the efficient

cell-to-cell movement of RNA1.

To further investigate the mechanism that facilitates the

movement of RCNMV, we performed tandem affinity purification

of MP from virus-infected N. benthamiana leaves and analyzed the

co-purified host proteins, by mass spectrometry. One of these host

proteins was glyceraldehyde 3-phosphate dehydrogenase subunit

A (GAPDH-A). GAPDHs are ubiquitous enzymes involved in

glycolysis and gluconeogenesis, and GAPDH-A is a component of

the Calvin-Benson cycle of photosynthetic organisms [40].

GAPDH-A and another subunit, GAPDH-B, are both located in

the chloroplast in plants and algae [41]. Thus, we isolated the full-

length cDNA of N. benthamiana GAPDH-A (NbGAPDH-A) and

investigated its involvement in RCNMV multiplication. Our

results demonstrate that NbGAPDH-A is involved in virus cell-to-

cell movement by influencing MP localization to the VRC. We

discuss the possible mechanism that underlies this process.

Results

In the course of this study, we used many recombinant

RCNMVs listed in Figure S1. Fluorescent proteins (FPs) or fusion

proteins of MP with FP were expressed from the recombinant

RNA1, in which the CP gene had been replaced. In those cases

RNA2 or MP-frameshifted RNA2 were included in the inocula,

because the stem-loop structure in RNA2 is required for the

transcription of CP-subgenomic RNA from RNA1 [42].

Cortical punctate structures containing RCNMV MP are
the sites of viral RNA replication

Previously, we reported that RCNMV MP colocalized with the

viral replicase protein p27 to the punctate structures on the

cortical ER in virus-infected N. benthamiana cells during the early

stage of infection. Later, most of these cortical punctates

disappeared and a large aggregate was formed adjacent to the

nucleus in epidermal cells [10,32]. These aggregates contained

newly synthesized viral RNAs and the host-factor proteins essential

for replication, and they were shown to be the sites of RCNMV

RNA replication [30,31]. However, no evidence of viral RNA

replication in the cortical punctates has been reported. Thus, we

detected double-stranded RNA (dsRNA), the replication interme-

diates of positive-stranded RNA viruses, by immunostaining using

the antibody against double-stranded RNA (J2 antibody) in N.
benthamiana protoplasts. J2 antibody has been widely used to

detect the replication sites of animal and plant RNA viruses, and

cellular RNAs such as ribosomal RNA are below the limit of

detection [43–45]. N. benthamiana protoplasts were inoculated

with in vitro transcripts of recombinant RCNMV, which

expressed the fusion protein of MP and a red FP, mCherry

(MP-mCherry, Figure S1B).

Using CLSM, MP-mCherry and dsRNA were detected as

overlapping small punctate signals near the surfaces of protoplasts

at 16 h post inoculation (hpi) (Figure 1, left 2 rows of panels). At

24 hpi, most of these small punctates disappeared and large

aggregates were detected adjacent to the nucleus, which contained

both MP and dsRNA (Figure 1, center 2 rows of panels), thereby

confirming the results reported previously [30,31]. No fluorescent

signals for dsRNA were detected in mock-inoculated protoplasts

Author Summary

Intercellular movement of plant viruses is the crucial step
during systemic viral infections. Red clover necrotic mosaic
virus (RCNMV), a bipartite positive-strand RNA plant virus,
forms movement protein (MP)-containing punctate struc-
tures on the cortical endoplasmic reticulum in infected
cells, which are required for efficient intercellular move-
ment of the virus. We provide evidence that these cortical
punctate structures constitute the viral replication com-
plex (VRC), which forms during the early stage of virus
infection. Furthermore, we show that a host protein of
Nicotiana benthamiana, glyceraldehyde 3-phosphate de-
hydrogenase-A (NbGAPDH-A), possibly intercalates be-
tween the cortical VRC and MP. Knockdown of
NbGAPDH-A diffused subcellular localization of MP and
reduced intercellular movement of the virus. Chloroplastic
NbGAPDH-A relocalized to the cortical VRC after infection
with the virus. Our results suggest that the cortical VRC
serves not only as the replication factory of viral RNA but
also as a transportation hub, which transports viral RNA to
neighboring uninfected cells via plasmodesmata.
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(Figure 1, right panels). These results indicate that both the

cortical punctates formed during an early stage of RCNMV

infection and the aggregates formed adjacent to the nucleus during

the later stage of infection are the sites of RCNMV RNA

replication. Subsequently, we refer to the small punctate-like

structures that contain the MP in the cortical region as ‘cortical

VRC.’

Identification of host plant proteins that interact with
RCNMV MP

To identify the host proteins that interact with RCNMV MP,

we performed two-step affinity purification of MP fused to a

tandem affinity purification tag sequence. The tagged MP was

functional because it supported virus cell-to-cell and systemic

movement with the same efficiency as the native MP in N.
benthamiana plants (Figure S2).

Binary vector plasmid pBICR12/MP-TAP (Figure S1D), and

pBICR12 (Figure S1C) as the negative control, were infiltrated via

Agrobacterium into N. benthamiana. The tandem affinity purified

fraction prepared from pBICR12/MP-TAP-infiltrated leaves

contained several silver-stained bands, which were not detected

in the negative control (Figure 2A). The clear silver-stained band

that represented the MP-FLAG was not detected in the MP-TAP

lane for unknown reason. Considering its size (35.6 kDa), the band

is probably masked in the broad range of the stained area below

the 42 kDa marker. Actually nano-liquid chromatography-tandem

mass spectrometry (LC/MS/MS) analysis demonstrated that a

piece of wide gel cut out from MP-TAP lane (Figure 2A, red

arrow) contained the MP (Table S1). MP-FLAG was also detected

by Western blotting analysis in the tandem affinity purified

fraction prepared from pBICR12/MP-TAP-infiltrated leaves but

not from the negative control leaves (Figure 2B).

These silver-stained bands in the MP-TAP lane, and the similar

regions of the gel for the negative control lane were excised and

subjected to in-gel trypsin digestions and LC/MS/MS analyses.

We identified RCNMV MP and several host proteins from the

stained bands, and these proteins were not detected from the

negative control gels. Among these, we focused on GAPDH-A. A

Figure 1. Cortical punctate structures that contain RCNMV MP are sites of viral RNA replication. Nicotiana benthamiana protoplasts were
inoculated with recombinant RCNMV RNAs that expressed the MP-mCherry fusion protein (Figure S1B) and subjected to immunostaining with anti-
dsRNA primary antibody followed by Alexa Fluor 488-conjugated secondary antibody at an early stage of infection (16 hpi, left 2 rows of panels) and
at a late stage of infection (24 hpi, center 2 rows of panels). The right-most panels show the results for mock-inoculated protoplasts treated with the
same antibodies. Images present confocal projections of five optical sections at 1 mm intervals, which range from the surface to the middle of the
protoplasts. DIC: differential interference contrast, N: nucleus. Scale bar = 20 mm.
doi:10.1371/journal.ppat.1004505.g001
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partial GAPDH-A sequence was amplified by RT-PCR using the

total RNA of N. benthamiana, where the primer designs were

based on N. tabacum GAPDH-A. The full-length cDNA of

GAPDH-A was cloned according to 59 and 39 RACE methods,

which we refer to as NbGAPDH-A (accession number AB937979).

The deduced amino acid sequence of NbGAPDH-A was almost

identical to the reported partial GAPDH-A of N. tabacum (96.9%

shared identity, except for nine N terminal amino acids) and very

similar to that of Arabidopsis thaliana, except for 60 N terminal

amino acids (Figure 2C).

VIGS of NbGAPDH-A negatively affects the multiplication
of RCNMV

To investigate the possible involvement of NbGAPDH-A in

RCNMV multiplication, we downregulated the gene using the

Apple latent spherical virus (ALSV) vector [46]. A plasmid that

expressed wild type ALSV, or that expressed the recombinant

ALSV containing 294 nucleotides of NbGAPDH-A (ALSV/

gsGAP vector), was mobilized into Agrobacterium and the

bacterium was used to inoculate young N. benthamiana plants.

The accumulation level of NbGAPDH-A mRNA in the newly

developed leaves was determined 2–3 weeks later by real time RT-

PCR. NbGAPDH-A was silenced effectively in ALSV/gsGAP

vector-infected plants; the mRNA level of NbGAPDH-A was

reduced to 3% of that in the wild type ALSV-infected plants

(Figure 3A). This result coincided with that by semi-quantitative

RT-PCR in which mRNA level in ALSV/gsGAP vector-infected

plants was about 1/32 of that in wild type ALSV-infected plants

(Figure S3). No symptoms or growth inhibition were detected in

the NbGAPDH-A-silenced plants and wild type ALSV-infected

plants (Figure S4, see Discussion). Hereafter, all of the ALSV/

gsGAP-infected plants and the protoplasts prepared from those

plants were tested by real time or semi-quantitative RT-PCR to

confirm the NbGAPDH-A gene was silenced.

We then subjected the ALSV- and ALSV/gsGAP-infected

plants to challenge via the mechanical inoculation of in vitro
transcripts of the recombinant RCNMV containing the GFP gene

(RCNMV-GFP; Figure S1E). The percentage of fluorescent foci

with multiple cells in the ALSV/gsGAP-infected plants was about

1/3 of that in the ALSV-infected plants at 20 hpi (Figure 3B). The

result suggests that RCNMV multiplication was negatively

affected by the silencing of NbGAPDH-A.

In order to evaluate the effect of the gene silencing on RCNMV

multiplication more objectively, we further performed challenge

inoculation with pBICR1sG2 (Figure S1F), which expressed

RCNMV-GFP, via Agrobacterium infiltration, and the multipli-

cation level of the recombinant virus was estimated by western blot

analysis for GFP. The level of GFP accumulation at 35 hpi in the

leaves of ALSV/gsGAP-infected plants was approximately 20% of

that in the leaves of the ALSV-infected plants (Figure 3C). The

majority of the fluorescent foci were comprised of more than 10

cells in the latter plants, whereas such a wide spread of

fluorescence was barely detected in the former plants (Figure 3C,

lower panels). At 48 hpi, most of the fluorescent foci in the ALSV/

gsGAP-infected plants became larger and the level of GFP

accumulation was about 80% of that in the wild type ALSV-

infected plants (Figure S5). Thus, RCNMV multiplication was

impaired in the NbGAPDH-A-silenced N. benthamiana leaves, at

an early stage of infection.

To investigate whether downregulation of the NbGAPDH-A
gene could affect the multiplication of viruses other than

RCNMV, we inoculated ALSV- and ALSV/gsGAP-infected N.
benthamiana plants with a recombinant Tomato mosaic virus
(ToMV), where the CP gene was replaced with the GFP gene.

The spread of GFP fluorescence was indistinguishable at 40 and

48 hpi by epifluorescence microscopy and the GFP accumulation

level was also similar in both plants (Figure S6). These results

indicate that the NbGAPDH-A gene is not involved in the

multiplication of ToMV.

VIGS of NbGAPDH-A does not affect RCNMV replication
To investigate the effect of NbGAPDH-A silencing on RCNMV

accumulation at the single cell level, we infiltrated ALSV-, or

ALSV/gsGAP-infected plants with Agrobacterium that contained

pBICR12fsMP, which expressed movement-deficient RCNMV

RNAs (Fig. S1G) [10]. At 26 and 43 hpi, similar amounts of

positive-stranded viral RNAs accumulated (Figure 4A), thereby

suggesting that RCNMV multiplied at similar levels in the initially

infected cells.

To further investigate the multiplication levels of RCNMV in

single cells, protoplasts were prepared from ALSV- and ALSV/

gsGAP-infected plants and inoculated with in vitro transcripts of

the recombinant RCNMV, which expressed GFP and MP tagged

with HA (MP-HA) (Figure S1H). Similar amounts of GFP

accumulated in both protoplasts (Figure 4B, upper panel), thereby

indicating that gene silencing of NbGAPDH-A did not affect the

accumulation of the recombinant virus at the single cell level. We

also analyzed the accumulation of MP-HA. As shown in the

middle panel of Figure 4B, the levels of MP-HA were similar with

either inoculation, which suggests that NbGAPDH-A is not

involved in the translational control or stability of MP. Overall,

these results suggest that NbGAPDH-A is unlikely to be involved

in the replication of RCNMV RNAs and that it is involved in the

cell-to-cell movement of RCNMV via its interaction with MP.

Subcellular localization of NbGAPDH-A
NbGAPDH-A is assumed to localize to the chloroplasts.

However, RCNMV replication occurs in association with the

ER membrane and no relationship with the chloroplasts has been

reported previously. To investigate the possible interaction

between NbGAPDH-A and RCNMV proteins in vivo, we

examined the subcellular localization of NbGAPDH-A in the

absence or presence of RCNMV factors. When NbGAPDH-A

tagged with GFP (NbGAPDH-A-GFP) alone was expressed

Figure 2. Identification of proteins that were copurified with RCNMV MP. Protein extracts prepared from Agrobacterium-infiltrated leaves
that expressed RCNMV RNA1 plus RNA2 (WT, pBICR12, Figure S1C), or RNA1 plus recombinant RNA2 encoding MP tagged with TAP tag sequences
(MP-TAP, pBICR12/MP-TAP, Figure S1D), were subjected to two-step affinity purification using an anti-HA antibody followed by an anti-FLAG
antibody. (A) One fifth of the affinity-purified fractions eluted from the anti-FLAG beads (Eluate) and the proteins contained with the beads after
elution (Beads) were subjected to Western blotting using anti-FLAG antibody. (B) Four fifths of the affinity-purified fractions were subjected to SDS-
PAGE and stained using MS-compatible silver staining. The protein bands of interests were excised, subjected to in-gel digestion, and analyzed by
tandem mass spectrometry. Proteins with Mascot search scores .50, which were absent from the control protein bands, and proteins with
significantly higher scores than the control proteins are indicated on the right-hand sides of the panels. The NCBI accession numbers of the identified
proteins are also indicated. (C) The GAPDH-A gene of N. benthamiana was cloned and the deduced amino acid sequence was aligned using GENETYX-
Mac ver. 14.0.1 with its closest homolog from N. tabacum (accession number P09043) and that from Arabidopsis thaliana (accession number
AAA32793). The blue lines show the peptide sequences detected.
doi:10.1371/journal.ppat.1004505.g002
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Figure 3. Multiplication of RCNMV is inhibited in NbGAPDH-A-silenced N. benthamiana leaves. (A) Gene silencing of NbGAPDH-A was
induced in N. benthamiana plants inoculated with the ALSV vector, which harbored a 294 bp partial fragment (nucleotides 352–645 from start codon)
of NbGAPDH-A (ALSV/gsGAP), via Agrobacterium. The empty ALSV vector (ALSV) was used as a control. Total RNA was prepared from two ALSV-
infected and three ALSV/gsGAP-infected plants. NbGAPDH-A mRNA levels were determined by real time PCR using primers specific to NbGAPDH-A
(nucleotides 755–954 from start codon). The real time PCR results for the EF-1 mRNA (closed column) were used to adjust the relative accumulation
levels of NbGAPDH-A mRNA (gray column). (B) In vitro transcripts of a recombinant RCNMV that expressed GFP from its subgenomic RNA (RCNMV-
GFP, Figure S1E) were inoculated mechanically onto ALSV- or ALSV/gsGAP-infected N. benthamiana plants. At 20 hpi, the percentages of fluorescent
foci that comprised multiple cells were measured using epifluorescence microscopy. ‘n’ represents the total number of fluorescent foci in 4
inoculated leaves (about 25 square centimeters). (C) An Agrobacterium culture that contained the pBICR1sG2 plasmid, which expressed RCNMV-GFP
(Figure S1F), was diluted to OD600 = 0.03 and infiltrated into ALSV- or ALSV/gsGAP-infected N. benthamiana plants. At 35 hpi, protein was extracted
from the infiltrated leaves and subjected to Western blotting using anti-GFP antibody. RbcL is a Coomassie brilliant blue-stained gel image, which
shows the large subunit of Rubisco proteins. The accumulated levels of GFP from three separate experiments were quantified using the Image Gauge
program and plotted in the graph. The lowest two panels show representative epifluorescence microscopy images of the infiltrated leaves at 35 hpi.
Scale bar = 50 mm.
doi:10.1371/journal.ppat.1004505.g003

Figure 4. NbGAPDH-A does not affect the accumulations of RCNMV RNA and MP at the single-cell level. (A) An Agrobacterium culture
that contained the pBICR12fsMP plasmid, that expressed movement-deficient RCNMV (Figure S1G), was diluted to OD600 = 0.8 and infiltrated into
ALSV- or ALSV/gsGAP-infected N. benthamiana plants (two plants for each). At 26 hpi and 43 hpi, the total RNA was extracted from the infiltrated
leaves and subjected to Northern blotting using DIG-labeled riboprobes specific for the plus-strand (+) RNA1 or RNA2 of RCNMV. rRNA is an ethidium
bromide-stained agarose gel image of 1 mg total RNA, which was used as the loading control. The numbers below the images represent the relative
accumulation levels (means 6 SE) of viral RNAs using the Image Gauge program (Fuji Film), which were calculated based on two independent
experiments. Asterisk indicates a not significant (P.0.05; Student’s t-test) difference compared with the viral RNA accumulation level in the
protoplasts from ALSV-infected N. benthamiana. (B) Protoplasts prepared from ALSV- or ALSV/gsGAP-infected N. benthamiana plants (each two
plants) were inoculated with a mixture of in vitro transcripts of the recombinant RCNMV RNA1, which expressed GFP from subgenomic RNA; and
RNA2, which expressed MP tagged with HA (Figure S1H). Proteins extracted from 26104 protoplasts were loaded in each lane. GFP and MP-HA were
detected using a rabbit polyclonal antibody against GFP and a rat polyclonal antibody against HA, respectively. RbcL is a Coomassie brilliant blue-
stained gel image of proteins extracted from 26104 protoplasts, which shows the large subunit of Rubisco proteins. The numbers below the images
represent the relative accumulation levels (means 6 SE) of the proteins using the Image Gauge program (Fuji Film), which were calculated from two
independent experiments. Double asterisk indicates a not significant (P.0.05; Student’s t-test) difference compared with the protein accumulation
level in the protoplasts from ALSV-infected N. benthamiana.
doi:10.1371/journal.ppat.1004505.g004
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transiently in N. benthamiana leaves via agroinfiltration, the

protein localized exclusively to chloroplasts (Figure 5A, left two

panels and Figure 5B, panels 1 and 2). The localization pattern of

NbGAPDH-A-GFP was not altered by coexpression with

RCNMV MP-mCherry. NbGAPDH-A-GFP signals were detect-

ed in the chloroplasts and were never detected in PD (Figure 5A,

right four panels). This suggests that the transiently expressed MP

does not interact with NbGAPDH-A in vivo.

Next to investigate whether the subcellular localization of

NbGAPDH-A-GFP could be affected by RCNMV RNA replica-

tion, NbGAPDH-A-GFP was coexpressed with RNA1. The GFP

signals were detected in punctate structures that formed near the

surface regions of epidermal cells, as well as in chloroplasts

(Figure 5B, panel 3). These cortical signals colocalized with ER

marker signals (Figure 5B, panel 4). Similar cortical punctate

signals of NbGAPDH-A-GFP were also detected when it was

coexpressed with both RNA1 and RNA2 (Figure S7), but not with

the viral replicase component proteins, p27 and p88 (Figure 5B,

panels 5 and 6). Lack of the cortical punctate signals of

NbGAPDH-A-GFP in the latter leaves does not seem to be due

to the low level of viral replicase proteins. p27 accumulated

efficiently in the latter leaves (Figure S8). p88 was below the limit

of detection in these agroinfiltrated leaves, as described previously

[28,29]. These results suggested the association between the

localization of NbGAPDH-A-GFP to punctates on the cortical ER

and the replication of RNA1. To examine this association is

specific to NbGAPDH-A-GFP, we investigated the localization of

free GFP or the GFP with chloroplast-targeting signal peptide in

the presence of RNA1. No cortical punctate signals were detected

in the leaves expressing these GFP proteins with RNA1 (Figure 6

and Figure S9). These results suggested that NbGAPDH-A was

recruited to the cortical punctate structures in association with the

replication of RNA1.

NbGAPDH-A interacts with RCNMV MP in vivo
The interaction between NbGAPDH-A and RCNMV MP in

vivo was confirmed by BiFC assays in N. benthamiana epidermal

cells. NbGAPDH-A was fused to the C-terminal half of yellow

fluorescent protein (YFP) at the C terminus (NbGAPDH-A-cYFP)

and was expressed with Tomato bushy stunt virus (TBSV) silencing

suppressor p19 in N. benthamiana via agroinfiltration. Recombi-

nant RCNMV transcripts that expressed the MP fused to the N-

terminal half of YFP at the C terminus (MP-nYFP, Figure S1I) was

mechanically inoculated at 16 h post infiltration. At 28 hpi with

the recombinant virus, fluorescence was observed using CLSM.

YFP fluorescence was reconstituted in the presence of

NbGAPDH-A-cYFP and the MP-nYFP (Figure 7A, left panel).

No YFP fluorescence was detected in control experiments

(Figure 7A, center and right panels; Figure S1J). With higher

magnification, reconstituted YFP signals were observed as

punctate structures in the cortical region (Figure 7B, left panel)

and were also detected in the cell wall (Figure 7B, right panel, see

Discussion). Reconstituted YFP signals in the cortical punctates

were confirmed to overlap with ER marker signals (Figure 7C).

These results, together with the localization results of the MP

expressed from recombinant virus to the cortical VRC ([10] and

Figure 1) show that the reconstituted YFP signals are on the

cortical VRC.

NbGAPDH-A interacts with RCNMV MP and p27 in vitro
Subcellular localization results (Figure 5) and BiFC results

(Figure 7) suggest that NbGAPDH-A interacts with both viral

replicase protein(s) and MP in association with the replication of

viral RNA. To confirm the direct interaction between

NbGAPDH-A and RCNMV MP, or NbGAPDH-A and p27,

we performed GST pulldown assays in vitro. Bacterially expressed

and purified NbGAPDH-A with an N-terminal 66His tag and C-

terminal myc tag (His-GAP-myc) was incubated with N-terminally

GST- and C-terminally HA-tagged MP (GST-MP-HA), N-

terminally GST-fused p27 (GST-p27), or GST, which were

captured on glutathione-bound beads. Immunoblot analyses using

an anti-myc antibody demonstrated that His-GAP-myc was pulled

down by GST-MP-HA and GST-p27, but not by GST (Figure 8),

thereby indicating that His-GAP-myc binds to both MP and p27

in vitro. To rule out the possibility that coprecipitation in the

GST-pulldown experiment was mediated by interaction with any

unspecific RNA that bound to MP or p27, we included RNaseA to

the reaction. Addition of 50 mg/ml of RNaseA did not affect the

result (Figure S10), suggesting that NbGAPDH-A interacted with

the MP and p27 directly.

Silencing of NbGAPDH-A compromises MP localization to
the VRC

To address the possible effects of NbGAPDH-A on the

subcellular localization of MP, we investigated whether MP

targeting to the PD or to the cortical VRC was affected by the

silencing of NbGAPDH-A. Our previous results showed that the

transient expression of MP-GFP in N. benthamiana cells resulted

in its localization exclusively to the PD, while infection with

recombinant RCNMV RNAs that encoded MP-GFP resulted in

the formation of cortical VRC and localization to the VRC as well

as to the PD [10]. Agroinfiltration of pBICRMsG that expressed

MP-GFP fusion protein [10] into ALSV/gsGAP-infected N.
benthamiana plants resulted in the same localization to PD that

was found in ALSV-infected plants (Figure S11). This showed that

NbGAPDH-A had no effect on the intracellular transportation of

RCNMV MP to the PD.

Next, we investigated the effects of NbGAPDH-A-silencing on

the localization of MP to the cortical VRC. The pBICR1/

MsG2fsMP plasmid, which expressed recombinant RCNMV

RNAs that encoded MP-GFP (Figure S1K) [10], was agroinfil-

trated into ALSV- or ALSV/gsGAP-infected plants. During the

early stage of infection at 38 h post infiltration, cortical fluorescent

punctates were detected in most of fluorescent mesophyll and

epidermal cells in ALSV-infected plants (Figure 9A, left planels),

whereas the majority of the fluorescence exhibited a dispersed

cytoplasmic pattern in mesophyll cells of ALSV/gsGAP-infected

plants (Figure 9A, upper right panels). In epidermal cells, cortical

punctates were detected rarely and the PD localization of MP-

GFP was detected in ALSV/gsGAP-infected plants (Figure 9A,

lower right panel). The ratio of fluorescent cells with cortical

punctates was 7.4 times higher in ALSV-infected plants compared

with ALSV/gsGAP-infected plants (Figure 9B). At 44 h post

infiltration with the recombinant RCNMV, the ratio of fluorescent

cells with cortical punctates increased to 41.0% in ALSV/gsGAP-

infected plants, although the number of cortical punctates in a

single fluorescent cell was lower compared to that in ALSV-

infected plants (Figure S12).

The negative effect of NbGAPDH-A-silencing on the localiza-

tion of MP to the cortical VRC was confirmed using protoplasts.

At 12 h post infection with the transcripts of pUCR1-MsG and

pRNA2fsMP (Figure S1L) [10], cortical fluorescent punctates with

MP-GFP were detected in the protoplasts prepared from ALSV-

infected plants, whereas they were barely detectable in the

protoplasts prepared from ALSV/gsGAP-infected plants (Fig-

ure 9C). Probably MP-GFP molecules that were diffused in the

cytoplasm could not be detected by CLSM. Despite the reduced

fluorescence, MP-GFP accumulated at similar levels in both
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protoplasts (Figure 9D), thereby showing that NbGAPDH-A
silencing did not affect the expression, or stability of MP-GFP.

These results suggest that NbGAPDH-A is involved in the

recruitment of RCNMV MP to the cortical VRC, or that it may

stabilize the interaction between MP and VRC.

Finally, these protoplasts were subjected to immunofluorescent

staining of dsRNA for the detection of VRC. In the protoplasts

prepared from ALSV/gsGAP-infected plants, MP-GFP was rarely

detected. However, cortical punctate-like structures of dsRNA

were detected in these cells, as well as in the protoplasts prepared

from ALSV-infected plants (Figure 10). The accumulation level of

p27 protein was also similar in both protoplasts (Figure S13).

These results suggest that NbGAPDH-A does not affect the

formation of cortical VRC and that it is associated with the

recruitment of RCNMV MP to the cortical VRC.

Discussion

Replication and movement processes are assumed to be linked

to facilitate successful infection by plant viruses. In addition to the

temporal regulation of MP expression [47–49], spatial regulation

is required to allow MPs to encounter the viral genomes. Thus,

localized MP synthesis at the VRC, or specific MP recruitment to

the VRC, would facilitate efficient and specific virus cell-to-cell

movement [50]. In the present study, we showed that MP-

containing cortical punctate structures formed during the early

stage of RCNMV infection and large aggregates assembled

adjacent to the nucleus during the late stage of infection in N.
benthamiana cells, and both were sites of viral RNA replication

(Figure 1). These results suggest that RCNMV VRC changes its

location from cortical to perinuclear ER-containing structures,

while the VRC also increases in size, as the infection stage

proceeds.

A division of roles between the VRCs formed during the early

and late stages of infection has recently been proposed for Potato
virus X (PVX). The early VRCs of PVX are formed in a

membranous structure called the ‘cap’ at the orifice of PD, and

triple gene block (TGB)-type MPs that accumulate at the cap and

PD pore play roles in trafficking the replicated viral genomic RNA

via the PD [51]. Furthermore, the X-body formed during the late

stage of infection compartmentalizes the TGB1 protein and

prevents it from having roles in translational activation, which

could lead to the destabilization of PVX virions, while the VRCs

that surround the TGB1 core maximize the replication of the viral

RNA and the production of virions [52]. The cap structure at the

PD orifice and MP compartmentalization in the X-body were not

detected in RCNMV-infected cells [10], but it is likely that the two

types of RCNMV VRCs have distinct roles. Given that RCNMV

cell-to-cell movement occurs before the large aggregate-type

VRCs form in virus-infected N. benthamiana epidermal cells

[10,39, unpublished results], it is probable that only the cortical

VRC contributes to virus cell-to-cell movement whereas the large

aggregate-type VRC (X-body) might maximize the production of

progeny virions.

Our previous studies showed that the host proteins that

contribute to the replication of RCNMV RNAs colocalized with

p27 in the perinuclear large aggregates [30,31], rather than the

cortical VRC. It is possible that the modes of VRC formation

differ between the cortical VRC and the perinuclear large

aggregates. Further studies using specific antibodies against the

host factors associated with the VRC are required to answer this

question.

We identified NbGAPDH-A as an interacting partner for

RCNMV MP (Figure 2). Although VIGS of NbGAPDH-A using

ALSV vector that contained 294 bases of the gene fragment

reduced the accumulation of the mRNA to 3% of that in the

empty ALSV infected plants (Figure 3A), the silencing had no

effect on plant growth (Figure S4). This result contradicted a

previous report where transgenic tobacco (Nicotiana tabacum)

plants with silenced GAPDH-A exhibited severe growth inhibition

compared with the wild type plants [53]. Over 1,000 bases of the

GAPDH-A coding region had been introduced into these

transgenic plants to express an antisense RNA that was

complementary to GAPDH-A mRNA. The induction of gene

silencing using such a long sequence might have affected the

expression levels of unidentified GAPDH orthologs, which could

have led to growth inhibition. Alternatively, N. tabacum GAPDH-

A might have a greater impact on growth than that of N.
benthamiana, or transgenic plants in which the gene was silenced

had a greater effect on the phenotype than VIGS. Our

preliminary results showed that induction of VIGS of

NbGAPDH-A by the other widely-used VIGS vector based on

Tobacco rattle virus (TRV) caused the same symptoms as those by

the empty TRV vector (Figure S14). This supports that VIGS of

NbGAPDH-A in N. benthamiana does not cause severe symptoms.

We showed that NbGAPDH-A is a host protein that is involved

in the cell-to-cell movement of RCNMV (Figures 3 and 4). In

addition to chloroplast localization, the NbGAPDH-A-GFP fusion

protein also localized to cortical VRCs. The localization to VRC

was associated with viral RNA replication, not the replicase

component proteins alone (Figure 5B). Gene silencing of

NbGAPDH-A inhibited the targeting of RCNMV MP to cortical

VRCs (Figure 9), but it did not affect the targeting of MP-GFP to

the PD (Figure S11), or the stability of MP (Figures 4 and 9). Based

on the overall results obtained in the present study, we propose

that NbGAPDH-A is contained in the VRC without influencing

viral RNA replication and is an interstitial agent between

RCNMV MP and the VRC. NbGAPDH-A probably plays a role

in recruiting MP to the VRC, or stabilizing the interaction

between MP and VRC. BiFC assays confirmed the in vivo
interaction between NbGAPDH-A and the MP (Figure 7). BiFC

assays also showed that the interaction occurred not only in the

cortical VRC, but also in the large aggregates and in the cell wall

(Figure 7B). The distribution pattern of the reconstituted YFP

signal was quite similar to that of the MP-GFP expressed from the

recombinant virus [10]. The signals of the reconstituted YFP

observed in the cell wall could be due to the NbGAPDH-A-YFP-

MP complexes that had been transported to PD by the function of

Figure 5. NbGAPDH-A changes its subcellular localization in association with RCNMV RNA replication, but not with viral proteins.
Representative CLSM images of agroinfiltrated N. benthamiana epidermal cells. Each Agrobacterium culture was diluted to OD600 = 0.8 and equal
volume of cultures were mixed for infiltration. Confocal microscopy images were taken at 40 h after infiltration. Images present confocal projections
composed of 15 optical sections taken at 1 mm intervals, from the surface to the middle of epidermal cells. Chloroplast autofluorescence was
detected in all the RFP-channel images by the use of 610IF emission filter. Scale bar = 20 mm. (A) Epidermal cells transiently expressing NbGAPDH-A-
GFP (left two panels), and NbGAPDH-A-GFP with MP-mCherry (right four panels). Arrows represent PD-localized MP-mCherry signals. (B) Epidermal
cells, which transiently expressed NbGAPDH-A-GFP (panels 1 and 2), or NbGAPDH-A-GFP with RCNMV RNA1 and ER marker (ER-mCherry) (panels 3
and 4), or NbGAPDH-A-GFP with viral replicase component proteins p27 and p88 (panels 5 and 6). Arrowheads represent chloroplast-localized
NbGAPDH-A-GFP signals and arrows represent cortical ER-localized NbGAPDH-A-GFP signals.
doi:10.1371/journal.ppat.1004505.g005
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MP. However, significance of the observed colocalization of

NbGAPDH-A and MP in the cell wall is ambiguous. This is

because the reconstitution of YFP is irreversible [54], and because

NbGAPDH-A-GFP did not localize in the cell wall when

coexpressed with RCNMV RNA1 and RNA2 (Figure S7). Further

study is needed to elucidate the role, if any, of NbGAPDH-A in

the cell wall in virus infection.

GST pulldown assays confirmed that NbGAPDH-A interacted

with both p27 and MP in vitro (Figure 8). This suggests that

NbGAPDH-A may be a bridge between MP and p27 that is a

constituent of the VRC. In vivo, however, relocalization of

NbGAPDH-A-GFP to the cortical VRC and interaction of

NbGAPDH-A-cYFP and MP-nYFP occurred only in association

with the viral RNA replication (Figures 5B and 7). By contrast,

Figure 6. Subcellular localization of free GFP and GFP with chloroplast targeting signal is not affected by coexpression of RCNMV
RNA1. Representative CLSM images of agroinfiltrated N. benthamiana epidermal cells. Epidermal cells transiently expressing RCNMV RNA1 together
with GFP (left panels), or with GFP with chloroplast targeting signal peptide of Rubisco small subunit (RbcSTP-GFP, right panels). Scale bar = 20 mm.
Conditions for infiltration, plant incubation, and CLSM were similar to those in Figure 5.
doi:10.1371/journal.ppat.1004505.g006
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Figure 7. Bimolecular fluorescence complementation analyses of the interaction between RCNMV MP and NbGAPDH-A. NbGAPDH-A
fused to the C-terminal half of YFP at the C-terminus (NbGAPDH-A-cYFP), or C-terminal half of YFP (cYFP) as the negative control, was expressed with
TBSV silencing suppressor p19 in N. benthamiana leaves via Agrobacterium infiltration. 18 h after infiltration, in vitro transcripts of the recombinant
RCNMV that expressed fusion protein of the MP and N-terminal half of YFP at the C-terminus (R1-MnY+R2fsMP, Figure S1I), or the recombinant virus
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coexpression of NbGAPDH-A-GFP and p27 fused with DsRed-

monomer in N. benthamiana cells using agroinfiltration resulted in

different localization patterns, with the former in chloroplasts and

the latter in the ER-containing large aggregate ([32] and Figure

S15). Furthermore, coexpression with MP-mCherry did not affect

the localization of NbGAPDH-A-GFP to the chloroplasts

(Figure 5A). These results suggest that unidentified factors might

be involved in the in vivo interaction between NbGAPDH-A and

viral proteins. Three possibilities can be considered, 1) Enhance-

ment of the local concentration of viral proteins: RNA1 replicates

autonomously, and the replication coupled with the translation of

replicase proteins p27 and p88, followed by the formation of

480 kDa replication complex [30,55,56]. This replication cycle

might increase the local concentration of p27 in or near the VRC

on the cortical ER membrane to higher levels than transiently

expressed p27. Such a process might improve the probability that

p27 and NbGAPDH-A will encounter in the cortical VRC. In

association with this assumption, transiently expressed p27-GFP

alone forms a large aggregate ([32] and Figure S15). Formation of

such aggregates might sequester p27 and prevent the interaction

with NbGAPDH-A. 2) Involvement of unknown host proteins

associated with the VRC: The formation of the 480 kDa

replication complex of RCNMV requires not only p27 and p88

but also viral RNAs in host cells [30]. The 480 kDa replication

complex contains many host proteins that have not been identified

yet. It is possible that such unknown proteins are involved in the

recruitment of NbGAPDH-A to the VRC or in the stabilization of

the interaction in vivo. 3) Involvement of viral RNA: Cytoplasmic

GAPDH (GAPDH-C) has been reported to interact with the cis-
acting elements of many RNA viruses, some of which affect the

multiplication of viruses ([57,58] and references therein). Although

chloroplastic and cytoplasmic GAPDHs are assumed to have

evolved from different lineages [59], their amino acid sequence

identity is as high as ca 45% in Arabidopsis thaliana (NCBI Gene

that expressed N-terminal half of YFP (R1-nYFP+R2fsMP, Figure S1J) as the negative control, was mechanically inoculated. At 28 hpi of the
recombinant virus, reconstructed YFP signal was visualized using CLSM. (A) Reconstituted YFP signals were detected as foci composed of 5–10 cells
in the leaves that expressed NbGAPDH-A-cYFP and inoculated with R1-MnY+R2fsMP (left panel). No YFP signals were detected in the leaves that
expressed unfusedcYFP (center panel), or those inoculated with R1-nYFP+R2fsMP (right panel). Scale bar = 50 mm (B) Large magnification images of
the reconstituted YFP in the cortical (left panel) and inner cell wall region (right panel). Images are from optical sections taken at upper part for
cortical region and middle part for cell wall region in the same site of the leaf and mergers of DIC and GFP channel. Scale bar = 10 mm (C)
Reconstituted YFP signals as cortical punctates (left panel), ER-mCherry signals (center panel) and overlapped (right panel). Most YFP-punctates are
larger than those in (B), because this cell is closer to the center of infection and that shows the cell is at a later stage of virus infection. Scale
bar = 10 mm.
doi:10.1371/journal.ppat.1004505.g007

Figure 8. NbGAPDH-A interacts with both RCNMV MP and p27 in vitro. Glutathione resin-bound GST, GST-fused MP (GST-MP-HA) and GST-
fused p27 (GST-p27) was incubated with the purified recombinant NbGAPDH-A (His-GAP-myc). After washing, the pulled-down complexes were
subjected to SDS-PAGE and analyzed by Western blotting (Wb) using anti-GST and anti-myc antibodies. Same samples were subjected to SDS-PAGE
and stained with Coomasie brilliant blue CBB). The bands that appeared in GST-MP-HA lanes (*) with almost similar mobility as GST-p27 are probably
the degradation product of GST-MP-HA.
doi:10.1371/journal.ppat.1004505.g008
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ID: 819567 and 822277) and Zea mays (NCBI Gene ID: 542367

and 542368). It is possible that NbGAPDH-A also has an RNA-

binding ability and that it is recruited to VRCs by interacting with

RCNMV RNAs in vivo, as shown in Hepatitis delta virus-infected

cultured cells [60]. These three possibilities may not be mutually

exclusive. Further studies on the molecular mechanisms of the

VRC formation are awaited.

In addition to glycolysis, cytoplasmic GAPDH-C has a variety

of functions, such as membrane fusion and vesicular transport

(reviewed in [61,62]). In contrast, only the classical functions

associated with carbon fixation have been reported previously for

GAPDH-A. Thus, further experimental evidence is required to

explain the involvement of GAPDH-A in the intracellular

transport mechanism of RCNMV RNA. Alternatively, RCNMV

might have evolved to utilize highly expressed and ubiquitous

GAPDH-A by diverting it from its natural functions. Several plant

RNA viruses use host metabolic enzymes and housekeeping

proteins in ways that are unrelated to their original functions [63].

Several chloroplast-localizing proteins have recently been shown

to regulate virus multiplication. Among these, chloroplastic

phosphoglycerate kinase (PGK) was isolated from RNA-dependent

RNA polymerase (RdRp) fraction prepared from Bamboo mosaic
virus-infected N. benthamiana. PGK positively regulates multi-

plication of the virus through the interaction with the 39

untranslated region of the viral genomic RNA and transportation

to the chloroplasts where the viral RNA replication occurs

[64,65]. ATP synthase-c subunit (AtpC) and Rubisco activase

(RCA) were also isolated from the RdRp fraction prepared from

the TMV-infected N. tabacum. AtpC and RCA negatively

regulate the movement and accumulation of the virus, respec-

tively [66]. Interestingly, gene silencing of these genes led to the

increased number and the smaller size of VRC. These results are

in contrast to our results that VIGS of NbGAPDH-A did not

affect the number and the size of the cortical VRC in RCNMV

infected cells and that it interfered with the recruitment of the

MP to the cortical VRC (Figures 9 and 10). Plant RNA viruses

might have evolved to utilize abundant chloroplast-localizing

proteins as the positive or negative regulators through the

interaction with viral proteins.

Materials and Methods

Plasmids given the prefix ‘‘pBIC’’ were used for Agrobacterium
infiltration, ‘‘pUC’’, ‘‘pRC’’ and ‘‘pR’’ were used for in vitro
transcription, ‘‘pCold’’ was used for protein expression in

Escherichia coli. pUCR1 [67] and pRC2|G [68] are full-length

cDNA clones of RNA1 and RNA2 of an RCNMV Australian

strain, respectively (Figure S1A). The plasmids described previ-

ously used in this study include pUCR1-MsG (Figure S1L) [39],

pBICR12fsMP (Figure S1G) [10], pBICRMsG [10], pBICR1/

MsG2fsMP (Figure S1K) [10], pRNA2fsMP (Figure S1B) [10],

pBICP35 [39], pBICp27-iFTH [28], pColdGST (where GST is

glutathione S-transferase) [29], pColdGSTp27 [29], pBICHA:-

cYFP [30], pBICp27 [67], pBICp88 [67], and pBICp19 [67].

E. coli DH5a was used for the construction of all plasmids. All

PCR reactions were performed using a high fidelity proofreading

KOD Plus-Ver.2 polymerase (Toyobo), and all the PCR-amplified

regions were verified by sequencing. The primers used in this

study are listed in Table S2.

Construction of plasmids expressing recombinant virus
RNAs

mCherry gene was amplified from pmCherry-N1 (Clontech)

using primers 1 and 2. The amplified PCR product was digested

with ClaI/MluI and inserted into the same sites of pUCR1-MsG

[39], producing pUCR1-MmC (Figure S1B) that expresses MP-

mCherry fusion protein from the subgenomic RNA.

AscI/SacI fragment of pUC118RA1(AscI) [10] that contains the

expression cassette of RCNMV RNA1 and AscI/SmaI fragment of

pUC118RA2(AscI) [10] that contains the expression cassette of

RCNMV RNA2 was inserted into SacI/SmaI site of pBIC18 [67]

binary vector, producing pBICR12 (Figure S1C) that expresses

full-genome of RCNMV.

pBICp27-iFTH is a binary vector plasmid expressing p27

tagged with FLAG-TEV protease recognition peptide-HA [28].

The TEV protease recognition peptide was replaced by 3C

protease recognition peptide by recombinant PCR to produce

pBICp27TEP (Mine and Okuno, unpublished). The tag sequence

for tandem affinity purification was amplified from pBICp27TEP

using primers 3 and 4. The cauliflower mosaic virus 35S promoter

and 59 half of RNA2 was amplified from pBICR12 using primers 5

and 6. A DNA fragment containing the 39 half of RNA2 and the

35S terminator sequence was amplified from pBICR12 using

primers 7 and 8. These three fragments were mixed and used as

the template for recombinant PCR using primers 6 and 8. The

generated PCR product was digested with AscI/SmaI and inserted

into the same sites of pBICR12, producing pBICR12/MP-TAP

(Figure S1D).

R1-MP:GFP plasmid [38] was digested with ClaI and MP

coding sequence was removed. The larger fragment was self-

ligated, producing pR1-sGFP (Figure S1E).

pR1-sGFP was digested with BglII/MluI and the 0.8 kb

fragment containing GFP gene was inserted into the same sites

of pUC118RA1(AscI), producing pUC118RA1sGC(AscI). pU-

C118RA1sGC(AscI) was digested with AscI/SacI and the 4.4 kb

fragment was inserted to the same sites of pBICR12, producing

pBICR1sG2 (Figure S1F).

Figure 9. Gene silencing of NbGAPDH-A inhibits the localization of RCNMV MP to the cortical VRCs. (A) Representative CLSM images of
ALSV- or ALSV/gsGAP-infected N. benthamiana mesophyll (upper panels) and epidermal cells (lower panels) infiltrated with Agrobacterium cultures
that contained pBICR1/MsG2fsMP, which expressed recombinant RCNMV RNAs encoding MP-GFP (Figure S1K). The images were obtained at 38 h
after infiltration. Scale bar = 30 mm. The images include the merged DIC and GFP channels, and they represent confocal projections of 20 optical
sections at 1 mm intervals, ranging from the surface to the middle of the cells. (B) The leaf samples in (A) were subjected to epifluorescence
microscopy and the percentage of fluorescent cells containing cortical punctates was determined. The data shown are the totals from three replicate
assays. (C) Protoplasts prepared from ALSV- or ALSV/gsGAP-infected N. benthamiana plants were inoculated with a mixture of in vitro transcripts of
pUCR1-MsG and pRNA2fsMP (Figure S1L) [10]. Representative CLSM images of the protoplasts at 12 hpi. Scale bar = 30 mm. The images include the
merged DIC and GFP channels (panels 1 and 2), or GFP channel (panel 3). They represent confocal projections of 15 optical sections at 2 mm intervals,
ranging from the surface to the center of the cells. (D) The protoplast samples in (C) were subjected to Western blotting. Proteins extracted from
26104 protoplasts were loaded in each lane. MP-GFP was detected using a rabbit polyclonal antibody against GFP. The numbers below the image
represent the relative accumulation levels (means 6 SE) of the proteins obtained using the Image Gauge program (Fuji Film), which were calculated
from two independent experiments. Asterisk indicates a not significant (P.0.05; Student’s t-test) difference compared with the accumulation of
proteins in the protoplasts from ALSV-infected N. benthamiana. RbcL is a Coomassie brilliant blue-stained gel image, which shows the large subunit
of Rubisco proteins.
doi:10.1371/journal.ppat.1004505.g009
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A DNA fragment containing HA and the 39 non-coding

region of RNA2 was amplified from pRC|2G using primers 9

and 10. A DNA fragment containing T7 promoter and the 59

half of RNA2 and HA was amplified from pRC2|G using

primers 11 and 12. These fragments were mixed and used as the

template for recombinant PCR using primers 10 and 12. The

generated PCR product was digested with EcoRI/SmaI and

inserted into the same site of pUC119, producing pUCR2MP-

HA (Figure S1H).

EcoRI/HindIII fragment of pBE2113 [69] that contains a 35S

promoter-‘ sequence-nos terminator cassette was inserted to the

same sites of pUC19 (Takara Bio Inc.) producing pUC2113. The

XbaI site downstream of ‘ sequence in pUC2113 was digested and

filled in with T4-polymerase, and the linker sequence containing

SacI site was ligated, producing pUC2113(SacI). EcoRV fragment

of piL:G3 (0.4 kb) [70] containing the 35S promoter and the 59

sequence of Tomato mosaic virus (ToMV) was inserted to the same

site of pUC2113(SacI), producing pUC:ToMVrec. EcoRI/Hin-

Figure 10. Cortical VRC formation in the NbGAPDH-A-silenced N. benthamiana protoplasts. Protoplasts prepared from ALSV- or ALSV/
gsGAP-infected N. benthamiana plants were inoculated with recombinant RCNMV RNAs that expressed the MP-GFP fusion protein (Figure S1L) and
subjected to immunostaining with anti-dsRNA primary antibody followed by Alexa Fluor 594-conjugated secondary antibody at an early stage of
infection (16 hpi). The left-most panels show the results for mock-inoculated protoplasts treated with the same antibodies. The right-most panels
show the results for protoplasts prepared from ALSV-infected plants treated with only secondary antibody. Images present confocal projections of
five optical sections at 1 mm intervals, which range from the surface to the middle of the protoplasts. N: nucleus. Scale bar = 20 mm.
doi:10.1371/journal.ppat.1004505.g010
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dIII fragment of pBE2113 was replaced by the EcoRI/HindIII

fragment of pUC:ToMVrec, producing pBE:ToMVrec. The

KpnI/MluI fragment of piL:G3 containing ToMV MP and

GFP sequence was inserted to the same sites of pTLW3 [71],

producing pTLWdCP-GFP. The ribozyme sequence of Tobacco
ringspot virus satellite RNA was PCR-amplified from pUCBR1R

plasmid [72] and introduced to MluI site downstream of ToMV 39

noncoding sequence in pTLWdCP-GFP, producing pTLWdCP-

GFP-rib. Finally, StuI/SacI fragment of pTLWdCP-GFP-rib,

containing most of the recombinant ToMV and the ribozyme

sequences was inserted into the same sites of pBE:ToMVrec,

producing pToMVdCP-GFP.

Plant growth conditions
N. benthamiana plants were grown on commercial soil (Tsuchi-

Taro, Sumirin-Nosan-Kogyo Co. Ltd.) at 2562uC and 16 hours

illumination per day.

Protoplast preparation and viral RNA inoculation using
polyethylene glycol

N. benthamiana protoplasts were prepared according to Li et al.
(2013) [73] and Navas-Castillo et al. (1997) [74] with minor

modifications. Briefly, young expanded leaves from 5 week-old

plants were cut into 1-mm strips with a razor blade and digested in

15 ml of enzyme solution (1% cellulase RS [Yakult Pharmaceu-

tical Ind. Co. Ltd.], 0.5% macerozyme R-10 [Yakult], 0.5 M

mannitol, 10 mM CaCl2, 5 mM MES, pH 5.7) within a petri dish

at 25uC in the dark with gentle shaking (40 rpm) for 4 to 5 h. After

being filtered through 4 layers of cheesecloth, protoplasts were

precipitated by centrifugation at 806 g for 2 min and were

suspended with 10 ml of MMC solution (0.5 M mannitol, 10 mM

CaCl2, 5 mM MES, pH 5.7). Concentration of cells were counted

using hemacytometer. Protoplasts (16105 cells in 100 ml) were

mixed with 5 mg of viral RNAs and 200 ml of PEG solution (1 g of

PEG4000 [Sigma-Aldrich #81240], 125 ml of sterile distilled

water, 1.25 ml of 0.8 M mannitol, 250 ml of 1 M Ca(NO3)2) and

mixed completely by gently tapping the tube. Then 2 ml of MMC

solution was added and mixed. After 15 min of incubation on ice,

protoplasts were precipitated by centrifugation at 806g for 2 min,

resuspended in 4 ml of MMC solution and precipitated by

centrifugation again. Protoplasts were resuspended in 0.5 ml of

W5 solution (154 mM NaCl, 125 mM CaCl2, 5 mM KCl, 2 mM

MES, pH 5.7) and incubated.

Preparation of protoplasts from NbGAPDH-A-silenced or

ALSV-infected N benthamiana plants was essentially described

above, except that the plants were 6–8 weeks old.

Immunofluorescent labeling
Fixation of N. benthamiana protoplasts and immunolabeling

procedure were as described by Liu et al. (2005) [20]. For the

detection of double-stranded RNA, formaldehyde-fixed proto-

plasts were incubated with mouse monoclonal antibody J2 (diluted

1:200; Scicons) for 16 h in a moisturized chamber at 4uC. The

samples were washed three times and then incubated with Alexa

Fluor 488-conjugated goat anti-mouse IgG antibody (diluted

1:200; Invitrogen) for 2 h at room temperature. After washing

three times, the samples were subjected to CLSM.

Affinity purification of RCNMV MP-containing fraction
N. benthamiana plants and Agrobacterium tumefaciens GV3101

(pMP90) were used for infiltration experiments as described

previously [67]. A. tumefaciens transformed by pBICR12/MP-

TAP, or negative control pBICR12 was used for expression of

MP-HA from viral context. 1.67 g of Agrobacterium-infiltrated

leaves at 48 h post infiltration were ground in liquid nitrogen and

homogenized in 5 ml of extraction buffer A (50 mM Tris-HCl

[pH 8.0], 150 mM NaCl, 5% glycerol, 0.5% Triton X-100, 1

tablet of Complete Mini protease inhibitor cocktail [EDTA-free,

Roche Diagnostics]/10 ml), followed by centrifugation at 21,0006
g for 10 min at 4uC to remove cell debris. The supernatant

(4.0 ml) was divided into 5 tubes (800 ml each), and each incubated

with 20 ml of Anti-HA Affinity Matrix (Roche #11815016001) for

4 h at 4uC with gentle rotation. The resin was washed three times

with 1 ml of washing buffer 1 (50 mM Tris-HCl [pH 7.4],

150 mM NaCl, 5% glycerol, 0.1% Triton X-100), and equilibrat-

ed with 3C buffer (washing buffer 1 containing 1 mM DTT).

Then the resin was incubated with 20 units of PreScission protease

(GE Healthcare) in 1 ml of 3C buffer for 16 h at 4uC with gentle

rotation. The resins were centrifuged at 5006g for 1 min, and the

supernatant (1 ml) was immunoprecipitated again with 50 ml of

ANTI-FLAG M2 Affinity Gel (Sigma-Aldrich #A2220) for 4 h at

4uC with gentle rotation. The gel was then washed three times

with washing buffer 1. The bound proteins were eluted by 125 ml

of elution solution (washing buffer 1 containing 150 ng/ml FLAG

peptide [Sigma-Aldrich #F3290]) for 30 min at 4uC with gentle

rotation. This elution process was repeated once again, and the

total of 250 ml was precipitated with trichloroacetic acid.

The affinity-purified preparation and its control preparation

were subjected to SDS-PAGE, and the several bands that were not

detected in the negative control lane (Figure 2A) were cut out and

subjected to liquid chromatography-tandem mass spectrometry

analysis, as described previously [28].

Cloning of NbGAPDH genes
RNA extraction from N. benthamiana leaves was performed

using PureLink Plant RNA Reagent (Invitrogen) and treated with

DNase (RQ1 RNase-free DNase; Promega). Reverse transcription

was carried out using PrimeScript RT reagent Kit (Takara) using

oligo-dT.

Based on the GAPDH-A sequence of N. tabacum (gi|120661),

primers 13 and 14 were designed. An 1176-bp nearly full-length

cDNA fragment of GAPDH-A gene was amplified from cDNA

derived from N. benthamiana RNA using primers 13 and 14. The

59 and 39 sequences of NbGAPDH-A were amplified by

SMARTer RACE cDNA amplification Kit (Clontech) using the

gene-specific primers 15 and 16, respectively, and cloned into

pGEM-T Easy (Promega). From each of 8 clones the 59 and 39

ends of NbGAPDH-A gene were determined. Nucleotide sequence

data of NbGAPDH-A gene is available in the DDBJ/EMBL/

Genebank databases under accession number AB937979.

Based on the GAPDH-B sequence of N. tabacum (gi|120665),

primers 17 and 18 were designed. A 1270-bp partial fragment of

GAPDH-B cDNA was amplified from cDNA derived from N.
benthamiana RNA using primers 17 and 18, and cloned into

pGEM-T Easy. Partial sequence of NbGAPDH-B gene was

determined.

Construction of plasmids that express NbGAPDH-A-
derivatives

Full-length cDNA of NbGAPDH-A was amplified from cDNA

derived from N. benthamiana RNA using primers 19 and 20. The

generated PCR product was then cloned into the BamHI site of

pBICP35, producing pBICNbGA-myc.

Full-length cDNA of NbGAPDH-A was amplified from

pBICNbGA-myc using primers 14 and 19. The generated PCR

product was digested with BamHI/ClaI and cloned into the same

sites of pUB/RMsG [39], producing pUBNbGA-sG. BamHI/
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HindIII fragment of pUBNbGA-sG, containing NbGAPDH-A-
GFP and 35S terminator, was cloned into the same sites of

pBICP35, producing pBICNbGA-sG. This was used for transient

expression of NbGAPDH-A-GFP fusion protein by agroinfiltra-

tion.

Construction of plasmids that express fluorescent
protein-tagged markers

Chloroplast targeting sequence of RbcS was amplified from

cDNA derived from A. thaliana RNA using primers 21 and 22.

sGFP sequence was amplified from pUBsGFP [39] using primers

23 and 24. Recombinant PCR fragment was amplified using

primers 21 and 24. The generated PCR product was then cloned

into the BamHI and KpnI sites of pUBP35 [67], producing

pUBTPRbcS-sGFP. HindIII/SalI fragment of pUBTPRbcS-

sGFP was cloned into the same sites of pBICP35, producing

pBICRbcSTP-sGFP.

MP-mCherry sequence was amplified from pUCR1-MmC

using primers 25 and 26. The generated PCR product was

digested with BamHI/EcoRI and cloned into the same sites of

pBICP35, producing pBICRMmC.

pBICRbcSTP-sGFP and pBICRMmC was introduced into A.
tumefaciens and used for the transient expression of RbcSTP-GFP

and MP-mCherry, respectively.

Virus-induced gene silencing
Construction of ALSV vector pBICAL1, pBICAL2 and

pBICAL2gsPDS was described previously [75]. Partial fragment

of NbGAPDH-A (294 nucleotides) was amplified from cDNA

derived from N. benthamiana RNA using primers 27 and 28. The

fragment was digested with BamHI/XhoI and inserted into the

same sites of pBICAL2, producing pBICAL2gsNbGAP-A.

The plasmids containing the ALSV expression cassette were

introduced into A. tumefaciens GV3101 (pMP90). Similar amount

of fresh colonies of Agrobacterium containing pBICAL1 and each

of pBICAL2, pBICAL2gsPDS, or pBICAL2gsNbGAP-A were

collected using sterile toothpicks and suspended in 0.2 ml of Agro

Incubation Buffer (10 mM MgCl2, 10 mM MES-KOH, pH 5.7,

0.15 mM Acetosyringone) at OD600 of 2.0–3.0, and were incubated

at 20uC for more than 3 h in the dark. Sterile toothpick was soaked

in the Agrobacterium suspension and stuck 4 times into 1st, 2nd and

3rd true leaves of 17–21 days old N. benthamiana plants. Three to 4

days later, toothpick-inoculation was repeated to a newly developed

leaf. After inoculation, the plants were incubated in a moist

chamber at 22uC overnight and transferred to a plant growth room

at 25uC. Two to 3 weeks later, silencing of PDS or NbGAPDH-A
was induced in the non-inoculated upper leaves.

Quantitative and semi-quantitative RT-PCR analysis
Total RNA extracted from N. benthamina leaves or protoplasts

were subjected to reverse transcription using PrimeScript RT

reagent Kit (Takara) using oligo-dT according to manufacturer’s

protocol. Real-time PCR was carried out using SYBR Premix Ex

Taq (RR420A, Takara) using primers 29 and 30 for EF1 and

primers 16 and 31 for NbGAPDH-A. Quantitative analysis of each

mRNA was performed using a Thermal cycler Dice Real Time

System TP800 (Takara). Semi-quantitative RT-PCR was per-

formed using the same cDNA and primers and amplified by Ex

Taq polymerase (Takara).

Western and northern blot analyses
Protein extraction and western blot analyses were performed as

described previously [76]. Total RNA extraction from N.

benthamiana leaves or protoplasts and northern blot analysis were

performed as described previously [76]. Probes used for detection

of positive-strand RCNMV RNA1 and RNA2 were as described

previously [49]. The signals were detected with a luminescent

image analyzer (LAS 1000 plus, Fuji Film Co. Ltd.) and the signal

intensities were quantified using the Image Gauge program

version 3.1 (Fuji Film).

Microscopy
The spread of GFP fluorescence was observed using an

Olympus BX53 fluorescence microscope equipped with an

Olympus DP72 camera using the imaging program Olympus

cellSens.

Subcellular localizations of proteins tagged with FPs and

dsRNA that was detected with fluorescent antibodies were

observed using an Olympus FluoView FV500 confocal micro-

scope. Both a Nikon 606 Plan Apo oil immersion objective lens

(numerical aperture 1.4) and a Nikon 406 UPlan Apo oil

immersion objective lens (numerical aperture 1.0) were used.

The sets of dichroic mirror, beam splitter, and emission filter used

were DM488/543, SDM560, and BA505-525 for GFP, and

DM488/543/633, SDM630, and BA560-600 for mCherry For

the detection of mCherry signal and chloroplast autofluorescence

simultaneously, emission filter BA610IF was used. In experiments

for detecting dual localization, scanning was performed in

sequential mode to minimize signal bleed-through. All images

shown are from optical sections taken at 1 or 2 mm intervals and

were processed using Adobe Photoshop CS6 software.

Construction of protein-expression vectors in E. coli
BamHI/EcoRI fragment of pBICRMP-HA [39] that contains

MP-HA gene was inserted into pCold-1 (Takara), producing

pCold-MP-HA. EcoRI/KpnI fragment of pCold-MP-HA that

contains MP-HA gene was inserted into the same sites of

pColdGST, producing pColdGST/MP-HA.

pBICNbGAP-myc was digested with BamHI and the smaller

fragment containing NbGAPDH-A-myc was cloned into the same

site of pCold-1 in the correct orientation, producing pColdNb-

GAP-myc.

GST pulldown assay
E. coli BL21(DE3) strain was transformed with plasmids

containing the prefix pCold and used for the expression of GST

and GST-fused viral proteins and NbGAPDH-A tagged with a

myc. All the conditions and procedures are described previously

[31].

Construction of BiFC vectors
The sequence of the C-terminal half of YFP was amplified from

pBICHA:cYFP [30] using primers 32 and 33 [30]. The amplified

DNA was digested with StuI and cloned into StuI-digested

pBICAsc2 [30], producing pBICHA-cYFPAsc2. Full-length

cDNA of NbGAPDH-A was amplified from pUBNbGA-sG using

primers 34 and 35. The generated PCR product was digested with

BamHI and cloned into pBICHA-cYFPAsc2, producing pBIC-

GAP-HA-cYFP.

myc-nYFP sequence was amplified from pBICMP-myc-nYFP

using primers 36 and 37. The amplified PCR products were

digested with ClaI/MluI and cloned into the same sites of

pUCR1-MsG, producing pUCR1-MnY (Figure S1I).

p88-myc-nYFP sequence was amplified from pUCR1-MnY

using primers 37 and 38. p88 sequence was amplified using

primers 39 and 40 The recombinant PCR products were
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generated from mixture of these products using primers 37 and 39,

and were digested with MluI/XhoI and cloned into the same sites

of pUCR1-MsG, producing pUCR1-nYFP (Figure S1J).

BiFC assay
Twenty-five to 28 days old N. benthamiana plants were used for

BiFC assays. pBICGAP-HA-cYFP, or control pBICHA-cYFPAsc2

plasmid, together with pBICp19 that expresses TBSV silencing

suppressor protein p19 was infiltrated via A. tumefaciens GV3101

(pMP90) as described above. The plants were incubated in a moist

chamber at 22uC for 18 h. Then in vitro transcripts (1 mg/ml) of

the recombinant RCNMV that expresses MP-nYFP (Figure S1I),

or negative control virus that expresses nYFP (Figure S1J) were

mechanically inoculated onto the leaves. The plants were

incubated in a moist chamber at 17uC for 27–30 h and were

subjected to CLSM.

Accession number
NbGAPDH-A was registered through DDBJ and accession

number AB937979 was given on May 27 2014.

Supporting Information

Figure S1 Schematic diagrams of Red clover necrotic
mosaic virus (RCNMV) and various derivative con-
structs. (A) Genome map of RCNMV. Open boxes and bold

lines show open reading frame (ORF) and the untranslated regions

of the virus, respectively. (B–L) Plasmids containing the prefix

‘pUC’ and ‘pR’ and pRNA2fsMP were cut with SmaI and used as

templates for in vitro transcription. Plasmids containing the prefix

‘pBIC’ were used for inoculation via Agrobacterium. Shaded boxes

show the ORF of fluorescent proteins and tag peptides. Dashed

boxes show the untranslated MP ORF; and fs is the four-

nucleotide insertion for a frameshifting mutation. Key: T7, T7

promoter; Pro, Cauliflower mosaic virus (CaMV) 35S promoter;

Ter, CaMV terminator; Rz, ribozyme sequence; SmaI, SmaI

recognition sequence.

(TIF)

Figure S2 RCNMV MP fused with tandem affinity
purification (TAP) tag sequence is functional. pBICR12

(Figure S1C) and pBICR12/MP-TAP (Figure S1D) and

pBICR12fsMP (Figure S1G) [10] were inoculated to two young N.
bethamiana plants via Agrobacterium using toothpicks (see ‘Virus-

induced gene silencing’ paragraphs in Materials and Methods),

respectively. Proteins were extracted from the inoculated leaves at 4

days post infiltration (dpi) and upper non-inoculated leaves at 7 dpi,

respectively. 20 mg of samples was loaded to each lane. CP was

detected using a rabbit polyclonal antibodies against RCNMV CP.

MP-TAP was detected using a rat polyclonal antibodies against HA.

RbcL is a Coomassie brilliant blue-stained gel image, which shows

the large subunit of Rubisco proteins.

(TIF)

Figure S3 Semi-quantitative RT-PCR analysis of
NbGAPDH-A mRNA accumulation levels in the ALSV
vector-infected plants leaves. Total RNA was prepared from

each of two independent plants inoculated with empty ALSV

vector or ALSV/gsGAP vector. NbGAPDH-A mRNA levels were

determined by semi-quantitative RT-PCR. The RT-PCR results

for the EF-1 gene show that equal amounts of total RNA were

used for RT, and the RT reaction had an equivalent efficiency

with the samples. Primers used to amplify both genes are similar to

those used in Figure 3A.

(TIF)

Figure S4 NbGAPDH-A-silenced plant as well as ALSV-
infected plant does not exhibit any symptoms. Represen-

tative images of N. benthamiana plants 26 days post inoculation

with ALSV vectors via Agrobacterium. N. benthamiana plants

inoculated with the vector containing 102 nt of Phytoene
desaturase (ALSVgsPDS) started to be white at 9 dpi. Infection

with ALSV empty vector (wt ALSV) and the vector containing

294 nt of NbGAPDH-A gene (ALSVgsGAP) did not affect plant

growth and no symptoms were detected.

(TIF)

Figure S5 Multiplication of a recombinant RCNMV in
NbGAPDH-A-silenced N. benthamiana leaves at a late
stage of infection. An Agrobacterium culture that contained the

pBICR1sG2 plasmid, which expressed RCNMV-GFP (Figure

S1F), was diluted to OD600 = 0.03 and infiltrated into ALSV- or

ALSV/gsGAP-infected N. benthamiana plants. At 48 hpi, protein

was extracted from the infiltrated leaves and subjected to Western

blotting using anti-GFP antibody. RbcL is a Coomassie brilliant

blue-stained gel image, which shows the large subunit of Rubisco

proteins. The accumulated levels of GFP from three separate

experiments were quantified using the Image Gauge program and

plotted in the graph.

(TIF)

Figure S6 Multiplication of Tomato mosaic virus is not
affected by the silencing of NbGAPDH-A. An Agrobacterium
culture that contained the pToMVdCP-GFP plasmid, which

expressed the recombinant Tomato mosaic virus in which the CP

gene was replaced by GFP gene was diluted to OD600 = 0.03 and

infiltrated into ALSV- or ALSV/gsGAP-infected N. benthamiana
plants. At 40 and 48 hpi, protein was extracted from the infiltrated

leaves and subjected to Western blotting using anti-GFP antibody.

RbcL is a Coomassie brilliant blue-stained gel image, which shows

the large subunit of Rubisco proteins. The lower panels are the

representative epifluorescence microscopy images of the infiltrated

leaves at 40 hpi and 48 hpi. Scale bar = 100 mm.

(TIF)

Figure S7 Subcellular localization of NbGAPDH-A-GFP
coexpressed with RCNMV RNA1 and RNA2. Representa-

tive CLSM images of agroinfiltrated N. benthamiana epidermal

cells which transiently expressed NbGAPDH-A-GFP with both

RCNMV RNA1 and RNA2. Arrowheads represent cortical

NbGAPDH-A-GFP signals and arrows represent chloroplast-

localized NbGAPDH-A-GFP signal. Other conditions for infiltra-

tion and CLSM observation are similar to those in Figure 5. Scale

bar = 20 mm.

(TIF)

Figure S8 Accumulation of p27 and NbGAPDH-A in the
agroinfiltrated leaves. NbGAPDH-A was expressed in N.
benthamiana leaves together with RCNMV RNA1, or RCNMV

replicase proteins p27 and p88. Each Agrobacterium culture was

diluted to OD600 = 0.8 and equal volume of cultures were mixed

and infiltrated into N. benthamiana leaves. At 40 hpi, protein was

extracted from the infiltrated leaves and subjected to Western

blotting using anti-p27 and anti-GFP antibodies. RbcL is a

Coomassie brilliant blue-stained gel image, which shows the large

subunit of Rubisco proteins.

(TIF)

Figure S9 Accumulation of RNA1 in the agroinfiltrated
leaves. An Agrobacterium culture that contained the plasmid that

expressed RbcSTP-GFP, GFP, RCNMV RNA1 and that

contained control vector plasmid was diluted to OD600 = 0.8.

Equal volume of each combination of cultures was mixed and
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infiltrated into N. benthamiana plants. At 40 hpi, the total RNA

was extracted from the infiltrated leaves and subjected to Northern

blotting using DIG-labeled riboprobes specific for the plus (+)- and

minus (2)-strand RNA1 of RCNMV. In vitro transcripts of (+)-

RNA1 (10 mg) and (2)-RNA1 (1 mg) were loaded as the control

marker. rRNA is an ethidium bromide-stained agarose gel image

of 1 mg total RNA, which was used as the loading control.

(TIF)

Figure S10 RNase treatment does not affect the inter-
action between NbGAPDH-A and RCNMV proteins in
vitro. In the presence (+) or absence (2) of RNase A (50 mg/ml),

glutathione resin-bound proteins were incubated with His-GAP-

myc for 2 h at 4uC. The beads were then washed and the pulled-

down complexes were subjected to SDS-PAGE and analyzed by

Western blotting (Wb) using anti-GST and anti-myc antibodies.

(TIF)

Figure S11 PD targeting of RCNMV MP-GFP is not
affected by the silencing of NbGAPDH-A. Agrobacterium
culture containing pBICRMsG plasmid that transiently expresses

RCNMV MP-GFP under the control of Cauliflower Mosaic Virus
35S promoter [10] was diluted to OD600 = 0.8 and infiltrated into

ALSV- or ALSV/gsGAP-infected N. benthamiana plants. Repre-

sentative CLSM images of the leaves at 35 hpi show that the MP-

GFP localized to the PD irrespective of the silencing of

NbGAPDH-A. Scale bars = 20 mm. Images present confocal

projections composed of 5 optical sections taken at 1 mm intervals,

around cell wall region (top 2 panels) or cortical surface region

(lower 4 panels) of epidermal cells.

(TIF)

Figure S12 Localization of RCNMV MP-GFP in
NbGAPDH-A–silenced plants at a later stage of infection
of the recombinant virus that expresses MP-GFP.
Representative CLSM images of ALSV/gsGAP-infected N.
benthamiana mesophyll cells infiltrated with Agrobacterium
cultures that contained pBICR1/MsG2fsMP, which expressed

recombinant RCNMV RNAs encoding MP-GFP (Figure S1K).

The images were obtained at 44 h after infiltration. Scale

bar = 30 mm. The images represent confocal projections of 20

optical sections at 1 mm intervals, ranging from the surface to the

middle of the cells.

(TIF)

Figure S13 Accumulation of p27 in the protoplasts
prepared from ALSV or ALSV/gsGAP-infected plants.
Protoplasts prepared from ALSV- or ALSV/gsGAP-infected N.
benthamiana plants were inoculated with recombinant RCNMV

RNAs that expressed the MP-GFP fusion protein (Figure S1L).

Protein was extracted Proteins extracted at 16 hpi from 26104

protoplasts were loaded in each lane. p27 was detected using the

protein-specific rabbit polyclonal antibody. RbcL is a Coomassie

brilliant blue-stained gel image of proteins extracted from 26104

protoplasts, which shows the large subunit of Rubisco proteins.

The left-most panels show the results for mock-inoculated

protoplasts treated with the same antibodies.

(TIF)

Figure S14 NbGAPDH-A-silenced plant by TRV-based
vector exhibits similar mild symptoms as that by empty
TRV vector-infected plant. Representative images of N.
benthamiana plants 25 days post inoculation with TRV vectors

via Agrobacterium. Infection with TRV empty vector (wt TRV)

and the vector containing 294 nt of NbGAPDH-A gene

(TRVgsGAP) did not affect plant growth and similar mild

symptoms were detected.

(TIF)

Figure S15 Subcellular localization of NbGAPDH-A-GFP
is not affected by the coexpression of p27-DRm.
Representative CLSM images of agroinfiltrated N. benthamiana
cells. Each Agrobacterium culture was diluted to OD600 = 0.8 and

equal volume of cultures were mixed for infiltration. CLSM

images were taken at 40 h after infiltration. Images present

confocal projections composed of 20 optical sections taken at 1 mm

intervals, from the surface to the middle of epidermal cells.

Epidermal cells transiently expressing NbGAPDH-A-GFP and

p27 fused with DsRed-monomer (p27-DRm). Green signals

represent chloroplast-localizing NbGAPDH-A-GFP and red

signals represent large aggregates formed by p27-DRm. No

overlapping signals were detected. Scale bar = 20 mm.

(TIF)

Table S1 LC/MS/MS analysis of proteins copurified
with the tagged MP. A piece of silver-stained gel below the

42 kDa marker (red arrow, Figure 2A) was subjected to LC/MS/

MS analysis. RCNMV MP and several host proteins identified

specifically to the tagged MP, not wild type MP.

(TIF)

Table S2 List of the primers used in the study.

(TIF)
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